mteb 2.7.0__py3-none-any.whl → 2.7.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_evaluators/retrieval_metrics.py +1 -1
- mteb/abstasks/retrieval_dataset_loaders.py +2 -2
- mteb/abstasks/text/reranking.py +1 -1
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +66 -10
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +11 -5
- mteb/models/model_implementations/nvidia_models.py +58 -5
- mteb/models/model_implementations/voyage_models.py +30 -0
- mteb/models/model_implementations/voyage_v.py +5 -3
- mteb/models/model_meta.py +1 -1
- mteb/models/sentence_transformer_wrapper.py +16 -3
- mteb/tasks/retrieval/eng/__init__.py +2 -0
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- {mteb-2.7.0.dist-info → mteb-2.7.1.dist-info}/METADATA +1 -1
- {mteb-2.7.0.dist-info → mteb-2.7.1.dist-info}/RECORD +24 -20
- {mteb-2.7.0.dist-info → mteb-2.7.1.dist-info}/WHEEL +0 -0
- {mteb-2.7.0.dist-info → mteb-2.7.1.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.0.dist-info → mteb-2.7.1.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.0.dist-info → mteb-2.7.1.dist-info}/top_level.txt +0 -0
|
@@ -140,7 +140,7 @@ def calculate_pmrr(original_run, new_run, changed_qrels):
|
|
|
140
140
|
changes = []
|
|
141
141
|
for qid in changed_qrels.keys():
|
|
142
142
|
if qid + "-og" not in original_run or qid + "-changed" not in new_run:
|
|
143
|
-
|
|
143
|
+
logger.warning(f"Query {qid} not found in the runs for calculating p-MRR")
|
|
144
144
|
continue
|
|
145
145
|
original_qid_run = original_run[qid + "-og"]
|
|
146
146
|
new_qid_run = new_run[qid + "-changed"]
|
|
@@ -136,7 +136,7 @@ class RetrievalDatasetLoader:
|
|
|
136
136
|
"_id", "id"
|
|
137
137
|
)
|
|
138
138
|
logger.info("Loaded %d %s Documents.", len(corpus_ds), self.split.upper())
|
|
139
|
-
logger.
|
|
139
|
+
logger.debug("Doc Example: %s", corpus_ds[0])
|
|
140
140
|
return corpus_ds
|
|
141
141
|
|
|
142
142
|
def _load_queries(self) -> QueryDatasetType:
|
|
@@ -152,7 +152,7 @@ class RetrievalDatasetLoader:
|
|
|
152
152
|
)
|
|
153
153
|
|
|
154
154
|
logger.info("Loaded %d %s queries.", len(queries_ds), self.split.upper())
|
|
155
|
-
logger.
|
|
155
|
+
logger.debug("Query Example: %s", queries_ds[0])
|
|
156
156
|
|
|
157
157
|
return queries_ds
|
|
158
158
|
|
mteb/abstasks/text/reranking.py
CHANGED
|
@@ -6,6 +6,7 @@ from mteb.benchmarks.benchmarks.benchmarks import (
|
|
|
6
6
|
BUILT_MTEB,
|
|
7
7
|
C_MTEB,
|
|
8
8
|
CHEMTEB,
|
|
9
|
+
CHEMTEB_V1_1,
|
|
9
10
|
CODE_RAG,
|
|
10
11
|
ENCODECHKA,
|
|
11
12
|
FA_MTEB,
|
|
@@ -70,6 +71,7 @@ __all__ = [
|
|
|
70
71
|
"BRIGHT_LONG",
|
|
71
72
|
"BUILT_MTEB",
|
|
72
73
|
"CHEMTEB",
|
|
74
|
+
"CHEMTEB_V1_1",
|
|
73
75
|
"CODE_RAG",
|
|
74
76
|
"C_MTEB",
|
|
75
77
|
"ENCODECHKA",
|
|
@@ -1656,6 +1656,7 @@ FA_MTEB_2 = Benchmark(
|
|
|
1656
1656
|
|
|
1657
1657
|
CHEMTEB = Benchmark(
|
|
1658
1658
|
name="ChemTEB",
|
|
1659
|
+
aliases=["ChemTEB(v1)"],
|
|
1659
1660
|
display_name="Chemical",
|
|
1660
1661
|
icon="https://github.com/DennisSuitters/LibreICONS/raw/2d2172d15e3c6ca03c018629d60050e4b99e5c55/svg-color/libre-gui-purge.svg",
|
|
1661
1662
|
tasks=get_tasks(
|
|
@@ -1701,6 +1702,62 @@ CHEMTEB = Benchmark(
|
|
|
1701
1702
|
""",
|
|
1702
1703
|
)
|
|
1703
1704
|
|
|
1705
|
+
CHEMTEB_V1_1 = Benchmark(
|
|
1706
|
+
name="ChemTEB(v1.1)",
|
|
1707
|
+
aliases=["ChemTEB(latest)"],
|
|
1708
|
+
display_name="Chemical",
|
|
1709
|
+
icon="https://github.com/DennisSuitters/LibreICONS/raw/2d2172d15e3c6ca03c018629d60050e4b99e5c55/svg-color/libre-gui-purge.svg",
|
|
1710
|
+
tasks=get_tasks(
|
|
1711
|
+
tasks=[
|
|
1712
|
+
"PubChemSMILESBitextMining",
|
|
1713
|
+
"SDSEyeProtectionClassification",
|
|
1714
|
+
"SDSGlovesClassification",
|
|
1715
|
+
"WikipediaBioMetChemClassification",
|
|
1716
|
+
"WikipediaGreenhouseEnantiopureClassification",
|
|
1717
|
+
"WikipediaSolidStateColloidalClassification",
|
|
1718
|
+
"WikipediaOrganicInorganicClassification",
|
|
1719
|
+
"WikipediaCryobiologySeparationClassification",
|
|
1720
|
+
"WikipediaChemistryTopicsClassification",
|
|
1721
|
+
"WikipediaTheoreticalAppliedClassification",
|
|
1722
|
+
"WikipediaChemFieldsClassification",
|
|
1723
|
+
"WikipediaLuminescenceClassification",
|
|
1724
|
+
"WikipediaIsotopesFissionClassification",
|
|
1725
|
+
"WikipediaSaltsSemiconductorsClassification",
|
|
1726
|
+
"WikipediaBiolumNeurochemClassification",
|
|
1727
|
+
"WikipediaCrystallographyAnalyticalClassification",
|
|
1728
|
+
"WikipediaCompChemSpectroscopyClassification",
|
|
1729
|
+
"WikipediaChemEngSpecialtiesClassification",
|
|
1730
|
+
"WikipediaChemistryTopicsClustering",
|
|
1731
|
+
"WikipediaSpecialtiesInChemistryClustering",
|
|
1732
|
+
"PubChemAISentenceParaphrasePC",
|
|
1733
|
+
"PubChemSMILESPC",
|
|
1734
|
+
"PubChemSynonymPC",
|
|
1735
|
+
"PubChemWikiParagraphsPC",
|
|
1736
|
+
"PubChemWikiPairClassification",
|
|
1737
|
+
"ChemNQRetrieval",
|
|
1738
|
+
"ChemHotpotQARetrieval",
|
|
1739
|
+
"ChemRxivRetrieval",
|
|
1740
|
+
],
|
|
1741
|
+
),
|
|
1742
|
+
description="ChemTEB evaluates the performance of text embedding models on chemical domain data. This version adds the ChemRxivRetrieval task.",
|
|
1743
|
+
reference="https://arxiv.org/abs/2412.00532",
|
|
1744
|
+
citation=r"""
|
|
1745
|
+
@article{kasmaee2024chemteb,
|
|
1746
|
+
author = {Kasmaee, Ali Shiraee and Khodadad, Mohammad and Saloot, Mohammad Arshi and Sherck, Nick and Dokas, Stephen and Mahyar, Hamidreza and Samiee, Soheila},
|
|
1747
|
+
journal = {arXiv preprint arXiv:2412.00532},
|
|
1748
|
+
title = {ChemTEB: Chemical Text Embedding Benchmark, an Overview of Embedding Models Performance \\& Efficiency on a Specific Domain},
|
|
1749
|
+
year = {2024},
|
|
1750
|
+
}
|
|
1751
|
+
|
|
1752
|
+
@article{kasmaee2025chembed,
|
|
1753
|
+
author = {Kasmaee, Ali Shiraee and Khodadad, Mohammad and Astaraki, Mahdi and Saloot, Mohammad Arshi and Sherck, Nicholas and Mahyar, Hamidreza and Samiee, Soheila},
|
|
1754
|
+
journal = {arXiv preprint arXiv:2508.01643},
|
|
1755
|
+
title = {Chembed: Enhancing chemical literature search through domain-specific text embeddings},
|
|
1756
|
+
year = {2025},
|
|
1757
|
+
}
|
|
1758
|
+
""",
|
|
1759
|
+
)
|
|
1760
|
+
|
|
1704
1761
|
BEIR_NL = Benchmark(
|
|
1705
1762
|
name="BEIR-NL",
|
|
1706
1763
|
display_name="BEIR-NL",
|
|
@@ -2350,17 +2407,16 @@ VIDORE_V3 = VidoreBenchmark(
|
|
|
2350
2407
|
]
|
|
2351
2408
|
),
|
|
2352
2409
|
description="ViDoRe V3 sets a new industry gold standard for multi-modal, enterprise document visual retrieval evaluation. It addresses a critical challenge in production RAG systems: retrieving accurate information from complex, visually-rich documents. The benchmark includes both open and closed datasets: to submit results on private tasks, please [open an issue](https://github.com/embeddings-benchmark/mteb/issues?template=eval_request.yaml).",
|
|
2353
|
-
reference="https://
|
|
2410
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
2354
2411
|
citation=r"""
|
|
2355
|
-
@
|
|
2356
|
-
|
|
2357
|
-
|
|
2358
|
-
|
|
2359
|
-
|
|
2360
|
-
|
|
2361
|
-
|
|
2362
|
-
|
|
2363
|
-
year = {2025},
|
|
2412
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
2413
|
+
archiveprefix = {arXiv},
|
|
2414
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
