mteb 2.7.0__py3-none-any.whl → 2.7.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -140,7 +140,7 @@ def calculate_pmrr(original_run, new_run, changed_qrels):
140
140
  changes = []
141
141
  for qid in changed_qrels.keys():
142
142
  if qid + "-og" not in original_run or qid + "-changed" not in new_run:
143
- logging.warning(f"Query {qid} not found in the runs for calculating p-MRR")
143
+ logger.warning(f"Query {qid} not found in the runs for calculating p-MRR")
144
144
  continue
145
145
  original_qid_run = original_run[qid + "-og"]
146
146
  new_qid_run = new_run[qid + "-changed"]
@@ -136,7 +136,7 @@ class RetrievalDatasetLoader:
136
136
  "_id", "id"
137
137
  )
138
138
  logger.info("Loaded %d %s Documents.", len(corpus_ds), self.split.upper())
139
- logger.info("Doc Example: %s", corpus_ds[0])
139
+ logger.debug("Doc Example: %s", corpus_ds[0])
140
140
  return corpus_ds
141
141
 
142
142
  def _load_queries(self) -> QueryDatasetType:
@@ -152,7 +152,7 @@ class RetrievalDatasetLoader:
152
152
  )
153
153
 
154
154
  logger.info("Loaded %d %s queries.", len(queries_ds), self.split.upper())
155
- logger.info("Query Example: %s", queries_ds[0])
155
+ logger.debug("Query Example: %s", queries_ds[0])
156
156
 
157
157
  return queries_ds
158
158
 
@@ -100,7 +100,7 @@ class AbsTaskReranking(AbsTaskRetrieval):
100
100
  if self.metadata.name not in OLD_FORMAT_RERANKING_TASKS:
101
101
  return
102
102
 
103
- logging.info(
103
+ logger.info(
104
104
  f"Transforming old format to standard format for {self.metadata.name}"
105
105
  )
106
106
 
@@ -6,6 +6,7 @@ from mteb.benchmarks.benchmarks.benchmarks import (
6
6
  BUILT_MTEB,
7
7
  C_MTEB,
8
8
  CHEMTEB,
9
+ CHEMTEB_V1_1,
9
10
  CODE_RAG,
10
11
  ENCODECHKA,
11
12
  FA_MTEB,
@@ -70,6 +71,7 @@ __all__ = [
70
71
  "BRIGHT_LONG",
71
72
  "BUILT_MTEB",
72
73
  "CHEMTEB",
74
+ "CHEMTEB_V1_1",
73
75
  "CODE_RAG",
74
76
  "C_MTEB",
75
77
  "ENCODECHKA",
@@ -1656,6 +1656,7 @@ FA_MTEB_2 = Benchmark(
1656
1656
 
1657
1657
  CHEMTEB = Benchmark(
1658
1658
  name="ChemTEB",
1659
+ aliases=["ChemTEB(v1)"],
1659
1660
  display_name="Chemical",
1660
1661
  icon="https://github.com/DennisSuitters/LibreICONS/raw/2d2172d15e3c6ca03c018629d60050e4b99e5c55/svg-color/libre-gui-purge.svg",
1661
1662
  tasks=get_tasks(
@@ -1701,6 +1702,62 @@ CHEMTEB = Benchmark(
1701
1702
  """,
1702
1703
  )
1703
1704
 