2415
|
+
eprint = {2601.08620},
|
|
2416
|
+
primaryclass = {cs.AI},
|
|
2417
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
2418
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
2419
|
+
year = {2026},
|
|
2364
2420
|
}
|
|
2365
2421
|
""",
|
|
2366
2422
|
)
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 74457,
|
|
4
|
+
"number_of_characters": 76109543,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 75549698,
|
|
7
|
+
"min_text_length": 121,
|
|
8
|
+
"average_text_length": 1087.7189916063176,
|
|
9
|
+
"max_text_length": 25438,
|
|
10
|
+
"unique_texts": 69150
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 559845,
|
|
15
|
+
"min_text_length": 57,
|
|
16
|
+
"average_text_length": 111.969,
|
|
17
|
+
"max_text_length": 224,
|
|
18
|
+
"unique_texts": 5000
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 5000,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 1,
|
|
26
|
+
"unique_relevant_docs": 5000
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,116 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 30300,
|
|
4
|
+
"number_of_characters": 17320243,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 17276572,
|
|
7
|
+
"min_text_length": 316,
|
|
8
|
+
"average_text_length": 575.8857333333333,
|
|
9
|
+
"max_text_length": 1008,
|
|
10
|
+
"unique_texts": 28361
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 43671,
|
|
15
|
+
"min_text_length": 67,
|
|
16
|
+
"average_text_length": 145.57,
|
|
17
|
+
"max_text_length": 345,
|
|
18
|
+
"unique_texts": 300
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 300,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 1,
|
|
26
|
+
"unique_relevant_docs": 300
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null,
|
|
29
|
+
"hf_subset_descriptive_stats": {
|
|
30
|
+
"en": {
|
|
31
|
+
"num_samples": 10100,
|
|
32
|
+
"number_of_characters": 5517678,
|
|
33
|
+
"documents_text_statistics": {
|
|
34
|
+
"total_text_length": 5503635,
|
|
35
|
+
"min_text_length": 316,
|
|
36
|
+
"average_text_length": 550.3635,
|
|
37
|
+
"max_text_length": 726,
|
|
38
|
+
"unique_texts": 9422
|
|
39
|
+
},
|
|
40
|
+
"documents_image_statistics": null,
|
|
41
|
+
"queries_text_statistics": {
|
|
42
|
+
"total_text_length": 14043,
|
|
43
|
+
"min_text_length": 68,
|
|
44
|
+
"average_text_length": 140.43,
|
|
45
|
+
"max_text_length": 305,
|
|
46
|
+
"unique_texts": 100
|
|
47
|
+
},
|
|
48
|
+
"queries_image_statistics": null,
|
|
49
|
+
"relevant_docs_statistics": {
|
|
50
|
+
"num_relevant_docs": 100,
|
|
51
|
+
"min_relevant_docs_per_query": 1,
|
|
52
|
+
"average_relevant_docs_per_query": 1.0,
|
|
53
|
+
"max_relevant_docs_per_query": 1,
|
|
54
|
+
"unique_relevant_docs": 100
|
|
55
|
+
},
|
|
56
|
+
"top_ranked_statistics": null
|
|
57
|
+
},
|
|
58
|
+
"fi": {
|
|
59
|
+
"num_samples": 10100,
|
|
60
|
+
"number_of_characters": 5953462,
|
|
61
|
+
"documents_text_statistics": {
|
|
62
|
+
"total_text_length": 5938809,
|
|
63
|
+
"min_text_length": 326,
|
|
64
|
+
"average_text_length": 593.8809,
|
|
65
|
+
"max_text_length": 1008,
|
|
66
|
+
"unique_texts": 9422
|
|
67
|
+
},
|
|
68
|
+
"documents_image_statistics": null,
|
|
69
|
+
"queries_text_statistics": {
|
|
70
|
+
"total_text_length": 14653,
|
|
71
|
+
"min_text_length": 67,
|
|
72
|
+
"average_text_length": 146.53,
|
|
73
|
+
"max_text_length": 345,
|
|
74
|
+
"unique_texts": 100
|
|
75
|
+
},
|
|
76
|
+
"queries_image_statistics": null,
|
|
77
|
+
"relevant_docs_statistics": {
|
|
78
|
+
"num_relevant_docs": 100,
|
|
79
|
+
"min_relevant_docs_per_query": 1,
|
|
80
|
+
"average_relevant_docs_per_query": 1.0,
|
|
81
|
+
"max_relevant_docs_per_query": 1,
|
|
82
|
+
"unique_relevant_docs": 100
|
|
83
|
+
},
|
|
84
|
+
"top_ranked_statistics": null
|
|
85
|
+
},
|
|
86
|
+
"pt": {
|
|
87
|
+
"num_samples": 10100,
|
|
88
|
+
"number_of_characters": 5849103,
|
|
89
|
+
"documents_text_statistics": {
|
|
90
|
+
"total_text_length": 5834128,
|
|
91
|
+
"min_text_length": 325,
|
|
92
|
+
"average_text_length": 583.4128,
|
|
93
|
+
"max_text_length": 774,
|
|
94
|
+
"unique_texts": 9517
|
|
95
|
+
},
|
|
96
|
+
"documents_image_statistics": null,
|
|
97
|
+
"queries_text_statistics": {
|
|
98
|
+
"total_text_length": 14975,
|
|
99
|
+
"min_text_length": 69,
|
|
100
|
+
"average_text_length": 149.75,
|
|
101
|
+
"max_text_length": 320,
|
|
102
|
+
"unique_texts": 100
|
|
103
|
+
},
|
|
104
|
+
"queries_image_statistics": null,
|
|
105
|
+
"relevant_docs_statistics": {
|
|
106
|
+
"num_relevant_docs": 100,
|
|
107
|
+
"min_relevant_docs_per_query": 1,
|
|
108
|
+
"average_relevant_docs_per_query": 1.0,
|
|
109
|
+
"max_relevant_docs_per_query": 1,
|
|
110
|
+
"unique_relevant_docs": 100
|
|
111
|
+
},
|
|
112
|
+
"top_ranked_statistics": null
|
|
113
|
+
}
|
|
114
|
+
}
|
|
115
|
+
}
|
|
116
|
+
}
|
|
@@ -1,17 +1,15 @@
|
|
|
1
|
-
from typing import
|
|
1
|
+
from typing import Any
|
|
2
2
|
|
|
3
3
|
import torch
|
|
4
|
+
from packaging.version import Version
|
|
4
5
|
from torch.utils.data import DataLoader
|
|
6
|
+
from transformers import __version__ as transformers_version
|
|
5
7
|
|
|
6
8
|
from mteb.abstasks.task_metadata import TaskMetadata
|
|
7
9
|
from mteb.models.abs_encoder import AbsEncoder
|
|
8
10
|
from mteb.models.model_meta import ModelMeta
|
|
9
11
|
from mteb.types import Array, BatchedInput, PromptType
|
|
10
12
|
|
|
11
|
-
if TYPE_CHECKING:
|
|
12
|
-
pass
|
|
13
|
-
|
|
14
|
-
|
|
15
13
|
LLAMA_NEMORETRIEVER_CITATION = """@misc{xu2025llamanemoretrievercolembedtopperforming,
|
|
16
14
|
title={Llama Nemoretriever Colembed: Top-Performing Text-Image Retrieval Model},
|
|
17
15
|
author={Mengyao Xu and Gabriel Moreira and Ronay Ak and Radek Osmulski and Yauhen Babakhin and Zhiding Yu and Benedikt Schifferer and Even Oldridge},
|
|
@@ -34,6 +32,14 @@ class LlamaNemoretrieverColembed(AbsEncoder):
|
|
|
34
32
|
attn_implementation="flash_attention_2",
|
|
35
33
|
**kwargs,
|
|
36
34
|
):
|
|
35
|
+
required_transformers_version = "4.49.0"
|
|
36
|
+
|
|
37
|
+
if Version(transformers_version) != Version(required_transformers_version):
|
|
38
|
+
raise RuntimeError(
|
|
39
|
+
f"transformers version {transformers_version} is not match with required "
|
|
40
|
+
f"install version {required_transformers_version} to run `nvidia/llama-nemoretriever-colembed`"
|
|
41
|
+
)
|
|
42
|
+
|
|
37
43
|
from transformers import AutoModel
|
|
38
44
|
|
|
39
45
|
self.model = AutoModel.from_pretrained(
|
|
@@ -10,8 +10,9 @@ from tqdm import tqdm
|
|
|
10
10
|
from transformers import AutoModel, AutoTokenizer
|
|
11
11
|
from transformers import __version__ as transformers_version
|
|
12
12
|
|
|
13
|
-
from mteb import TaskMetadata
|
|
14
13
|
from mteb._requires_package import requires_package
|
|
14
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
15
|
+
from mteb.models import CrossEncoderWrapper
|
|
15
16
|
from mteb.models.abs_encoder import AbsEncoder
|
|
16
17
|
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
17
18
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
@@ -20,23 +21,23 @@ from mteb.types import Array, BatchedInput, PromptType
|
|
|
20
21
|
logger = logging.getLogger(__name__)
|
|
21
22
|
|
|
22
23
|
NV_RETRIEVER_CITATION = """@misc{lee2025nvembedimprovedtechniquestraining,
|
|
23
|
-
title={NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models},
|
|
24
|
+
title={NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models},
|
|
24
25
|
author={Chankyu Lee and Rajarshi Roy and Mengyao Xu and Jonathan Raiman and Mohammad Shoeybi and Bryan Catanzaro and Wei Ping},
|
|
25
26
|
year={2025},
|
|
26
27
|
eprint={2405.17428},
|
|
27
28
|
archivePrefix={arXiv},
|
|
28
29
|
primaryClass={cs.CL},
|
|
29
|
-
url={https://arxiv.org/abs/2405.17428},
|
|
30
|
+
url={https://arxiv.org/abs/2405.17428},
|
|
30
31
|
}"""
|
|
31
32
|
|
|
32
33
|
LlamaEmbedNemotron_CITATION = """@misc{babakhin2025llamaembednemotron8buniversaltextembedding,
|
|
33
|
-
title={Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks},
|
|
34
|
+
title={Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks},
|
|
34
35
|
author={Yauhen Babakhin and Radek Osmulski and Ronay Ak and Gabriel Moreira and Mengyao Xu and Benedikt Schifferer and Bo Liu and Even Oldridge},
|
|
35
36
|
year={2025},
|
|
36
37
|
eprint={2511.07025},
|
|
37
38
|
archivePrefix={arXiv},
|
|
38
39
|
primaryClass={cs.CL},
|
|
39
|
-
url={https://arxiv.org/abs/2511.07025},
|
|
40
|
+
url={https://arxiv.org/abs/2511.07025},
|
|
40
41
|
}"""
|
|
41
42
|
|
|
42
43
|
|
|
@@ -629,3 +630,55 @@ llama_embed_nemotron_8b = ModelMeta(
|
|
|
629
630
|
contacts=["ybabakhin"],
|
|
630
631
|
citation=LlamaEmbedNemotron_CITATION,
|
|
631
632
|
)
|
|
633
|
+
|
|
634
|
+
|
|
635
|
+
def _nemotron_rerank_model(model: str, revision: str, **kwargs) -> CrossEncoderWrapper:
|
|
636
|
+
required_transformers_version = "4.47.1"
|
|
637
|
+
|
|
638
|
+
if Version(transformers_version) != Version(required_transformers_version):
|
|
639
|
+
raise RuntimeError(
|
|
640
|
+
f"transformers version {transformers_version} is not match with required "
|
|
641
|
+
f"install version {required_transformers_version} to run `nvidia/llama-nemotron-rerank-1b-v2`"
|
|
642
|
+
)
|
|
643
|
+
|
|
644
|
+
return CrossEncoderWrapper(
|
|
645
|
+
model=model,
|
|
646
|
+
revision=revision,
|
|
647
|
+
**kwargs,
|
|
648
|
+
)
|
|
649
|
+
|
|
650
|
+
|
|
651
|
+
nemotron_rerank_1b_v2 = ModelMeta(
|
|
652
|
+
loader=_nemotron_rerank_model,
|
|
653
|
+
loader_kwargs=dict(
|
|
654
|
+
trust_remote_code=True,
|
|
655
|
+
query_prefix="question:",
|
|
656
|
+
passage_prefix=" \n \n passage:",
|
|
657
|
+
model_kwargs={"torch_dtype": torch.float32},
|
|
658
|
+
),
|
|
659
|
+
name="nvidia/llama-nemotron-rerank-1b-v2",
|
|
660
|
+
revision="78efcfdc23b53a753f6c73f2d78b18132a34ac4d",
|
|
661
|
+
release_date="2025-10-16",
|
|
662
|
+
languages=["eng-Latn"],
|
|
663
|
+
n_parameters=1235816448,
|
|
664
|
+
memory_usage_mb=2357.0,
|
|
665
|
+
max_tokens=4096,
|
|
666
|
+
embed_dim=2048,
|
|
667
|
+
license="https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/",
|
|
668
|
+
open_weights=True,
|
|
669
|
+
public_training_code=None,
|
|
670
|
+
public_training_data=None,
|
|
671
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
672
|
+
reference="https://huggingface.co/nvidia/llama-nemotron-rerank-1b-v2",
|
|
673
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
674
|
+
use_instructions=None,
|
|
675
|
+
training_datasets=set(
|
|
676
|
+
# private
|
|
677
|
+
),
|
|
678
|
+
adapted_from="meta-llama/Llama-3.2-1B",
|
|
679
|
+
superseded_by=None,
|
|
680
|
+
modalities=["text"],
|
|
681
|
+
model_type=["cross-encoder"],
|
|
682
|
+
citation=None,
|
|
683
|
+
contacts=None,
|
|
684
|
+
)
|
|
@@ -25,6 +25,9 @@ VOYAGE_DTYPE_TRANSLATION = {
|
|
|
25
25
|
|
|
26
26
|
# Total token limits per model based on VoyageAI documentation
|
|
27
27
|
VOYAGE_TOTAL_TOKEN_LIMITS = {
|
|
28
|
+
"voyage-4-large": 120_000,
|
|
29
|
+
"voyage-4": 320_000,
|
|
30
|
+
"voyage-4-lite": 1_000_000,
|
|
28
31
|
"voyage-3.5-lite": 1_000_000,
|
|
29
32
|
"voyage-3.5": 320_000,
|
|
30
33
|
"voyage-2": 320_000,
|
|
@@ -206,6 +209,32 @@ model_prompts = {
|
|
|
206
209
|
PromptType.document.value: "document",
|
|
207
210
|
}
|
|
208
211
|
|
|
212
|
+
voyage_4 = ModelMeta(
|
|
213
|
+
name="voyageai/voyage-4",
|
|
214
|
+
model_type=["dense"],
|
|
215
|
+
revision="1",
|
|
216
|
+
release_date="2026-01-15",
|
|
217
|
+
languages=None, # supported languages not specified
|
|
218
|
+
loader=VoyageModel,
|
|
219
|
+
loader_kwargs=dict(
|
|
220
|
+
max_tokens=32000,
|
|
221
|
+
model_prompts=model_prompts,
|
|
222
|
+
),
|
|
223
|
+
max_tokens=32000,
|
|
224
|
+
embed_dim=1024,
|
|
225
|
+
open_weights=False,
|
|
226
|
+
n_parameters=None,
|
|
227
|
+
memory_usage_mb=None,
|
|
228
|
+
license=None,
|
|
229
|
+
reference="https://blog.voyageai.com/2026/01/15/voyage-4/",
|
|
230
|
+
similarity_fn_name="cosine",
|
|
231
|
+
framework=["API"],
|
|
232
|
+
use_instructions=True,
|
|
233
|
+
training_datasets=VOYAGE_TRAINING_DATA,
|
|
234
|
+
public_training_code=None,
|
|
235
|
+
public_training_data=None,
|
|
236
|
+
)
|
|
237
|
+
|
|
209
238
|
voyage_4_lite = ModelMeta(
|
|
210
239
|
name="voyageai/voyage-4-lite",
|
|
211
240
|
model_type=["dense"],
|
|
@@ -310,6 +339,7 @@ voyage_3_5 = ModelMeta(
|
|
|
310
339
|
training_datasets=VOYAGE_TRAINING_DATA,
|
|
311
340
|
public_training_code=None,
|
|
312
341
|
public_training_data=None,
|
|
342
|
+
superseded_by="voyageai/voyage-4",
|
|
313
343
|
)
|
|
314
344
|
|
|
315
345
|
voyage_3_5_int8 = ModelMeta(
|
|
@@ -16,6 +16,8 @@ from mteb.types import Array, BatchedInput, PromptType
|
|
|
16
16
|
if TYPE_CHECKING:
|
|
17
17
|
from PIL import Image
|
|
18
18
|
|
|
19
|
+
logger = logging.getLogger(__name__)
|
|
20
|
+
|
|
19
21
|
|
|
20
22
|
def _downsample_image(
|
|
21
23
|
image: Image.Image, max_pixels: int = 16000000, target_longest_side: int = 4000
|
|
@@ -37,17 +39,17 @@ def _downsample_image(
|
|
|
37
39
|
new_width = int(width * (target_longest_side / height))
|
|
38
40
|
|
|
39
41
|
new_size = (new_width, new_height)
|
|
40
|
-
|
|
42
|
+
logger.info(
|
|
41
43
|
f"Downsampling image from {width}x{height} to {new_width}x{new_height}"
|
|
42
44
|
)
|
|
43
45
|
return image.resize(new_size, Image.LANCZOS)
|
|
44
46
|
if width > height:
|
|
45
47
|
if width > 10000:
|
|
46
|
-
|
|
48
|
+
logger.error("Processing extremely wide images.")
|
|
47
49
|
return image.resize((10000, height), Image.LANCZOS)
|
|
48
50
|
else:
|
|
49
51
|
if height > 10000:
|
|
50
|
-
|
|
52
|
+
logger.error("Processing extremely high images.")
|
|
51
53
|
return image.resize((width, 10000), Image.LANCZOS)
|
|
52
54
|
return image
|
|
53
55
|
|
mteb/models/model_meta.py
CHANGED
|
@@ -331,7 +331,7 @@ class ModelMeta(BaseModel):
|
|
|
331
331
|
revision = revisions[0].commit_id if revisions else None
|
|
332
332
|
|
|
333
333
|
release_date = cls.fetch_release_date(model_name)
|
|
334
|
-
model_license = card_data.license
|
|
334
|
+
model_license = card_data.license if card_data.license != "other" else None
|
|
335
335
|
n_parameters = cls._calculate_num_parameters_from_hub(model_name)
|
|
336
336
|
memory_usage_mb = cls._calculate_memory_usage_mb(model_name, n_parameters)
|
|
337
337
|
if model_config and hasattr(model_config, "hidden_size"):
|
|
@@ -266,13 +266,24 @@ class SentenceTransformerMultimodalEncoderWrapper(SentenceTransformerEncoderWrap
|
|
|
266
266
|
|
|
267
267
|
|
|
268
268
|
class CrossEncoderWrapper:
|
|
269
|
-
"""Wrapper for CrossEncoder models.