1705
+ CHEMTEB_V1_1 = Benchmark(
1706
+ name="ChemTEB(v1.1)",
1707
+ aliases=["ChemTEB(latest)"],
1708
+ display_name="Chemical",
1709
+ icon="https://github.com/DennisSuitters/LibreICONS/raw/2d2172d15e3c6ca03c018629d60050e4b99e5c55/svg-color/libre-gui-purge.svg",
1710
+ tasks=get_tasks(
1711
+ tasks=[
1712
+ "PubChemSMILESBitextMining",
1713
+ "SDSEyeProtectionClassification",
1714
+ "SDSGlovesClassification",
1715
+ "WikipediaBioMetChemClassification",
1716
+ "WikipediaGreenhouseEnantiopureClassification",
1717
+ "WikipediaSolidStateColloidalClassification",
1718
+ "WikipediaOrganicInorganicClassification",
1719
+ "WikipediaCryobiologySeparationClassification",
1720
+ "WikipediaChemistryTopicsClassification",
1721
+ "WikipediaTheoreticalAppliedClassification",
1722
+ "WikipediaChemFieldsClassification",
1723
+ "WikipediaLuminescenceClassification",
1724
+ "WikipediaIsotopesFissionClassification",
1725
+ "WikipediaSaltsSemiconductorsClassification",
1726
+ "WikipediaBiolumNeurochemClassification",
1727
+ "WikipediaCrystallographyAnalyticalClassification",
1728
+ "WikipediaCompChemSpectroscopyClassification",
1729
+ "WikipediaChemEngSpecialtiesClassification",
1730
+ "WikipediaChemistryTopicsClustering",
1731
+ "WikipediaSpecialtiesInChemistryClustering",
1732
+ "PubChemAISentenceParaphrasePC",
1733
+ "PubChemSMILESPC",
1734
+ "PubChemSynonymPC",
1735
+ "PubChemWikiParagraphsPC",
1736
+ "PubChemWikiPairClassification",
1737
+ "ChemNQRetrieval",
1738
+ "ChemHotpotQARetrieval",
1739
+ "ChemRxivRetrieval",
1740
+ ],
1741
+ ),
1742
+ description="ChemTEB evaluates the performance of text embedding models on chemical domain data. This version adds the ChemRxivRetrieval task.",
1743
+ reference="https://arxiv.org/abs/2412.00532",
1744
+ citation=r"""
1745
+ @article{kasmaee2024chemteb,
1746
+ author = {Kasmaee, Ali Shiraee and Khodadad, Mohammad and Saloot, Mohammad Arshi and Sherck, Nick and Dokas, Stephen and Mahyar, Hamidreza and Samiee, Soheila},
1747
+ journal = {arXiv preprint arXiv:2412.00532},
1748
+ title = {ChemTEB: Chemical Text Embedding Benchmark, an Overview of Embedding Models Performance \\& Efficiency on a Specific Domain},
1749
+ year = {2024},
1750
+ }
1751
+
1752
+ @article{kasmaee2025chembed,
1753
+ author = {Kasmaee, Ali Shiraee and Khodadad, Mohammad and Astaraki, Mahdi and Saloot, Mohammad Arshi and Sherck, Nicholas and Mahyar, Hamidreza and Samiee, Soheila},
1754
+ journal = {arXiv preprint arXiv:2508.01643},
1755
+ title = {Chembed: Enhancing chemical literature search through domain-specific text embeddings},
1756
+ year = {2025},
1757
+ }
1758
+ """,
1759
+ )
1760
+
1704
1761
  BEIR_NL = Benchmark(
1705
1762
  name="BEIR-NL",
1706
1763
  display_name="BEIR-NL",
@@ -2350,17 +2407,16 @@ VIDORE_V3 = VidoreBenchmark(
2350
2407
  ]
2351
2408
  ),
2352
2409
  description="ViDoRe V3 sets a new industry gold standard for multi-modal, enterprise document visual retrieval evaluation. It addresses a critical challenge in production RAG systems: retrieving accurate information from complex, visually-rich documents. The benchmark includes both open and closed datasets: to submit results on private tasks, please [open an issue](https://github.com/embeddings-benchmark/mteb/issues?template=eval_request.yaml).",
2353
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
2410
+ reference="https://arxiv.org/abs/2601.08620",
2354
2411
  citation=r"""
2355
- @misc{mace2025vidorev3,
2356
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
2357
- day = {5},
2358
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
2359
- journal = {Hugging Face Blog},
2360
- month = {November},
2361
- publisher = {Hugging Face},
2362
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
2363
- year = {2025},
2412
+ @article{loison2026vidorev3comprehensiveevaluation,
2413
+ archiveprefix = {arXiv},
2414
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
2415
+ eprint = {2601.08620},
2416
+ primaryclass = {cs.AI},
2417
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
2418
+ url = {https://arxiv.org/abs/2601.08620},
2419
+ year = {2026},
2364
2420
  }
2365
2421
  """,
2366
2422
  )
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 74457,
4
+ "number_of_characters": 76109543,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 75549698,
7
+ "min_text_length": 121,
8
+ "average_text_length": 1087.7189916063176,
9
+ "max_text_length": 25438,
10
+ "unique_texts": 69150
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 559845,
15
+ "min_text_length": 57,
16
+ "average_text_length": 111.969,
17
+ "max_text_length": 224,
18
+ "unique_texts": 5000
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 5000,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0,
25
+ "max_relevant_docs_per_query": 1,
26
+ "unique_relevant_docs": 5000
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,116 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 30300,
4
+ "number_of_characters": 17320243,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 17276572,
7
+ "min_text_length": 316,
8
+ "average_text_length": 575.8857333333333,
9
+ "max_text_length": 1008,
10
+ "unique_texts": 28361
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 43671,
15
+ "min_text_length": 67,
16
+ "average_text_length": 145.57,
17
+ "max_text_length": 345,
18
+ "unique_texts": 300
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 300,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0,
25
+ "max_relevant_docs_per_query": 1,
26
+ "unique_relevant_docs": 300
27
+ },
28
+ "top_ranked_statistics": null,
29
+ "hf_subset_descriptive_stats": {
30
+ "en": {
31
+ "num_samples": 10100,
32
+ "number_of_characters": 5517678,
33
+ "documents_text_statistics": {
34
+ "total_text_length": 5503635,
35
+ "min_text_length": 316,
36
+ "average_text_length": 550.3635,
37
+ "max_text_length": 726,
38
+ "unique_texts": 9422
39
+ },
40
+ "documents_image_statistics": null,
41
+ "queries_text_statistics": {
42
+ "total_text_length": 14043,
43
+ "min_text_length": 68,
44
+ "average_text_length": 140.43,
45
+ "max_text_length": 305,
46
+ "unique_texts": 100
47
+ },
48
+ "queries_image_statistics": null,
49
+ "relevant_docs_statistics": {
50
+ "num_relevant_docs": 100,
51
+ "min_relevant_docs_per_query": 1,
52
+ "average_relevant_docs_per_query": 1.0,
53
+ "max_relevant_docs_per_query": 1,
54
+ "unique_relevant_docs": 100
55
+ },
56
+ "top_ranked_statistics": null
57
+ },
58
+ "fi": {
59
+ "num_samples": 10100,
60
+ "number_of_characters": 5953462,
61
+ "documents_text_statistics": {
62
+ "total_text_length": 5938809,
63
+ "min_text_length": 326,
64
+ "average_text_length": 593.8809,
65
+ "max_text_length": 1008,
66
+ "unique_texts": 9422
67
+ },
68
+ "documents_image_statistics": null,
69
+ "queries_text_statistics": {
70
+ "total_text_length": 14653,
71
+ "min_text_length": 67,
72
+ "average_text_length": 146.53,
73
+ "max_text_length": 345,
74
+ "unique_texts": 100
75
+ },
76
+ "queries_image_statistics": null,
77
+ "relevant_docs_statistics": {
78
+ "num_relevant_docs": 100,
79
+ "min_relevant_docs_per_query": 1,
80
+ "average_relevant_docs_per_query": 1.0,
81
+ "max_relevant_docs_per_query": 1,
82
+ "unique_relevant_docs": 100
83
+ },
84
+ "top_ranked_statistics": null
85
+ },
86
+ "pt": {
87
+ "num_samples": 10100,
88
+ "number_of_characters": 5849103,
89
+ "documents_text_statistics": {
90
+ "total_text_length": 5834128,
91
+ "min_text_length": 325,
92
+ "average_text_length": 583.4128,
93
+ "max_text_length": 774,
94
+ "unique_texts": 9517
95
+ },
96
+ "documents_image_statistics": null,
97
+ "queries_text_statistics": {
98
+ "total_text_length": 14975,
99
+ "min_text_length": 69,
100
+ "average_text_length": 149.75,
101
+ "max_text_length": 320,
102
+ "unique_texts": 100
103
+ },
104
+ "queries_image_statistics": null,
105
+ "relevant_docs_statistics": {
106
+ "num_relevant_docs": 100,
107
+ "min_relevant_docs_per_query": 1,
108
+ "average_relevant_docs_per_query": 1.0,
109
+ "max_relevant_docs_per_query": 1,
110
+ "unique_relevant_docs": 100
111
+ },
112
+ "top_ranked_statistics": null
113
+ }
114
+ }
115
+ }
116
+ }
@@ -1,17 +1,15 @@
1
- from typing import TYPE_CHECKING, Any
1
+ from typing import Any
2
2
 
3
3
  import torch
4
+ from packaging.version import Version
4
5
  from torch.utils.data import DataLoader
6
+ from transformers import __version__ as transformers_version
5
7
 
6
8
  from mteb.abstasks.task_metadata import TaskMetadata
7
9
  from mteb.models.abs_encoder import AbsEncoder
8
10
  from mteb.models.model_meta import ModelMeta
9
11
  from mteb.types import Array, BatchedInput, PromptType
10
12
 
11
- if TYPE_CHECKING:
12
- pass
13
-
14
-
15
13
  LLAMA_NEMORETRIEVER_CITATION = """@misc{xu2025llamanemoretrievercolembedtopperforming,
16
14
  title={Llama Nemoretriever Colembed: Top-Performing Text-Image Retrieval Model},
17
15
  author={Mengyao Xu and Gabriel Moreira and Ronay Ak and Radek Osmulski and Yauhen Babakhin and Zhiding Yu and Benedikt Schifferer and Even Oldridge},
@@ -34,6 +32,14 @@ class LlamaNemoretrieverColembed(AbsEncoder):
34
32
  attn_implementation="flash_attention_2",
35
33
  **kwargs,
36
34
  ):
35
+ required_transformers_version = "4.49.0"
36
+
37
+ if Version(transformers_version) != Version(required_transformers_version):
38
+ raise RuntimeError(
39
+ f"transformers version {transformers_version} is not match with required "
40
+ f"install version {required_transformers_version} to run `nvidia/llama-nemoretriever-colembed`"
41
+ )
42
+
37
43
  from transformers import AutoModel
38
44
 
39
45
  self.model = AutoModel.from_pretrained(
@@ -10,8 +10,9 @@ from tqdm import tqdm
10
10
  from transformers import AutoModel, AutoTokenizer
11
11
  from transformers import __version__ as transformers_version
12
12
 
13
- from mteb import TaskMetadata
14
13
  from mteb._requires_package import requires_package
14
+ from mteb.abstasks.task_metadata import TaskMetadata
15
+ from mteb.models import CrossEncoderWrapper
15
16
  from mteb.models.abs_encoder import AbsEncoder
16
17
  from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
17
18
  from mteb.models.model_meta import ModelMeta, ScoringFunction
@@ -20,23 +21,23 @@ from mteb.types import Array, BatchedInput, PromptType
20
21
  logger = logging.getLogger(__name__)
21
22
 
22
23
  NV_RETRIEVER_CITATION = """@misc{lee2025nvembedimprovedtechniquestraining,
23
- title={NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models},
24
+ title={NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models},
24
25
  author={Chankyu Lee and Rajarshi Roy and Mengyao Xu and Jonathan Raiman and Mohammad Shoeybi and Bryan Catanzaro and Wei Ping},
25
26
  year={2025},
26
27
  eprint={2405.17428},
27
28
  archivePrefix={arXiv},
28
29
  primaryClass={cs.CL},
29
- url={https://arxiv.org/abs/2405.17428},
30
+ url={https://arxiv.org/abs/2405.17428},
30
31
  }"""
31
32
 
32
33
  LlamaEmbedNemotron_CITATION = """@misc{babakhin2025llamaembednemotron8buniversaltextembedding,
33
- title={Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks},
34
+ title={Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks},
34
35
  author={Yauhen Babakhin and Radek Osmulski and Ronay Ak and Gabriel Moreira and Mengyao Xu and Benedikt Schifferer and Bo Liu and Even Oldridge},
35
36
  year={2025},
36
37
  eprint={2511.07025},
37
38
  archivePrefix={arXiv},
38
39
  primaryClass={cs.CL},
39
- url={https://arxiv.org/abs/2511.07025},
40
+ url={https://arxiv.org/abs/2511.07025},
40
41
  }"""
41
42
 
42
43
 
@@ -629,3 +630,55 @@ llama_embed_nemotron_8b = ModelMeta(
629
630
  contacts=["ybabakhin"],
630
631
  citation=LlamaEmbedNemotron_CITATION,
631
632
  )
633
+
634
+
635
+ def _nemotron_rerank_model(model: str, revision: str, **kwargs) -> CrossEncoderWrapper:
636
+ required_transformers_version = "4.47.1"
637
+
638
+ if Version(transformers_version) != Version(required_transformers_version):
639
+ raise RuntimeError(
640
+ f"transformers version {transformers_version} is not match with required "
641
+ f"install version {required_transformers_version} to run `nvidia/llama-nemotron-rerank-1b-v2`"
642
+ )
643
+
644
+ return CrossEncoderWrapper(
645
+ model=model,
646
+ revision=revision,
647
+ **kwargs,
648
+ )
649
+
650
+
651
+ nemotron_rerank_1b_v2 = ModelMeta(
652
+ loader=_nemotron_rerank_model,
653
+ loader_kwargs=dict(
654
+ trust_remote_code=True,
655
+ query_prefix="question:",
656
+ passage_prefix=" \n \n passage:",
657
+ model_kwargs={"torch_dtype": torch.float32},
658
+ ),
659
+ name="nvidia/llama-nemotron-rerank-1b-v2",
660
+ revision="78efcfdc23b53a753f6c73f2d78b18132a34ac4d",
661
+ release_date="2025-10-16",
662
+ languages=["eng-Latn"],
663
+ n_parameters=1235816448,
664
+ memory_usage_mb=2357.0,
665
+ max_tokens=4096,
666
+ embed_dim=2048,
667
+ license="https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/",
668
+ open_weights=True,
669
+ public_training_code=None,
670
+ public_training_data=None,
671
+ framework=["PyTorch", "Sentence Transformers"],
672
+ reference="https://huggingface.co/nvidia/llama-nemotron-rerank-1b-v2",
673
+ similarity_fn_name=ScoringFunction.COSINE,
674
+ use_instructions=None,
675
+ training_datasets=set(
676
+ # private
677
+ ),
678
+ adapted_from="meta-llama/Llama-3.2-1B",
679
+ superseded_by=None,
680
+ modalities=["text"],
681
+ model_type=["cross-encoder"],
682
+ citation=None,
683
+ contacts=None,
684
+ )
@@ -25,6 +25,9 @@ VOYAGE_DTYPE_TRANSLATION = {
25
25
 
26
26
  # Total token limits per model based on VoyageAI documentation
27
27
  VOYAGE_TOTAL_TOKEN_LIMITS = {
28
+ "voyage-4-large": 120_000,
29
+ "voyage-4": 320_000,
30
+ "voyage-4-lite": 1_000_000,
28
31
  "voyage-3.5-lite": 1_000_000,
29
32
  "voyage-3.5": 320_000,
30
33
  "voyage-2": 320_000,
@@ -206,6 +209,32 @@ model_prompts = {
206
209
  PromptType.document.value: "document",
207
210
  }
208
211
 
212
+ voyage_4 = ModelMeta(
213
+ name="voyageai/voyage-4",
214
+ model_type=["dense"],
215
+ revision="1",
216
+ release_date="2026-01-15",
217
+ languages=None, # supported languages not specified
218
+ loader=VoyageModel,
219
+ loader_kwargs=dict(
220
+ max_tokens=32000,
221
+ model_prompts=model_prompts,
222
+ ),
223
+ max_tokens=32000,
224
+ embed_dim=1024,
225
+ open_weights=False,
226
+ n_parameters=None,
227
+ memory_usage_mb=None,
228
+ license=None,
229
+ reference="https://blog.voyageai.com/2026/01/15/voyage-4/",
230
+ similarity_fn_name="cosine",
231
+ framework=["API"],
232
+ use_instructions=True,
233
+ training_datasets=VOYAGE_TRAINING_DATA,
234
+ public_training_code=None,
235
+ public_training_data=None,
236
+ )
237
+
209
238
  voyage_4_lite = ModelMeta(
210
239
  name="voyageai/voyage-4-lite",
211
240
  model_type=["dense"],
@@ -310,6 +339,7 @@ voyage_3_5 = ModelMeta(
310
339
  training_datasets=VOYAGE_TRAINING_DATA,
311
340
  public_training_code=None,
312
341
  public_training_data=None,
342
+ superseded_by="voyageai/voyage-4",
313
343
  )
314
344
 
315
345
  voyage_3_5_int8 = ModelMeta(
@@ -16,6 +16,8 @@ from mteb.types import Array, BatchedInput, PromptType
16
16
  if TYPE_CHECKING:
17
17
  from PIL import Image
18
18
 
19
+ logger = logging.getLogger(__name__)
20
+
19
21
 
20
22
  def _downsample_image(
21
23
  image: Image.Image, max_pixels: int = 16000000, target_longest_side: int = 4000
@@ -37,17 +39,17 @@ def _downsample_image(
37
39
  new_width = int(width * (target_longest_side / height))
38
40
 