|
|
269
|
+
"""Wrapper for CrossEncoder models.
|
|
270
|
+
|
|
271
|
+
Args:
|
|
272
|
+
model: The CrossEncoder model to use. Can be a string (model name) or a CrossEncoder model.
|
|
273
|
+
revision: The revision of the model to use.
|
|
274
|
+
device: The device used to load the model.
|
|
275
|
+
query_prefix: A prefix to add to all queries.
|
|
276
|
+
passage_prefix: A prefix to add to all passages.
|
|
277
|
+
**kwargs: Additional arguments to pass to the CrossEncoder model.
|
|
278
|
+
"""
|
|
270
279
|
|
|
271
280
|
def __init__(
|
|
272
281
|
self,
|
|
273
282
|
model: CrossEncoder | str,
|
|
274
283
|
revision: str | None = None,
|
|
275
284
|
device: str | None = None,
|
|
285
|
+
query_prefix: str = "",
|
|
286
|
+
passage_prefix: str = "",
|
|
276
287
|
**kwargs,
|
|
277
288
|
) -> None:
|
|
278
289
|
from sentence_transformers import CrossEncoder
|
|
@@ -283,6 +294,8 @@ class CrossEncoderWrapper:
|
|
|
283
294
|
self.model = CrossEncoder(model, revision=revision, device=device, **kwargs)
|
|
284
295
|
|
|
285
296
|
self.mteb_model_meta = ModelMeta.from_cross_encoder(self.model)
|
|
297
|
+
self.query_prefix = query_prefix
|
|
298
|
+
self.passage_prefix = passage_prefix
|
|
286
299
|
|
|
287
300
|
def predict(
|
|
288
301
|
self,
|
|
@@ -311,10 +324,10 @@ class CrossEncoderWrapper:
|
|
|
311
324
|
The predicted relevance scores for each inputs pair.
|
|
312
325
|
"""
|
|
313
326
|
all_queries_with_instructions = [
|
|
314
|
-
text for batch in inputs1 for text in batch["text"]
|
|
327
|
+
self.query_prefix + text for batch in inputs1 for text in batch["text"]
|
|
315
328
|
]
|
|
316
329
|
all_corpus_with_instructions = [
|
|
317
|
-
text for batch in inputs2 for text in batch["text"]
|
|
330
|
+
self.passage_prefix + text for batch in inputs2 for text in batch["text"]
|
|
318
331
|
]
|
|
319
332
|
|
|
320
333
|
return self.model.predict(
|
|
@@ -18,6 +18,7 @@ from .built_bench_retrieval import BuiltBenchRetrieval
|
|
|
18
18
|
from .chat_doctor_retrieval import ChatDoctorRetrieval
|
|
19
19
|
from .chem_hotpot_qa_retrieval import ChemHotpotQARetrieval
|
|
20
20
|
from .chem_nq_retrieval import ChemNQRetrieval
|
|
21
|
+
from .chemrxiv import ChemRxivRetrieval
|
|
21
22
|
from .cirr_it2i_retrieval import CIRRIT2IRetrieval
|
|
22
23
|
from .climate_fever_retrieval import (
|
|
23
24
|
ClimateFEVER,
|
|
@@ -254,6 +255,7 @@ __all__ = [
|
|
|
254
255
|
"ChatDoctorRetrieval",
|
|
255
256
|
"ChemHotpotQARetrieval",
|
|
256
257
|
"ChemNQRetrieval",
|
|
258
|
+
"ChemRxivRetrieval",
|
|
257
259
|
"ClimateFEVER",
|
|
258
260
|
"ClimateFEVERHardNegatives",
|
|
259
261
|
"ClimateFEVERHardNegativesV2",
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class ChemRxivRetrieval(AbsTaskRetrieval):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="ChemRxivRetrieval",
|
|
8
|
+
dataset={
|
|
9
|
+
"path": "BASF-AI/ChemRxivRetrieval",
|
|
10
|
+
"revision": "5377aa18f309ec440ff6325a4c2cd3362c2cb8d7",
|
|
11
|
+
},
|
|
12
|
+
description="A retrieval task based on ChemRxiv papers where queries are LLM-synthesized to match specific paragraphs.",
|
|
13
|
+
reference="https://arxiv.org/abs/2508.01643",
|
|
14
|
+
type="Retrieval",
|
|
15
|
+
category="t2t",
|
|
16
|
+
modalities=["text"],
|
|
17
|
+
eval_splits=["test"],
|
|
18
|
+
eval_langs=["eng-Latn"],
|
|
19
|
+
main_score="ndcg_at_10",
|
|
20
|
+
date=("2025-01-01", "2025-05-01"),
|
|
21
|
+
domains=["Chemistry"],
|
|
22
|
+
task_subtypes=["Question answering", "Article retrieval"],
|
|
23
|
+
license="cc-by-nc-sa-4.0",
|
|
24
|
+
annotations_creators="LM-generated and reviewed",
|
|
25
|
+
dialect=[],
|
|
26
|
+
sample_creation="found",
|
|
27
|
+
bibtex_citation="""@article{kasmaee2025chembed,
|
|
28
|
+
author = {Kasmaee, Ali Shiraee and Khodadad, Mohammad and Astaraki, Mahdi and Saloot, Mohammad Arshi and Sherck, Nicholas and Mahyar, Hamidreza and Samiee, Soheila},
|
|
29
|
+
journal = {arXiv preprint arXiv:2508.01643},
|
|
30
|
+
title = {Chembed: Enhancing chemical literature search through domain-specific text embeddings},
|
|
31
|
+
year = {2025},
|
|
32
|
+
}""",
|
|
33
|
+
)
|
|
@@ -6,6 +6,7 @@ from .cross_lingual_semantic_discrimination_wmt21 import (
|
|
|
6
6
|
CrossLingualSemanticDiscriminationWMT21,
|
|
7
7
|
)
|
|
8
8
|
from .cur_ev1_retrieval import CUREv1Retrieval
|
|
9
|
+
from .euro_pirq_retrieval import EuroPIRQRetrieval
|
|
9
10
|
from .indic_qa_retrieval import IndicQARetrieval
|
|
10
11
|
from .jina_vdr_bench_retrieval import (
|
|
11
12
|
JinaVDRAirbnbSyntheticRetrieval,
|
|
@@ -107,6 +108,7 @@ __all__ = [
|
|
|
107
108
|
"CUREv1Retrieval",
|
|
108
109
|
"CrossLingualSemanticDiscriminationWMT19",
|
|
109
110
|
"CrossLingualSemanticDiscriminationWMT21",
|
|
111
|
+
"EuroPIRQRetrieval",
|
|
110
112
|
"IndicQARetrieval",
|
|
111
113
|
"JinaVDRAirbnbSyntheticRetrieval",
|
|
112
114
|
"JinaVDRArabicChartQARetrieval",
|
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
_LANGUAGES = {
|
|
5
|
+
"en": ["eng-Latn"],
|
|
6
|
+
"fi": ["fin-Latn"],
|
|
7
|
+
"pt": ["por-Latn"],
|
|
8
|
+
}
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class EuroPIRQRetrieval(AbsTaskRetrieval):
|
|
12
|
+
metadata = TaskMetadata(
|
|
13
|
+
name="EuroPIRQRetrieval",
|
|
14
|
+
description="The EuroPIRQ retrieval dataset is a multilingual collection designed for evaluating retrieval and cross-lingual retrieval tasks. Dataset contains 10,000 parallel passages & 100 parallel queries (synthetic) in three languages: English, Portuguese, and Finnish, constructed from the European Union's DGT-Acquis corpus.",
|
|
15
|
+
reference="https://huggingface.co/datasets/eherra/EuroPIRQ-retrieval",
|
|
16
|
+
dataset={
|
|
17
|
+
"path": "eherra/EuroPIRQ-retrieval",
|
|
18
|
+
"revision": "59225ed25fbcea2185e1acbc8c3c80f1a8cd8341",
|
|
19
|
+
},
|
|
20
|
+
type="Retrieval",
|
|
21
|
+
category="t2t",
|
|
22
|
+
modalities=["text"],
|
|
23
|
+
eval_splits=["test"],
|
|
24
|
+
eval_langs=_LANGUAGES,
|
|
25
|
+
main_score="ndcg_at_10",
|
|
26
|
+
date=("2025-12-01", "2025-12-31"),
|
|
27
|
+
domains=["Legal"],
|
|
28
|
+
task_subtypes=[],
|
|
29
|
+
license="not specified",
|
|
30
|
+
annotations_creators="LM-generated and reviewed",
|
|
31
|
+
dialect=[],
|
|
32
|
+
sample_creation="found",
|
|
33
|
+
is_public=True,
|
|
34
|
+
bibtex_citation=r"""
|
|
35
|
+
@misc{eherra_2025_europirq,
|
|
36
|
+
author = { {Elias Herranen} },
|
|
37
|
+
publisher = { Hugging Face },
|
|
38
|
+
title = { EuroPIRQ: European Parallel Information Retrieval Queries },
|
|
39
|
+
url = { https://huggingface.co/datasets/eherra/EuroPIRQ-retrieval },
|
|
40
|
+
year = {2025},
|
|
41
|
+
}
|
|
42
|
+
""",
|
|
43
|
+
)
|
|
@@ -15,7 +15,7 @@ class Vidore3FinanceEnRetrieval(AbsTaskRetrieval):
|
|
|
15
15
|
metadata = TaskMetadata(
|
|
16
16
|
name="Vidore3FinanceEnRetrieval",
|
|
17
17
|
description="Retrieve associated pages according to questions. This task, Finance - EN, is a corpus of reports from american banking companies, intended for long-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
|
|
18
|
-
reference="https://
|
|
18
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