39
41
  new_size = (new_width, new_height)
40
- logging.info(
42
+ logger.info(
41
43
  f"Downsampling image from {width}x{height} to {new_width}x{new_height}"
42
44
  )
43
45
  return image.resize(new_size, Image.LANCZOS)
44
46
  if width > height:
45
47
  if width > 10000:
46
- logging.error("Processing extremely wide images.")
48
+ logger.error("Processing extremely wide images.")
47
49
  return image.resize((10000, height), Image.LANCZOS)
48
50
  else:
49
51
  if height > 10000:
50
- logging.error("Processing extremely high images.")
52
+ logger.error("Processing extremely high images.")
51
53
  return image.resize((width, 10000), Image.LANCZOS)
52
54
  return image
53
55
 
mteb/models/model_meta.py CHANGED
@@ -331,7 +331,7 @@ class ModelMeta(BaseModel):
331
331
  revision = revisions[0].commit_id if revisions else None
332
332
 
333
333
  release_date = cls.fetch_release_date(model_name)
334
- model_license = card_data.license
334
+ model_license = card_data.license if card_data.license != "other" else None
335
335
  n_parameters = cls._calculate_num_parameters_from_hub(model_name)
336
336
  memory_usage_mb = cls._calculate_memory_usage_mb(model_name, n_parameters)
337
337
  if model_config and hasattr(model_config, "hidden_size"):
@@ -266,13 +266,24 @@ class SentenceTransformerMultimodalEncoderWrapper(SentenceTransformerEncoderWrap
266
266
 
267
267
 
268
268
  class CrossEncoderWrapper:
269
- """Wrapper for CrossEncoder models."""
269
+ """Wrapper for CrossEncoder models.
270
+
271
+ Args:
272
+ model: The CrossEncoder model to use. Can be a string (model name) or a CrossEncoder model.
273
+ revision: The revision of the model to use.
274
+ device: The device used to load the model.
275
+ query_prefix: A prefix to add to all queries.
276
+ passage_prefix: A prefix to add to all passages.
277
+ **kwargs: Additional arguments to pass to the CrossEncoder model.
278
+ """
270
279
 
271
280
  def __init__(
272
281
  self,
273
282
  model: CrossEncoder | str,
274
283
  revision: str | None = None,
275
284
  device: str | None = None,
285
+ query_prefix: str = "",
286
+ passage_prefix: str = "",
276
287
  **kwargs,
277
288
  ) -> None:
278
289
  from sentence_transformers import CrossEncoder
@@ -283,6 +294,8 @@ class CrossEncoderWrapper:
283
294
  self.model = CrossEncoder(model, revision=revision, device=device, **kwargs)
284
295
 
285
296
  self.mteb_model_meta = ModelMeta.from_cross_encoder(self.model)
297
+ self.query_prefix = query_prefix
298
+ self.passage_prefix = passage_prefix
286
299
 
287
300
  def predict(
288
301
  self,
@@ -311,10 +324,10 @@ class CrossEncoderWrapper:
311
324
  The predicted relevance scores for each inputs pair.
312
325
  """
313
326
  all_queries_with_instructions = [
314
- text for batch in inputs1 for text in batch["text"]
327
+ self.query_prefix + text for batch in inputs1 for text in batch["text"]
315
328
  ]
316
329
  all_corpus_with_instructions = [
317
- text for batch in inputs2 for text in batch["text"]
330
+ self.passage_prefix + text for batch in inputs2 for text in batch["text"]
318
331
  ]
319
332
 