19
19
|
dataset={
|
|
20
20
|
"path": "vidore/vidore_v3_finance_en_mteb_format",
|
|
21
21
|
"revision": "fa78cb14152b3dde8c5defdc4e3ddf50de69dfeb",
|
|
@@ -34,15 +34,14 @@ class Vidore3FinanceEnRetrieval(AbsTaskRetrieval):
|
|
|
34
34
|
modalities=["text", "image"],
|
|
35
35
|
sample_creation="created and machine-translated",
|
|
36
36
|
bibtex_citation=r"""
|
|
37
|
-
@
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
year = {2025},
|
|
37
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
38
|
+
archiveprefix = {arXiv},
|
|
39
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
40
|
+
eprint = {2601.08620},
|
|
41
|
+
primaryclass = {cs.AI},
|
|
42
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
43
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
44
|
+
year = {2026},
|
|
46
45
|
}
|
|
47
46
|
""",
|
|
48
47
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -53,7 +52,7 @@ class Vidore3FinanceFrRetrieval(AbsTaskRetrieval):
|
|
|
53
52
|
metadata = TaskMetadata(
|
|
54
53
|
name="Vidore3FinanceFrRetrieval",
|
|
55
54
|
description="Retrieve associated pages according to questions. This task, Finance - FR, is a corpus of reports from french companies in the luxury domain, intended for long-document understanding tasks. Original queries were created in french, then translated to english, german, italian, portuguese and spanish.",
|
|
56
|
-
reference="https://
|
|
55
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
57
56
|
dataset={
|
|
58
57
|
"path": "vidore/vidore_v3_finance_fr_mteb_format",
|
|
59
58
|
"revision": "8a2adfda85a7967c7252129703d9b3c7c9f038a9",
|
|
@@ -71,15 +70,14 @@ class Vidore3FinanceFrRetrieval(AbsTaskRetrieval):
|
|
|
71
70
|
dialect=[],
|
|
72
71
|
sample_creation="created and machine-translated",
|
|
73
72
|
bibtex_citation=r"""
|
|
74
|
-
@
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
year = {2025},
|
|
73
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
74
|
+
archiveprefix = {arXiv},
|
|
75
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
76
|
+
eprint = {2601.08620},
|
|
77
|
+
primaryclass = {cs.AI},
|
|
78
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
79
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
80
|
+
year = {2026},
|
|
83
81
|
}
|
|
84
82
|
""",
|
|
85
83
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -91,7 +89,7 @@ class Vidore3IndustrialRetrieval(AbsTaskRetrieval):
|
|
|
91
89
|
metadata = TaskMetadata(
|
|
92
90
|
name="Vidore3IndustrialRetrieval",
|
|
93
91
|
description="Retrieve associated pages according to questions. This dataset, Industrial reports, is a corpus of technical documents on military aircraft (fueling, mechanics...), intended for complex-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
|
|
94
|
-
reference="https://
|
|
92
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
95
93
|
dataset={
|
|
96
94
|
"path": "vidore/vidore_v3_industrial_mteb_format",
|
|
97
95
|
"revision": "f732b725cf4a70803210edfe265a04f8bd5328f6",
|
|
@@ -110,15 +108,14 @@ class Vidore3IndustrialRetrieval(AbsTaskRetrieval):
|
|
|
110
108
|
modalities=["text", "image"],
|
|
111
109
|
sample_creation="created and machine-translated",
|
|
112
110
|
bibtex_citation=r"""
|
|
113
|
-
@
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
year = {2025},
|
|
111
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
112
|
+
archiveprefix = {arXiv},
|
|
113
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
114
|
+
eprint = {2601.08620},
|
|
115
|
+
primaryclass = {cs.AI},
|
|
116
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
117
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
118
|
+
year = {2026},
|
|
122
119
|
}
|
|
123
120
|
""",
|
|
124
121
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -130,7 +127,7 @@ class Vidore3PharmaceuticalsRetrieval(AbsTaskRetrieval):
|
|
|
130
127
|
metadata = TaskMetadata(
|
|
131
128
|
name="Vidore3PharmaceuticalsRetrieval",
|
|
132
129
|
description="Retrieve associated pages according to questions. This dataset, Pharmaceutical, is a corpus of slides from the FDA, intended for long-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
|
|
133
|
-
reference="https://
|
|
130
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
134
131
|
dataset={
|
|
135
132
|
"path": "vidore/vidore_v3_pharmaceuticals_mteb_format",
|
|
136
133
|
"revision": "237ed4f43c7fb3c4df07ec4e9dd0a4366be555b0",
|
|
@@ -149,15 +146,14 @@ class Vidore3PharmaceuticalsRetrieval(AbsTaskRetrieval):
|
|
|
149
146
|
modalities=["text", "image"],
|
|
150
147
|
sample_creation="created and machine-translated",
|
|
151
148
|
bibtex_citation=r"""
|
|
152
|
-
@
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
year = {2025},
|
|
149
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
150
|
+
archiveprefix = {arXiv},
|
|
151
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
152
|
+
eprint = {2601.08620},
|
|
153
|
+
primaryclass = {cs.AI},
|
|
154
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
155
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
156
|
+
year = {2026},
|
|
161
157
|
}
|
|
162
158
|
""",
|
|
163
159
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -169,7 +165,7 @@ class Vidore3ComputerScienceRetrieval(AbsTaskRetrieval):
|
|
|
169
165
|
metadata = TaskMetadata(
|
|
170
166
|
name="Vidore3ComputerScienceRetrieval",
|
|
171
167
|
description="Retrieve associated pages according to questions. This dataset, Computer Science, is a corpus of textbooks from the openstacks website, intended for long-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
|
|
172
|
-
reference="https://
|
|
168
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
173
169
|
dataset={
|
|
174
170
|
"path": "vidore/vidore_v3_computer_science_mteb_format",
|
|
175
171
|
"revision": "fb7fb69f81f7db62790f40494124b8ad22b424ab",
|
|
@@ -188,15 +184,14 @@ class Vidore3ComputerScienceRetrieval(AbsTaskRetrieval):
|
|
|
188
184
|
modalities=["text", "image"],
|
|
189
185
|
sample_creation="created and machine-translated",
|
|
190
186
|
bibtex_citation=r"""
|
|
191
|
-
@
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
year = {2025},
|
|
187
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
188
|
+
archiveprefix = {arXiv},
|
|
189
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
190
|
+
eprint = {2601.08620},
|
|
191
|
+
primaryclass = {cs.AI},
|
|
192
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
193
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
194
|
+
year = {2026},
|
|
200
195
|
}
|
|
201
196
|
""",
|
|
202
197
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -208,7 +203,7 @@ class Vidore3HrRetrieval(AbsTaskRetrieval):
|
|
|
208
203
|
metadata = TaskMetadata(
|
|
209
204
|
name="Vidore3HrRetrieval",
|
|
210
205
|
description="Retrieve associated pages according to questions. This dataset, HR, is a corpus of reports released by the european union, intended for complex-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
|
|
211
|
-
reference="https://
|
|
206
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
212
207
|
dataset={
|
|
213
208
|