320
333
  return self.model.predict(
@@ -18,6 +18,7 @@ from .built_bench_retrieval import BuiltBenchRetrieval
18
18
  from .chat_doctor_retrieval import ChatDoctorRetrieval
19
19
  from .chem_hotpot_qa_retrieval import ChemHotpotQARetrieval
20
20
  from .chem_nq_retrieval import ChemNQRetrieval
21
+ from .chemrxiv import ChemRxivRetrieval
21
22
  from .cirr_it2i_retrieval import CIRRIT2IRetrieval
22
23
  from .climate_fever_retrieval import (
23
24
  ClimateFEVER,
@@ -254,6 +255,7 @@ __all__ = [
254
255
  "ChatDoctorRetrieval",
255
256
  "ChemHotpotQARetrieval",
256
257
  "ChemNQRetrieval",
258
+ "ChemRxivRetrieval",
257
259
  "ClimateFEVER",
258
260
  "ClimateFEVERHardNegatives",
259
261
  "ClimateFEVERHardNegativesV2",
@@ -0,0 +1,33 @@
1
+ from mteb.abstasks.retrieval import AbsTaskRetrieval
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class ChemRxivRetrieval(AbsTaskRetrieval):
6
+ metadata = TaskMetadata(
7
+ name="ChemRxivRetrieval",
8
+ dataset={
9
+ "path": "BASF-AI/ChemRxivRetrieval",
10
+ "revision": "5377aa18f309ec440ff6325a4c2cd3362c2cb8d7",
11
+ },
12
+ description="A retrieval task based on ChemRxiv papers where queries are LLM-synthesized to match specific paragraphs.",
13
+ reference="https://arxiv.org/abs/2508.01643",
14
+ type="Retrieval",
15
+ category="t2t",
16
+ modalities=["text"],
17
+ eval_splits=["test"],
18
+ eval_langs=["eng-Latn"],
19
+ main_score="ndcg_at_10",
20
+ date=("2025-01-01", "2025-05-01"),
21
+ domains=["Chemistry"],
22
+ task_subtypes=["Question answering", "Article retrieval"],
23
+ license="cc-by-nc-sa-4.0",
24
+ annotations_creators="LM-generated and reviewed",
25
+ dialect=[],
26
+ sample_creation="found",
27
+ bibtex_citation="""@article{kasmaee2025chembed,
28
+ author = {Kasmaee, Ali Shiraee and Khodadad, Mohammad and Astaraki, Mahdi and Saloot, Mohammad Arshi and Sherck, Nicholas and Mahyar, Hamidreza and Samiee, Soheila},
29
+ journal = {arXiv preprint arXiv:2508.01643},
30
+ title = {Chembed: Enhancing chemical literature search through domain-specific text embeddings},
31
+ year = {2025},
32
+ }""",
33
+ )
@@ -6,6 +6,7 @@ from .cross_lingual_semantic_discrimination_wmt21 import (
6
6
  CrossLingualSemanticDiscriminationWMT21,
7
7
  )
8
8
  from .cur_ev1_retrieval import CUREv1Retrieval
9
+ from .euro_pirq_retrieval import EuroPIRQRetrieval
9
10
  from .indic_qa_retrieval import IndicQARetrieval
10
11
  from .jina_vdr_bench_retrieval import (
11
12
  JinaVDRAirbnbSyntheticRetrieval,
@@ -107,6 +108,7 @@ __all__ = [
107
108
  "CUREv1Retrieval",
108
109
  "CrossLingualSemanticDiscriminationWMT19",
109
110
  "CrossLingualSemanticDiscriminationWMT21",
111
+ "EuroPIRQRetrieval",
110
112
  "IndicQARetrieval",
111
113
  "JinaVDRAirbnbSyntheticRetrieval",
112
114
  "JinaVDRArabicChartQARetrieval",
@@ -0,0 +1,43 @@
1
+ from mteb.abstasks.retrieval import AbsTaskRetrieval
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+ _LANGUAGES = {
5
+ "en": ["eng-Latn"],
6
+ "fi": ["fin-Latn"],
7
+ "pt": ["por-Latn"],
8
+ }
9
+
10
+
11
+ class EuroPIRQRetrieval(AbsTaskRetrieval):
12
+ metadata = TaskMetadata(
13
+ name="EuroPIRQRetrieval",
14
+ description="The EuroPIRQ retrieval dataset is a multilingual collection designed for evaluating retrieval and cross-lingual retrieval tasks. Dataset contains 10,000 parallel passages & 100 parallel queries (synthetic) in three languages: English, Portuguese, and Finnish, constructed from the European Union's DGT-Acquis corpus.",
15
+ reference="https://huggingface.co/datasets/eherra/EuroPIRQ-retrieval",
16
+ dataset={
17
+ "path": "eherra/EuroPIRQ-retrieval",
18
+ "revision": "59225ed25fbcea2185e1acbc8c3c80f1a8cd8341",
19
+ },
20
+ type="Retrieval",
21
+ category="t2t",
22
+ modalities=["text"],
23
+ eval_splits=["test"],
24
+ eval_langs=_LANGUAGES,
25
+ main_score="ndcg_at_10",
26
+ date=("2025-12-01", "2025-12-31"),
27
+ domains=["Legal"],
28
+ task_subtypes=[],
29
+ license="not specified",
30
+ annotations_creators="LM-generated and reviewed",
31
+ dialect=[],
32
+ sample_creation="found",
33
+ is_public=True,
34
+ bibtex_citation=r"""
35
+ @misc{eherra_2025_europirq,
36
+ author = { {Elias Herranen} },
37
+ publisher = { Hugging Face },
38
+ title = { EuroPIRQ: European Parallel Information Retrieval Queries },
39
+ url = { https://huggingface.co/datasets/eherra/EuroPIRQ-retrieval },
40
+ year = {2025},
41
+ }
42
+ """,
43
+ )
@@ -15,7 +15,7 @@ class Vidore3FinanceEnRetrieval(AbsTaskRetrieval):
15
15
  metadata = TaskMetadata(
16
16
  name="Vidore3FinanceEnRetrieval",
17
17
  description="Retrieve associated pages according to questions. This task, Finance - EN, is a corpus of reports from american banking companies, intended for long-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
18
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
18
+ reference="https://arxiv.org/abs/2601.08620",
19
19
  dataset={
20
20
  "path": "vidore/vidore_v3_finance_en_mteb_format",
21
21
  "revision": "fa78cb14152b3dde8c5defdc4e3ddf50de69dfeb",
@@ -34,15 +34,14 @@ class Vidore3FinanceEnRetrieval(AbsTaskRetrieval):
34
34
  modalities=["text", "image"],
35
35
  sample_creation="created and machine-translated",
36
36
  bibtex_citation=r"""
37
- @misc{mace2025vidorev3,
38
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
39
- day = {5},
40
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
41
- journal = {Hugging Face Blog},
42
- month = {November},
43
- publisher = {Hugging Face},
44
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
45
- year = {2025},
37
+ @article{loison2026vidorev3comprehensiveevaluation,
38
+ archiveprefix = {arXiv},
39
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
40
+ eprint = {2601.08620},
41
+ primaryclass = {cs.AI},
42
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
43
+ url = {https://arxiv.org/abs/2601.08620},
44
+ year = {2026},
46
45
  }
47
46
  """,
48
47
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -53,7 +52,7 @@ class Vidore3FinanceFrRetrieval(AbsTaskRetrieval):
53
52
  metadata = TaskMetadata(
54
53
  name="Vidore3FinanceFrRetrieval",
55
54
  description="Retrieve associated pages according to questions. This task, Finance - FR, is a corpus of reports from french companies in the luxury domain, intended for long-document understanding tasks. Original queries were created in french, then translated to english, german, italian, portuguese and spanish.",
56
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
55
+ reference="https://arxiv.org/abs/2601.08620",
57
56
  dataset={
58
57
  "path": "vidore/vidore_v3_finance_fr_mteb_format",
59
58
  "revision": "8a2adfda85a7967c7252129703d9b3c7c9f038a9",
@@ -71,15 +70,14 @@ class Vidore3FinanceFrRetrieval(AbsTaskRetrieval):
71
70
  dialect=[],
72
71
  sample_creation="created and machine-translated",
73
72
  bibtex_citation=r"""
74
- @misc{mace2025vidorev3,
75
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
76
- day = {5},
77
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
78
- journal = {Hugging Face Blog},
79
- month = {November},
80
- publisher = {Hugging Face},
81
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
82
- year = {2025},
73
+ @article{loison2026vidorev3comprehensiveevaluation,
74
+ archiveprefix = {arXiv},
75
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
76
+ eprint = {2601.08620},
77
+ primaryclass = {cs.AI},
78
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
79
+ url = {https://arxiv.org/abs/2601.08620},
80
+ year = {2026},
83
81
  }
84
82
  """,
85
83
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -91,7 +89,7 @@ class Vidore3IndustrialRetrieval(AbsTaskRetrieval):
91
89
  metadata = TaskMetadata(
92
90
  name="Vidore3IndustrialRetrieval",
93
91
  description="Retrieve associated pages according to questions. This dataset, Industrial reports, is a corpus of technical documents on military aircraft (fueling, mechanics...), intended for complex-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
94
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
92
+ reference="https://arxiv.org/abs/2601.08620",
95
93
  dataset={
96
94
  "path": "vidore/vidore_v3_industrial_mteb_format",
97
95
  "revision": "f732b725cf4a70803210edfe265a04f8bd5328f6",
@@ -110,15 +108,14 @@ class Vidore3IndustrialRetrieval(AbsTaskRetrieval):
110
108
  modalities=["text", "image"],
111
109
  sample_creation="created and machine-translated",
112
110
  bibtex_citation=r"""
113
- @misc{mace2025vidorev3,
114
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
115
- day = {5},
116
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
117
- journal = {Hugging Face Blog},
118
- month = {November},
119
- publisher = {Hugging Face},
120
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
121
- year = {2025},
111
+ @article{loison2026vidorev3comprehensiveevaluation,
112
+ archiveprefix = {arXiv},
113
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
114
+ eprint = {2601.08620},
115
+ primaryclass = {cs.AI},
116
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
117
+ url = {https://arxiv.org/abs/2601.08620},
118
+ year = {2026},
122
119
  }
123
120
  """,
124
121
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -130,7 +127,7 @@ class Vidore3PharmaceuticalsRetrieval(AbsTaskRetrieval):
130
127
  metadata = TaskMetadata(
131
128
  name="Vidore3PharmaceuticalsRetrieval",
132
129
  description="Retrieve associated pages according to questions. This dataset, Pharmaceutical, is a corpus of slides from the FDA, intended for long-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
133
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
130
+ reference="https://arxiv.org/abs/2601.08620",
134
131
  dataset={
135
132
  "path": "vidore/vidore_v3_pharmaceuticals_mteb_format",
136
133
  "revision": "237ed4f43c7fb3c4df07ec4e9dd0a4366be555b0",
@@ -149,15 +146,14 @@ class Vidore3PharmaceuticalsRetrieval(AbsTaskRetrieval):
149
146
  modalities=["text", "image"],
150
147
  sample_creation="created and machine-translated",
151
148
  bibtex_citation=r"""
152
- @misc{mace2025vidorev3,
153
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
154
- day = {5},
155
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
156
- journal = {Hugging Face Blog},
157
- month = {November},
158
- publisher = {Hugging Face},
159
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
160
- year = {2025},
149
+ @article{loison2026vidorev3comprehensiveevaluation,
150
+ archiveprefix = {arXiv},
151
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
152
+ eprint = {2601.08620},
153
+ primaryclass = {cs.AI},
154
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
155
+ url = {https://arxiv.org/abs/2601.08620},
156
+ year = {2026},
161
157
  }
162
158
  """,
163
159
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -169,7 +165,7 @@ class Vidore3ComputerScienceRetrieval(AbsTaskRetrieval):
169
165
  metadata = TaskMetadata(
170
166
  name="Vidore3ComputerScienceRetrieval",
171
167
  description="Retrieve associated pages according to questions. This dataset, Computer Science, is a corpus of textbooks from the openstacks website, intended for long-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
172
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
168
+ reference="https://arxiv.org/abs/2601.08620",
173
169
  dataset={
174
170
  "path": "vidore/vidore_v3_computer_science_mteb_format",
175
171
  "revision": "fb7fb69f81f7db62790f40494124b8ad22b424ab",
@@ -188,15 +184,14 @@ class Vidore3ComputerScienceRetrieval(AbsTaskRetrieval):
188
184
  modalities=["text", "image"],
189
185
  sample_creation="created and machine-translated",
190
186
  bibtex_citation=r"""
191
- @misc{mace2025vidorev3,
192
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
193
- day = {5},
194
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
195
- journal = {Hugging Face Blog},
196
- month = {November},
197
- publisher = {Hugging Face},
198
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
199
- year = {2025},
187
+ @article{loison2026vidorev3comprehensiveevaluation,
188
+ archiveprefix = {arXiv},
189
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
190
+ eprint = {2601.08620},
191
+ primaryclass = {cs.AI},
192
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
193
+ url = {https://arxiv.org/abs/2601.08620},
194
+ year = {2026},
200
195
  }
201
196
  """,
202
197
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -208,7 +203,7 @@ class Vidore3HrRetrieval(AbsTaskRetrieval):
208
203
  metadata = TaskMetadata(
209
204
  name="Vidore3HrRetrieval",
210
205
  description="Retrieve associated pages according to questions. This dataset, HR, is a corpus of reports released by the european union, intended for complex-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.",
211
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
206
+ reference="https://arxiv.org/abs/2601.08620",
212
207
  dataset={
213
208
  "path": "vidore/vidore_v3_hr_mteb_format",
214
209
  "revision": "bc7d43d64815ed30f664168c8052106484aba7fd",
@@ -227,15 +222,14 @@ class Vidore3HrRetrieval(AbsTaskRetrieval):
227
222
  modalities=["text", "image"],
228
223
  sample_creation="created and machine-translated",
229
224
  bibtex_citation=r"""
230
- @misc{mace2025vidorev3,
231
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
232
- day = {5},
233
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
234
- journal = {Hugging Face Blog},
235
- month = {November},
236
- publisher = {Hugging Face},
237
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
238
- year = {2025},
225
+ @article{loison2026vidorev3comprehensiveevaluation,
226
+ archiveprefix = {arXiv},
227
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
228
+ eprint = {2601.08620},
229
+ primaryclass = {cs.AI},
230