"path": "vidore/vidore_v3_hr_mteb_format",
|
|
214
209
|
"revision": "bc7d43d64815ed30f664168c8052106484aba7fd",
|
|
@@ -227,15 +222,14 @@ class Vidore3HrRetrieval(AbsTaskRetrieval):
|
|
|
227
222
|
modalities=["text", "image"],
|
|
228
223
|
sample_creation="created and machine-translated",
|
|
229
224
|
bibtex_citation=r"""
|
|
230
|
-
@
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
year = {2025},
|
|
225
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
226
|
+
archiveprefix = {arXiv},
|
|
227
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
228
|
+
eprint = {2601.08620},
|
|
229
|
+
primaryclass = {cs.AI},
|
|
230
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
231
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
232
|
+
year = {2026},
|
|
239
233
|
}
|
|
240
234
|
""",
|
|
241
235
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -247,7 +241,7 @@ class Vidore3EnergyRetrieval(AbsTaskRetrieval):
|
|
|
247
241
|
metadata = TaskMetadata(
|
|
248
242
|
name="Vidore3EnergyRetrieval",
|
|
249
243
|
description="Retrieve associated pages according to questions. This dataset, Energy Fr, is a corpus of reports on energy supply in europe, intended for complex-document understanding tasks. Original queries were created in french, then translated to english, german, italian, portuguese and spanish.",
|
|
250
|
-
reference="https://
|
|
244
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
251
245
|
dataset={
|
|
252
246
|
"path": "vidore/vidore_v3_energy_mteb_format",
|
|
253
247
|
"revision": "84fca99e5978604bae30f2436eacb6dbaa0532e9",
|
|
@@ -266,15 +260,14 @@ class Vidore3EnergyRetrieval(AbsTaskRetrieval):
|
|
|
266
260
|
modalities=["text", "image"],
|
|
267
261
|
sample_creation="created and machine-translated",
|
|
268
262
|
bibtex_citation=r"""
|
|
269
|
-
@
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
|
|
277
|
-
year = {2025},
|
|
263
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
264
|
+
archiveprefix = {arXiv},
|
|
265
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
266
|
+
eprint = {2601.08620},
|
|
267
|
+
primaryclass = {cs.AI},
|
|
268
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
269
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
270
|
+
year = {2026},
|
|
278
271
|
}
|
|
279
272
|
""",
|
|
280
273
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -286,7 +279,7 @@ class Vidore3PhysicsRetrieval(AbsTaskRetrieval):
|
|
|
286
279
|
metadata = TaskMetadata(
|
|
287
280
|
name="Vidore3PhysicsRetrieval",
|
|
288
281
|
description="Retrieve associated pages according to questions. This dataset, Physics, is a corpus of course slides on french bachelor level physics lectures, intended for complex visual understanding tasks. Original queries were created in french, then translated to english, german, italian, portuguese and spanish.",
|
|
289
|
-
reference="https://
|
|
282
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
290
283
|
dataset={
|
|
291
284
|
"path": "vidore/vidore_v3_physics_mteb_format",
|
|
292
285
|
"revision": "2c18ef90ab3ef93a9d86ecc6521cdae2a29f8300",
|
|
@@ -305,15 +298,14 @@ class Vidore3PhysicsRetrieval(AbsTaskRetrieval):
|
|
|
305
298
|
modalities=["text", "image"],
|
|
306
299
|
sample_creation="created and machine-translated",
|
|
307
300
|
bibtex_citation=r"""
|
|
308
|
-
@
|
|
309
|
-
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
year = {2025},
|
|
301
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
302
|
+
archiveprefix = {arXiv},
|
|
303
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
304
|
+
eprint = {2601.08620},
|
|
305
|
+
primaryclass = {cs.AI},
|
|
306
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
307
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
308
|
+
year = {2026},
|
|
317
309
|
}
|
|
318
310
|
""",
|
|
319
311
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -325,7 +317,7 @@ class Vidore3NuclearRetrieval(AbsTaskRetrieval):
|
|
|
325
317
|
metadata = TaskMetadata(
|
|
326
318
|
name="Vidore3NuclearRetrieval",
|
|
327
319
|
description="Retrieve associated pages according to questions.",
|
|
328
|
-
reference="https://
|
|
320
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
329
321
|
dataset={
|
|
330
322
|
"path": "mteb-private/Vidore3NuclearRetrieval",
|
|
331
323
|
"revision": "a463fc67fefc01152153101e88a32d5f9515e3e3",
|
|
@@ -344,15 +336,14 @@ class Vidore3NuclearRetrieval(AbsTaskRetrieval):
|
|
|
344
336
|
modalities=["text", "image"],
|
|
345
337
|
sample_creation="created and machine-translated",
|
|
346
338
|
bibtex_citation=r"""
|
|
347
|
-
@
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
|
|
355
|
-
year = {2025},
|
|
339
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
340
|
+
archiveprefix = {arXiv},
|
|
341
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
342
|
+
eprint = {2601.08620},
|
|
343
|
+
primaryclass = {cs.AI},
|
|
344
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
345
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
346
|
+
year = {2026},
|
|
356
347
|
}
|
|
357
348
|
""",
|
|
358
349
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -364,7 +355,7 @@ class Vidore3TelecomRetrieval(AbsTaskRetrieval):
|
|
|
364
355
|
metadata = TaskMetadata(
|
|
365
356
|
name="Vidore3TelecomRetrieval",
|
|
366
357
|
description="Retrieve associated pages according to questions.",
|
|
367
|
-
reference="https://
|
|
358
|
+
reference="https://arxiv.org/abs/2601.08620",
|
|
368
359
|
dataset={
|
|
369
360
|
"path": "mteb-private/Vidore3TelecomRetrieval",
|
|
370
361
|
"revision": "a54635a274ef2835721b7cbe3eb27483b9ec964b",
|
|
@@ -383,15 +374,14 @@ class Vidore3TelecomRetrieval(AbsTaskRetrieval):
|
|
|
383
374
|
modalities=["text", "image"],
|
|
384
375
|
sample_creation="created and machine-translated",
|
|
385
376
|
bibtex_citation=r"""
|
|
386
|
-
@
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
|
|
394
|
-
year = {2025},
|
|
377
|
+
@article{loison2026vidorev3comprehensiveevaluation,
|
|
378
|
+
archiveprefix = {arXiv},
|
|
379
|
+
author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
|
|
380
|
+
eprint = {2601.08620},
|
|
381
|
+
primaryclass = {cs.AI},
|
|
382
|
+
title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
|
|
383
|
+
url = {https://arxiv.org/abs/2601.08620},
|
|
384
|
+
year = {2026},
|
|
395
385
|
}
|
|
396
386
|
""",
|
|
397
387
|
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.7.
|
|
3
|
+
Version: 2.7.1
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -21,7 +21,7 @@ mteb/_evaluators/clustering_evaluator.py,sha256=YfjwpZL03Tiu0jfd6HBSavrOs_WALwIp
|
|
|
21
21
|
mteb/_evaluators/evaluator.py,sha256=CZIFM84KJcbygBqHrd6Reg0FA1ZT5dfVjFTuBYgGyMw,906
|
|
22
22
|
mteb/_evaluators/pair_classification_evaluator.py,sha256=kgxvnzsZPFF7c6GNRWtyAP3AJ3v_heRQUYwmYvNATzI,6440
|
|
23
23
|
mteb/_evaluators/retrieval_evaluator.py,sha256=UVrGtjOQdbDD2ZeH1oVm9ouIlU7Uup2a09ylzm0-QaM,3024
|
|
24
|
-
mteb/_evaluators/retrieval_metrics.py,sha256=
|
|
24
|
+
mteb/_evaluators/retrieval_metrics.py,sha256=fwsPemssWqQRvo0t4PZTGrrv5KXK8N6U35kOFSkRbEU,23755
|
|
25
25
|