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
231
+ url = {https://arxiv.org/abs/2601.08620},
232
+ year = {2026},
239
233
  }
240
234
  """,
241
235
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -247,7 +241,7 @@ class Vidore3EnergyRetrieval(AbsTaskRetrieval):
247
241
  metadata = TaskMetadata(
248
242
  name="Vidore3EnergyRetrieval",
249
243
  description="Retrieve associated pages according to questions. This dataset, Energy Fr, is a corpus of reports on energy supply in europe, intended for complex-document understanding tasks. Original queries were created in french, then translated to english, german, italian, portuguese and spanish.",
250
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
244
+ reference="https://arxiv.org/abs/2601.08620",
251
245
  dataset={
252
246
  "path": "vidore/vidore_v3_energy_mteb_format",
253
247
  "revision": "84fca99e5978604bae30f2436eacb6dbaa0532e9",
@@ -266,15 +260,14 @@ class Vidore3EnergyRetrieval(AbsTaskRetrieval):
266
260
  modalities=["text", "image"],
267
261
  sample_creation="created and machine-translated",
268
262
  bibtex_citation=r"""
269
- @misc{mace2025vidorev3,
270
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
271
- day = {5},
272
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
273
- journal = {Hugging Face Blog},
274
- month = {November},
275
- publisher = {Hugging Face},
276
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
277
- year = {2025},
263
+ @article{loison2026vidorev3comprehensiveevaluation,
264
+ archiveprefix = {arXiv},
265
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
266
+ eprint = {2601.08620},
267
+ primaryclass = {cs.AI},
268
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
269
+ url = {https://arxiv.org/abs/2601.08620},
270
+ year = {2026},
278
271
  }
279
272
  """,
280
273
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -286,7 +279,7 @@ class Vidore3PhysicsRetrieval(AbsTaskRetrieval):
286
279
  metadata = TaskMetadata(
287
280
  name="Vidore3PhysicsRetrieval",
288
281
  description="Retrieve associated pages according to questions. This dataset, Physics, is a corpus of course slides on french bachelor level physics lectures, intended for complex visual understanding tasks. Original queries were created in french, then translated to english, german, italian, portuguese and spanish.",
289
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
282
+ reference="https://arxiv.org/abs/2601.08620",
290
283
  dataset={
291
284
  "path": "vidore/vidore_v3_physics_mteb_format",
292
285
  "revision": "2c18ef90ab3ef93a9d86ecc6521cdae2a29f8300",
@@ -305,15 +298,14 @@ class Vidore3PhysicsRetrieval(AbsTaskRetrieval):
305
298
  modalities=["text", "image"],
306
299
  sample_creation="created and machine-translated",
307
300
  bibtex_citation=r"""
308
- @misc{mace2025vidorev3,
309
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
310
- day = {5},
311
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
312
- journal = {Hugging Face Blog},
313
- month = {November},
314
- publisher = {Hugging Face},
315
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
316
- year = {2025},
301
+ @article{loison2026vidorev3comprehensiveevaluation,
302
+ archiveprefix = {arXiv},
303
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
304
+ eprint = {2601.08620},
305
+ primaryclass = {cs.AI},
306
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
307
+ url = {https://arxiv.org/abs/2601.08620},
308
+ year = {2026},
317
309
  }
318
310
  """,
319
311
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -325,7 +317,7 @@ class Vidore3NuclearRetrieval(AbsTaskRetrieval):
325
317
  metadata = TaskMetadata(
326
318
  name="Vidore3NuclearRetrieval",
327
319
  description="Retrieve associated pages according to questions.",
328
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
320
+ reference="https://arxiv.org/abs/2601.08620",
329
321
  dataset={
330
322
  "path": "mteb-private/Vidore3NuclearRetrieval",
331
323
  "revision": "a463fc67fefc01152153101e88a32d5f9515e3e3",
@@ -344,15 +336,14 @@ class Vidore3NuclearRetrieval(AbsTaskRetrieval):
344
336
  modalities=["text", "image"],
345
337
  sample_creation="created and machine-translated",
346
338
  bibtex_citation=r"""
347
- @misc{mace2025vidorev3,
348
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
349
- day = {5},
350
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
351
- journal = {Hugging Face Blog},
352
- month = {November},
353
- publisher = {Hugging Face},
354
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
355
- year = {2025},
339
+ @article{loison2026vidorev3comprehensiveevaluation,
340
+ archiveprefix = {arXiv},
341
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
342
+ eprint = {2601.08620},
343
+ primaryclass = {cs.AI},
344
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
345
+ url = {https://arxiv.org/abs/2601.08620},
346
+ year = {2026},
356
347
  }
357
348
  """,
358
349
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -364,7 +355,7 @@ class Vidore3TelecomRetrieval(AbsTaskRetrieval):
364
355
  metadata = TaskMetadata(
365
356
  name="Vidore3TelecomRetrieval",
366
357
  description="Retrieve associated pages according to questions.",
367
- reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
358
+ reference="https://arxiv.org/abs/2601.08620",
368
359
  dataset={
369
360
  "path": "mteb-private/Vidore3TelecomRetrieval",
370
361
  "revision": "a54635a274ef2835721b7cbe3eb27483b9ec964b",
@@ -383,15 +374,14 @@ class Vidore3TelecomRetrieval(AbsTaskRetrieval):
383
374
  modalities=["text", "image"],
384
375
  sample_creation="created and machine-translated",
385
376
  bibtex_citation=r"""
386
- @misc{mace2025vidorev3,
387
- author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
388
- day = {5},
389
- howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
390
- journal = {Hugging Face Blog},
391
- month = {November},
392
- publisher = {Hugging Face},
393
- title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
394
- year = {2025},
377
+ @article{loison2026vidorev3comprehensiveevaluation,
378
+ archiveprefix = {arXiv},
379
+ author = {António Loison and Quentin Macé and Antoine Edy and Victor Xing and Tom Balough and Gabriel Moreira and Bo Liu and Manuel Faysse and Céline Hudelot and Gautier Viaud},
380
+ eprint = {2601.08620},
381
+ primaryclass = {cs.AI},
382
+ title = {ViDoRe V3: A Comprehensive Evaluation of Retrieval Augmented Generation in Complex Real-World Scenarios},
383
+ url = {https://arxiv.org/abs/2601.08620},
384
+ year = {2026},
395
385
  }
396
386
  """,
397
387
  prompt={"query": "Find a screenshot that is relevant to the user's question."},
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.7.0
3
+ Version: 2.7.1
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -21,7 +21,7 @@ mteb/_evaluators/clustering_evaluator.py,sha256=YfjwpZL03Tiu0jfd6HBSavrOs_WALwIp
21
21