mteb/_evaluators/sklearn_evaluator.py,sha256=lipgxkGXWeKGD2jhaNL9WQqLBS1_2L_WZpUobZR7iBI,3838
|
|
26
26
|
mteb/_evaluators/zeroshot_classification_evaluator.py,sha256=Y5ZFUsBAWXMpKnZ6Iw1K0lm0_L4chLMxC4LAdZCBbPs,2296
|
|
27
27
|
mteb/_evaluators/image/__init__.py,sha256=CsQd7OMkeV2Phun7paPWjayZ5qRnvj8H0TYBFeqMxag,148
|
|
@@ -43,7 +43,7 @@ mteb/abstasks/multilabel_classification.py,sha256=D_bdK3yyZFgaH1pg9PpO5LHQMVaJP3
|
|
|
43
43
|
mteb/abstasks/pair_classification.py,sha256=-T8q7JQRjHZ3ihLqnuR2yuuci9xljvUqCldsHGnGLGc,13767
|
|
44
44
|
mteb/abstasks/regression.py,sha256=sROjvfasLS89KRPUTsc1ONFsBTzfoqlpxLQfIkKBQXs,8763
|
|
45
45
|
mteb/abstasks/retrieval.py,sha256=keuf7GeYyM0ODPlVFGZIFBmBoSil0c1glmcu6C0YzhA,26921
|
|
46
|
-
mteb/abstasks/retrieval_dataset_loaders.py,sha256=
|
|
46
|
+
mteb/abstasks/retrieval_dataset_loaders.py,sha256=Jcr2hHe5sqWc8eL3WDhR9J7bJokD7tyhz_z3eD14o0M,9403
|
|
47
47
|
mteb/abstasks/sts.py,sha256=b_19QvclU0_q0aEJdfvB3weUQ96bUS7uDuuRrjpz8Bc,9245
|
|
48
48
|
mteb/abstasks/task_metadata.py,sha256=7TM_ls5bzYA1dHFq3VQgeioiyLrvMQz4i3hmWIsnD4M,27029
|
|
49
49
|
mteb/abstasks/zeroshot_classification.py,sha256=O8jxoBgnrRx-BzOnr1aJVK3wIEBwkA4xuMxdVxlzJqI,6053
|
|
@@ -54,14 +54,14 @@ mteb/abstasks/image/__init__.py,sha256=NgvMJnp1g2mUv27RL-TvzA7s1BOdMG-EB1CrZfdbW
|
|
|
54
54
|
mteb/abstasks/image/image_text_pair_classification.py,sha256=4RfPdAlb4ZlAE-9DiFQUvm7YpcQg9kTY7HRjRVenLmk,7935
|
|
55
55
|
mteb/abstasks/text/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
56
56
|
mteb/abstasks/text/bitext_mining.py,sha256=0Ff7t1jMEonajHzB5CzZZoSMVkC5KTa0muoytcNzOjM,11152
|
|
57
|
-
mteb/abstasks/text/reranking.py,sha256=
|
|
57
|
+
mteb/abstasks/text/reranking.py,sha256=vD5YUwst--zJ01bU40Z7juqQyuv8jrareRTtoCwt8E4,7871
|
|
58
58
|
mteb/abstasks/text/summarization.py,sha256=qCUWfxaVAW0EYTFClUh9puBMGttyV6C7qKpCcHPAZN8,7148
|
|
59
59
|
mteb/benchmarks/__init__.py,sha256=MQEVeli-zLaJ7Xg0z7RhXQwsdmm7Ht_W2Ln0rZo1Szc,225
|
|
60
60
|
mteb/benchmarks/_create_table.py,sha256=b2RqGqi0ZonKbHecEcZiF4pkfE96smFRIzxOI82ETA8,22304
|
|
61
61
|
mteb/benchmarks/benchmark.py,sha256=RheQOo0iQbu_ylN7oFLr2r-z_ahrMCTvKscVuwUx6yo,5694
|
|
62
62
|
mteb/benchmarks/get_benchmark.py,sha256=nzR6cu5yXu1kIJKhd4A2R62xp43Z62bluPbOpNXHMWQ,2545
|
|
63
|
-
mteb/benchmarks/benchmarks/__init__.py,sha256=
|
|
64
|
-
mteb/benchmarks/benchmarks/benchmarks.py,sha256=
|
|
63
|
+
mteb/benchmarks/benchmarks/__init__.py,sha256=767VzDgayFSB3KJ05o0gFdOeo2f1EarbEfnCsy_karw,2294
|
|
64
|
+
mteb/benchmarks/benchmarks/benchmarks.py,sha256=zAm1NTggaWb5Am6O30FUf-8zIbbF39eiuhSyLHzlpxQ,102370
|
|
65
65
|
mteb/benchmarks/benchmarks/rteb_benchmarks.py,sha256=QnCSrTTaBfcRlAQp2Nu81tgv1idMXqiM16Fp2zKJ5Ys,10607
|
|
66
66
|
mteb/cli/__init__.py,sha256=v-csUr3eUZElIvrGB6QGtaIdndDfNWEe9oZchsGsJpg,64
|
|
67
67
|
mteb/cli/_display_tasks.py,sha256=pWKupzak8uxEIwJZbYpZpteeVprOgVT9Wr0HYeypitQ,2206
|
|
@@ -1082,6 +1082,7 @@ mteb/descriptive_stats/Retrieval/CUREv1.json,sha256=lfz-JMLuE5KlWqM08CUF80Nex1Oh
|
|
|
1082
1082
|
mteb/descriptive_stats/Retrieval/ChatDoctorRetrieval.json,sha256=VyyOcmc9GQ1zqXrvAv0pFR5OAK-pE0fQYGJOsl4Wvok,991
|
|
1083
1083
|
mteb/descriptive_stats/Retrieval/ChemHotpotQARetrieval.json,sha256=V2oT8C6Wh5VR6LeBlxrYH0VUJeEisjJELOZHpN2NP1o,2950
|
|
1084
1084
|
mteb/descriptive_stats/Retrieval/ChemNQRetrieval.json,sha256=6E8SefjKJdqVC1R0JvGOPrJdpogDT-1H9X19GryVfI8,985
|
|
1085
|
+
mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json,sha256=kIfyVNgoLtO1QpnKguIovQVUio8RVdc1bBY_kwogT-Q,986
|
|
1085
1086
|
mteb/descriptive_stats/Retrieval/ClimateFEVER-Fa.json,sha256=B1bp66dEPtY6p1zgHTK3fyBN_eFbmprpjhwUovVs4mI,1016
|
|
1086
1087
|
mteb/descriptive_stats/Retrieval/ClimateFEVER-NL.json,sha256=RaHI8NhlXCD28FGFd1-Pofm4lvD-_Kcszde2OgPxQk8,1017
|
|
1087
1088
|
mteb/descriptive_stats/Retrieval/ClimateFEVER-VN.json,sha256=D2xgItr4sBQiW3x8qr12firW0cXsOHygKZcDrtjhQ10,1016
|
|
@@ -1140,6 +1141,7 @@ mteb/descriptive_stats/Retrieval/EnglishFinance3Retrieval.json,sha256=IpCB7e6cwO
|
|
|
1140
1141
|
mteb/descriptive_stats/Retrieval/EnglishFinance4Retrieval.json,sha256=tdSyer5_q9rPZSD0LEjjXluCbWY_W_FewhOTQycU1U0,995
|
|
1141
1142
|
mteb/descriptive_stats/Retrieval/EnglishHealthcare1Retrieval.json,sha256=c_QduudRLaQVFARJxSc-YTFwHeNyhiu7IMv6JGlYC5c,1005
|
|
1142
1143
|
mteb/descriptive_stats/Retrieval/EstQA.json,sha256=qqmmX7ExWg4152S6yiUAyHzaLS0I-QUaOn9KVBZ3UZ8,981
|
|
1144
|
+
mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json,sha256=FIpF0h7hhF7O4jn-rEa9a-_8tPD1MAY-klTkSX3_SI8,4586
|
|
1143
1145
|
mteb/descriptive_stats/Retrieval/FEVER-FaHardNegatives.json,sha256=KMDX6lg671e76rAboz30KgpvJAPxVSa6Thgefj1tgM4,987
|
|
1144
1146
|
mteb/descriptive_stats/Retrieval/FEVER-NL.json,sha256=K810hO-zNJWg3-i30oma72wsjORGu8lLLd4PN_w0VVs,1020
|
|
1145
1147
|
mteb/descriptive_stats/Retrieval/FEVER-VN.json,sha256=MnadQ0FGkXCFCDCI8eGwFYbouo8ta_1W_WlrqNx1clI,1018
|
|
@@ -1459,10 +1461,10 @@ mteb/models/__init__.py,sha256=ABTuoqiBjBtBWW3LYY7ItBHdylR6jWoy06HH0g6j6fU,910
|
|
|
1459
1461
|
mteb/models/abs_encoder.py,sha256=6e9UAk7ckYsJ6hItIPMfSaPdlX_FxfJ-OdJ87oqT2OM,16625
|
|
1460
1462
|
mteb/models/get_model_meta.py,sha256=wVh2FaWevJ10hJlbm-FQtTQazLMfnkEV3IK7PUyBPOQ,6082
|
|
1461
1463
|
mteb/models/instruct_wrapper.py,sha256=GLHg9KcgYu2rF15LEMKesRpPudGfKE2y-aLXVG_CLj0,9670
|
|
1462
|
-
mteb/models/model_meta.py,sha256=
|
|
1464
|
+
mteb/models/model_meta.py,sha256=BDT4Q_aYPm3RUgtXq2poe1VyUUHob_fLrDKA4BPgYrg,31143
|
|
1463
1465
|
mteb/models/models_protocols.py,sha256=5WYOZw3-T-wK7ux0YZVCfbcMTkAisqAqbu44ZNoir4A,9250
|
|
1464
1466
|
mteb/models/search_wrappers.py,sha256=9lXLXUyL6atMCwXp-HBUong6msT3UAUY9QI7zKXbSVU,20945
|
|
1465
|
-
mteb/models/sentence_transformer_wrapper.py,sha256=
|
|
1467
|
+
mteb/models/sentence_transformer_wrapper.py,sha256=liMzSqr0bC-yI_oEL50ckEc4ti9nibDLIiukP2crhOA,13543
|
|
1466
1468
|
mteb/models/vllm_wrapper.py,sha256=ebX4JIKPoxW4PIlr3BnaoLGuMGRpHzBe_ZwvFscx1D0,12286
|
|
1467
1469
|
mteb/models/cache_wrappers/__init__.py,sha256=1w1TnMwulWJSzNkLXjbh5MY3sqgHWc6vUntYn49i9X8,169
|
|
1468
1470
|
mteb/models/cache_wrappers/cache_backend_protocol.py,sha256=iGWdqDEoaCxUVEnwsXhy-m9d2QX8KTaQ9m2ZyawrMes,1634
|
|
@@ -1545,8 +1547,8 @@ mteb/models/model_implementations/nbailab.py,sha256=LM00HJIr4yrA45qh2O21BIDXku9K
|
|
|
1545
1547
|
mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=qLiMok_OxKvIYXWnP0KNWqH1monZx-OdSZrSx3QEhtI,4049
|
|
1546
1548
|
mteb/models/model_implementations/nomic_models.py,sha256=dmQC_cWg6hAmiBHK7fXoXEiGBJnJvrq0RsnCcJ2qe1Q,15137
|
|
1547
1549
|
mteb/models/model_implementations/nomic_models_vision.py,sha256=usCKfZCR7aEi_DnNmVAYjH-lXx_ipQkBVtUAmhJ90QI,6870
|
|
1548
|
-
mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=
|
|
1549
|
-
mteb/models/model_implementations/nvidia_models.py,sha256=
|
|
1550
|
+
mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=pJqkKBNns6jUYlpI3aGtpmrhXOSYgEvCje1ir_yXdpc,6889
|
|
1551
|
+
mteb/models/model_implementations/nvidia_models.py,sha256=KcnH7wGhz4LQ2F_y9Q9cJTr89DNKeHjVkVgHUfftzIY,26685
|
|
1550
1552
|
mteb/models/model_implementations/octen_models.py,sha256=FFR1-yG2euN-6kgL4qJNHYB6cPsds4NGYFPmc5tHhoE,8514
|
|
1551
1553
|
mteb/models/model_implementations/openai_models.py,sha256=905BajYi_XyOZgqU3AeKpwIttLoUitaAyc48sTWI6Jg,9482
|
|
1552
1554
|
mteb/models/model_implementations/openclip_models.py,sha256=MyosgeYSrgBXGuGFtI2Tyxksxpb7bADFJVSYFCLweVA,11622
|
|
@@ -1592,8 +1594,8 @@ mteb/models/model_implementations/vdr_models.py,sha256=8jlfABvO7Z9ebzAPFHqln3B2I
|
|
|
1592
1594
|
mteb/models/model_implementations/vi_vn_models.py,sha256=Ep2zj4Xvjyu0a_YiLsYvolKdMGSOtzm-N-yNyXmfNwA,6328
|
|
1593
1595
|
mteb/models/model_implementations/vista_models.py,sha256=GkQFHIwwjxwM0wDuo-dWJBo4dLExlHtHfXwhcdKA5uQ,10884
|
|
1594
1596
|
mteb/models/model_implementations/vlm2vec_models.py,sha256=EeWl3kpS_1VDJs4t1QmpaWSuglLPL2GyZu27fVY1VT8,11802
|
|
1595
|
-
mteb/models/model_implementations/voyage_models.py,sha256=
|
|
1596
|
-
mteb/models/model_implementations/voyage_v.py,sha256=
|
|
1597
|
+
mteb/models/model_implementations/voyage_models.py,sha256=jwVjgx9E6-rZxd8wmuNbbQxKTobuWBNWrs0ezqp4Oik,22525
|
|
1598
|
+
mteb/models/model_implementations/voyage_v.py,sha256=JqtXnICeaODRZHBj_Xsaf3PfIG-XPKopblNxAXHqYNo,8159
|
|
1597
1599
|
mteb/models/model_implementations/xyz_models.py,sha256=gjwCx3U4AxMcJDTSWVoYV6xeyXLw7lUZI5D6Q7JjWho,1322
|
|
1598
1600
|
mteb/models/model_implementations/youtu_models.py,sha256=THwWRabutW-qC-JZOVhxXWjKHVyMElzt_xm81ixzN50,5995
|
|
1599
1601
|
mteb/models/model_implementations/yuan_models.py,sha256=j-QIKECPg4TiBW_3Bp6g5yr2UOdFziFSeoGE4uKepSM,980
|
|
@@ -2208,7 +2210,7 @@ mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py,sha256=RYZCPgKaNPi14ncxnvz8_7
|
|
|
2208
2210
|
mteb/tasks/retrieval/deu/legal_qu_ad_retrieval.py,sha256=l_UNVkOQxqlKp6wef2BM-GKtyYnmYLYThGZZnUsR_-c,1594
|
|
2209
2211
|
mteb/tasks/retrieval/ell/__init__.py,sha256=46naXAZtJzyezyqOQGRIlr4zQVkqGQJdj7ztjMrez9Y,72
|
|
2210
2212
|
mteb/tasks/retrieval/ell/greek_civics_qa.py,sha256=uKmiWHHZvL1o5m17XCrzi16kHWFNhlEUHrtlk-LR1as,2514
|
|
2211
|
-
mteb/tasks/retrieval/eng/__init__.py,sha256=
|
|
2213
|
+
mteb/tasks/retrieval/eng/__init__.py,sha256=dVW7pHRu8SXp2_PJwn6InbfWVQ2VVy0PJvr_-bLBrc4,16158
|
|
2212
2214
|
mteb/tasks/retrieval/eng/aila_casedocs_retrieval.py,sha256=UKoN9oE8C412REf8MV16aUDgE5NwkHxnXsh4dcLztpk,1398
|
|
2213
2215
|
mteb/tasks/retrieval/eng/aila_statutes_retrieval.py,sha256=GugjZwaWmTlNyYzK8ACKZHIiUw2YBvLaVyTngN_qQyM,1366
|
|
2214
2216
|
mteb/tasks/retrieval/eng/alpha_nli_retrieval.py,sha256=GpOkizyeOs_ZMbRu9g1yAXdKkQr8PObUepP1OulbJio,1714
|
|
@@ -2229,6 +2231,7 @@ mteb/tasks/retrieval/eng/built_bench_retrieval.py,sha256=pqsIaVMl0ugGl5wx1oHPooq
|
|
|
2229
2231
|
mteb/tasks/retrieval/eng/chat_doctor_retrieval.py,sha256=_PQYn3jXgeLKjnb_uKxzHtM9SCICV3bsmgEcEoD2OXo,3582
|
|
2230
2232
|
mteb/tasks/retrieval/eng/chem_hotpot_qa_retrieval.py,sha256=sLTfqBf967htSU7Ego7zkEC8QYVWFI12YoHxa-urWEw,2114
|
|
2231
2233
|
mteb/tasks/retrieval/eng/chem_nq_retrieval.py,sha256=8bl4PRKJwYgNF0sZPZQINgn81-r3c_2gDoMQJYdpb8I,1886
|
|
2234
|
+
mteb/tasks/retrieval/eng/chemrxiv.py,sha256=-HS_axsMPaEKr8T0d9WvgfJ_UmAr00InHFjFpt4VDVo,1404
|
|
2232
2235
|
mteb/tasks/retrieval/eng/cirr_it2i_retrieval.py,sha256=o_4fVGosZjYsfMQy7tzQGaq8aijhUwXKcV7MYIYY4SY,1583
|
|
2233
2236
|
mteb/tasks/retrieval/eng/climate_fever_retrieval.py,sha256=obIROibY5nQ8oDGbkjG5Z3jrJ-rAXVmF_1w_XN6Nqm0,4615
|
|
2234
2237
|
mteb/tasks/retrieval/eng/cqa_dupstack_android_retrieval.py,sha256=-Uj8BOIPyjl8egm34qZGRKULGgEoaoac4wOhdWXAPgE,1674
|
|
@@ -2393,11 +2396,12 @@ mteb/tasks/retrieval/kor/auto_rag_retrieval.py,sha256=tgffW8zMpDSv1FCOdS4_4SL5zK
|
|
|
2393
2396
|
mteb/tasks/retrieval/kor/ko_strategy_qa.py,sha256=jk13ORetYtF0q36h8ljD6TeTHUwvK5F5ZbDoMCP3eWk,1156
|
|
2394
2397
|
mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py,sha256=AjOLe2l9drBWOCeGzQqxfee3gwwU6ElAJ7-5pbFr6C8,6208
|
|
2395
2398
|
mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py,sha256=M7T5FkN1efK7euRslx-LZN7hS_QdIwqtUuVlWO-dico,1631
|
|
2396
|
-
mteb/tasks/retrieval/multilingual/__init__.py,sha256=
|
|
2399
|
+
mteb/tasks/retrieval/multilingual/__init__.py,sha256=rbeuLmNYooHPjgROuEOH84Q6QmGhuXnedej0d6xAgqc,6841
|
|
2397
2400
|
mteb/tasks/retrieval/multilingual/belebele_retrieval.py,sha256=gaVLEwuLEwMutMi9V-obpiYKbpllX2QNm2j3MVeebfE,7027
|
|
2398
2401
|
mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py,sha256=_6r34ZvRiLVENYcrd87NjilybGaetBwKFEbO29zYmBU,4676
|
|
2399
2402
|
mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py,sha256=Puy0PjpRr4M_Bbxdl7oWfa7pQGM04zaRaTNlnhyKejM,4677
|
|
2400
2403
|
mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py,sha256=dwzo2sqjamM_xkSiC-jbapyhDFezSJpM4S8KfBsuLPk,4562
|
|
2404
|
+
mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py,sha256=rlbgWMRdQgDD8z4ZBPgGU1fRAqjmoFDzh0uD_P6qR-4,1602
|
|
2401
2405
|
mteb/tasks/retrieval/multilingual/indic_qa_retrieval.py,sha256=K7iWZ-yTftZFQiXBOlkTJXGpQXs-ZFt6OQj_L6HjEwk,1872
|
|
2402
2406
|
mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py,sha256=dw2YuFrA5OWFTL5zREiix93oAj7WcpcnAhCRh8YRoHI,44579
|
|
2403
2407
|
mteb/tasks/retrieval/multilingual/mintaka_retrieval.py,sha256=SwOliONITZM679LIBSMrvx_VymqE-zRN6YiYahhzfzw,2229
|
|
@@ -2414,7 +2418,7 @@ mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py,sha256=Mmcvrt_1cIxPf
|
|
|
2414
2418
|
mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py,sha256=iFUQUlO_ogBdQBVYBQW3o-AJDQ792yg1pJtRxA5I3Qo,3796
|
|
2415
2419
|
mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py,sha256=UduWKefwP7bPYxiDlztPEvSWXmTdw0xElglMbPY6XhA,4449
|
|
2416
2420
|
mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py,sha256=vOfiruHywYkP8pccdAuGLyYyFTw1zK0qcXDnUFA8Z5A,9091
|
|
2417
|
-
mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py,sha256=
|
|
2421
|
+
mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py,sha256=V3jtSlWhoKR1PCvHsH0HrONy-oFghomwqihBonQs_50,17414
|
|
2418
2422
|
mteb/tasks/retrieval/multilingual/web_faq_retrieval.py,sha256=TM-Q98yXZny_PKHAFNEvw9o9ET_L6VM3aNis1NJ9DgM,2686
|
|
2419
2423
|
mteb/tasks/retrieval/multilingual/wikipedia_retrieval_multilingual.py,sha256=zyqAt63bHXNU_I37jb891pwWUyGzZUGkXCyhWlRbed8,1569
|
|
2420
2424
|
mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py,sha256=_swZhhMRs5OhzBdJVqQF1i9ZrTvAxaVrG0TpkPWkoHo,4359
|
|
@@ -2618,9 +2622,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
|
|
|
2618
2622
|
mteb/types/_result.py,sha256=UKNokV9pu3G74MGebocU512aU_fFU9I9nPKnrG9Q0iE,1035
|
|
2619
2623
|
mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
|
|
2620
2624
|
mteb/types/statistics.py,sha256=GwkBPmAr18Onu-vHtzHs0PFrhCozdOMiT13HwnWL4ZM,3961
|
|
2621
|
-
mteb-2.7.
|
|
2622
|
-
mteb-2.7.
|
|
2623
|
-
mteb-2.7.
|
|
2624
|
-
mteb-2.7.
|
|
2625
|
-
mteb-2.7.
|
|
2626
|
-
mteb-2.7.
|
|
2625
|
+
mteb-2.7.1.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
2626
|
+
mteb-2.7.1.dist-info/METADATA,sha256=olR8WXq0vPmp5FUUNww2hAMIuhr5irC4wnymgFN0xhY,14457
|
|
2627
|
+
mteb-2.7.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
2628
|
+
mteb-2.7.1.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
|
|
2629
|
+
mteb-2.7.1.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
|
|
2630
|
+
mteb-2.7.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|