  mteb/_evaluators/evaluator.py,sha256=CZIFM84KJcbygBqHrd6Reg0FA1ZT5dfVjFTuBYgGyMw,906
22
22
  mteb/_evaluators/pair_classification_evaluator.py,sha256=kgxvnzsZPFF7c6GNRWtyAP3AJ3v_heRQUYwmYvNATzI,6440
23
23
  mteb/_evaluators/retrieval_evaluator.py,sha256=UVrGtjOQdbDD2ZeH1oVm9ouIlU7Uup2a09ylzm0-QaM,3024
24
- mteb/_evaluators/retrieval_metrics.py,sha256=jd5BEinfGPdHPK3kXf6kfBs0gvDuBXEWyx-RS7G4c8g,23756
24
+ mteb/_evaluators/retrieval_metrics.py,sha256=fwsPemssWqQRvo0t4PZTGrrv5KXK8N6U35kOFSkRbEU,23755
25
25
  mteb/_evaluators/sklearn_evaluator.py,sha256=lipgxkGXWeKGD2jhaNL9WQqLBS1_2L_WZpUobZR7iBI,3838
26
26
  mteb/_evaluators/zeroshot_classification_evaluator.py,sha256=Y5ZFUsBAWXMpKnZ6Iw1K0lm0_L4chLMxC4LAdZCBbPs,2296
27
27
  mteb/_evaluators/image/__init__.py,sha256=CsQd7OMkeV2Phun7paPWjayZ5qRnvj8H0TYBFeqMxag,148
@@ -43,7 +43,7 @@ mteb/abstasks/multilabel_classification.py,sha256=D_bdK3yyZFgaH1pg9PpO5LHQMVaJP3
43
43
  mteb/abstasks/pair_classification.py,sha256=-T8q7JQRjHZ3ihLqnuR2yuuci9xljvUqCldsHGnGLGc,13767
44
44
  mteb/abstasks/regression.py,sha256=sROjvfasLS89KRPUTsc1ONFsBTzfoqlpxLQfIkKBQXs,8763
45
45
  mteb/abstasks/retrieval.py,sha256=keuf7GeYyM0ODPlVFGZIFBmBoSil0c1glmcu6C0YzhA,26921
46
- mteb/abstasks/retrieval_dataset_loaders.py,sha256=WukcFAn54rUpXULCG43eysHozXHAxo2CaPhQyL_2Yg8,9401
46
+ mteb/abstasks/retrieval_dataset_loaders.py,sha256=Jcr2hHe5sqWc8eL3WDhR9J7bJokD7tyhz_z3eD14o0M,9403
47
47
  mteb/abstasks/sts.py,sha256=b_19QvclU0_q0aEJdfvB3weUQ96bUS7uDuuRrjpz8Bc,9245
48
48
  mteb/abstasks/task_metadata.py,sha256=7TM_ls5bzYA1dHFq3VQgeioiyLrvMQz4i3hmWIsnD4M,27029
49
49
  mteb/abstasks/zeroshot_classification.py,sha256=O8jxoBgnrRx-BzOnr1aJVK3wIEBwkA4xuMxdVxlzJqI,6053
@@ -54,14 +54,14 @@ mteb/abstasks/image/__init__.py,sha256=NgvMJnp1g2mUv27RL-TvzA7s1BOdMG-EB1CrZfdbW
54
54
  mteb/abstasks/image/image_text_pair_classification.py,sha256=4RfPdAlb4ZlAE-9DiFQUvm7YpcQg9kTY7HRjRVenLmk,7935
55
55
  mteb/abstasks/text/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
56
56
  mteb/abstasks/text/bitext_mining.py,sha256=0Ff7t1jMEonajHzB5CzZZoSMVkC5KTa0muoytcNzOjM,11152
57
- mteb/abstasks/text/reranking.py,sha256=QMgAAndGYRzvQdlhjLRMxrh_yrJZ0VQH40I-7mXo1O0,7872
57
+ mteb/abstasks/text/reranking.py,sha256=vD5YUwst--zJ01bU40Z7juqQyuv8jrareRTtoCwt8E4,7871
58
58
  mteb/abstasks/text/summarization.py,sha256=qCUWfxaVAW0EYTFClUh9puBMGttyV6C7qKpCcHPAZN8,7148
59
59
  mteb/benchmarks/__init__.py,sha256=MQEVeli-zLaJ7Xg0z7RhXQwsdmm7Ht_W2Ln0rZo1Szc,225
60
60
  mteb/benchmarks/_create_table.py,sha256=b2RqGqi0ZonKbHecEcZiF4pkfE96smFRIzxOI82ETA8,22304
61
61
  mteb/benchmarks/benchmark.py,sha256=RheQOo0iQbu_ylN7oFLr2r-z_ahrMCTvKscVuwUx6yo,5694
62
62
  mteb/benchmarks/get_benchmark.py,sha256=nzR6cu5yXu1kIJKhd4A2R62xp43Z62bluPbOpNXHMWQ,2545
63
- mteb/benchmarks/benchmarks/__init__.py,sha256=NeFt0CGdY25-UWJ2aGCjDnpzr5-geih_1jjp1GQXJz4,2256
64
- mteb/benchmarks/benchmarks/benchmarks.py,sha256=w62HyautMAuRrwxUHjGpDqxTrXkb2zTD5cqXJV29Fyo,99644
63
+ mteb/benchmarks/benchmarks/__init__.py,sha256=767VzDgayFSB3KJ05o0gFdOeo2f1EarbEfnCsy_karw,2294
64
+ mteb/benchmarks/benchmarks/benchmarks.py,sha256=zAm1NTggaWb5Am6O30FUf-8zIbbF39eiuhSyLHzlpxQ,102370
65
65
  mteb/benchmarks/benchmarks/rteb_benchmarks.py,sha256=QnCSrTTaBfcRlAQp2Nu81tgv1idMXqiM16Fp2zKJ5Ys,10607
66
66
  mteb/cli/__init__.py,sha256=v-csUr3eUZElIvrGB6QGtaIdndDfNWEe9oZchsGsJpg,64
67
67
  mteb/cli/_display_tasks.py,sha256=pWKupzak8uxEIwJZbYpZpteeVprOgVT9Wr0HYeypitQ,2206
@@ -1082,6 +1082,7 @@ mteb/descriptive_stats/Retrieval/CUREv1.json,sha256=lfz-JMLuE5KlWqM08CUF80Nex1Oh
1082
1082
  mteb/descriptive_stats/Retrieval/ChatDoctorRetrieval.json,sha256=VyyOcmc9GQ1zqXrvAv0pFR5OAK-pE0fQYGJOsl4Wvok,991
1083
1083
  mteb/descriptive_stats/Retrieval/ChemHotpotQARetrieval.json,sha256=V2oT8C6Wh5VR6LeBlxrYH0VUJeEisjJELOZHpN2NP1o,2950
1084
1084
  mteb/descriptive_stats/Retrieval/ChemNQRetrieval.json,sha256=6E8SefjKJdqVC1R0JvGOPrJdpogDT-1H9X19GryVfI8,985
1085
+ mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json,sha256=kIfyVNgoLtO1QpnKguIovQVUio8RVdc1bBY_kwogT-Q,986
1085
1086
  mteb/descriptive_stats/Retrieval/ClimateFEVER-Fa.json,sha256=B1bp66dEPtY6p1zgHTK3fyBN_eFbmprpjhwUovVs4mI,1016
1086
1087
  mteb/descriptive_stats/Retrieval/ClimateFEVER-NL.json,sha256=RaHI8NhlXCD28FGFd1-Pofm4lvD-_Kcszde2OgPxQk8,1017
1087
1088
  mteb/descriptive_stats/Retrieval/ClimateFEVER-VN.json,sha256=D2xgItr4sBQiW3x8qr12firW0cXsOHygKZcDrtjhQ10,1016
@@ -1140,6 +1141,7 @@ mteb/descriptive_stats/Retrieval/EnglishFinance3Retrieval.json,sha256=IpCB7e6cwO
1140
1141
  mteb/descriptive_stats/Retrieval/EnglishFinance4Retrieval.json,sha256=tdSyer5_q9rPZSD0LEjjXluCbWY_W_FewhOTQycU1U0,995
1141
1142
  mteb/descriptive_stats/Retrieval/EnglishHealthcare1Retrieval.json,sha256=c_QduudRLaQVFARJxSc-YTFwHeNyhiu7IMv6JGlYC5c,1005
1142
1143
  mteb/descriptive_stats/Retrieval/EstQA.json,sha256=qqmmX7ExWg4152S6yiUAyHzaLS0I-QUaOn9KVBZ3UZ8,981
1144
+ mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json,sha256=FIpF0h7hhF7O4jn-rEa9a-_8tPD1MAY-klTkSX3_SI8,4586
1143
1145
  mteb/descriptive_stats/Retrieval/FEVER-FaHardNegatives.json,sha256=KMDX6lg671e76rAboz30KgpvJAPxVSa6Thgefj1tgM4,987
1144
1146
  mteb/descriptive_stats/Retrieval/FEVER-NL.json,sha256=K810hO-zNJWg3-i30oma72wsjORGu8lLLd4PN_w0VVs,1020
1145
1147
  mteb/descriptive_stats/Retrieval/FEVER-VN.json,sha256=MnadQ0FGkXCFCDCI8eGwFYbouo8ta_1W_WlrqNx1clI,1018
@@ -1459,10 +1461,10 @@ mteb/models/__init__.py,sha256=ABTuoqiBjBtBWW3LYY7ItBHdylR6jWoy06HH0g6j6fU,910
1459
1461
  mteb/models/abs_encoder.py,sha256=6e9UAk7ckYsJ6hItIPMfSaPdlX_FxfJ-OdJ87oqT2OM,16625
1460
1462
  mteb/models/get_model_meta.py,sha256=wVh2FaWevJ10hJlbm-FQtTQazLMfnkEV3IK7PUyBPOQ,6082
1461
1463
  mteb/models/instruct_wrapper.py,sha256=GLHg9KcgYu2rF15LEMKesRpPudGfKE2y-aLXVG_CLj0,9670
1462
- mteb/models/model_meta.py,sha256=x8EuA8Zpc4DqhK_50v5TAZ7n2J2yhHqf5U0ldCpPnw0,31101
1464
+ mteb/models/model_meta.py,sha256=BDT4Q_aYPm3RUgtXq2poe1VyUUHob_fLrDKA4BPgYrg,31143
1463
1465
  mteb/models/models_protocols.py,sha256=5WYOZw3-T-wK7ux0YZVCfbcMTkAisqAqbu44ZNoir4A,9250
1464
1466
  mteb/models/search_wrappers.py,sha256=9lXLXUyL6atMCwXp-HBUong6msT3UAUY9QI7zKXbSVU,20945
1465
- mteb/models/sentence_transformer_wrapper.py,sha256=3sAev15a07ULA_ikFBBsMta0toy9AGPBbBPi37j_K-A,12932
1467
+ mteb/models/sentence_transformer_wrapper.py,sha256=liMzSqr0bC-yI_oEL50ckEc4ti9nibDLIiukP2crhOA,13543
1466
1468
  mteb/models/vllm_wrapper.py,sha256=ebX4JIKPoxW4PIlr3BnaoLGuMGRpHzBe_ZwvFscx1D0,12286
1467
1469
  mteb/models/cache_wrappers/__init__.py,sha256=1w1TnMwulWJSzNkLXjbh5MY3sqgHWc6vUntYn49i9X8,169
1468
1470
  mteb/models/cache_wrappers/cache_backend_protocol.py,sha256=iGWdqDEoaCxUVEnwsXhy-m9d2QX8KTaQ9m2ZyawrMes,1634
@@ -1545,8 +1547,8 @@ mteb/models/model_implementations/nbailab.py,sha256=LM00HJIr4yrA45qh2O21BIDXku9K
1545
1547
  mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=qLiMok_OxKvIYXWnP0KNWqH1monZx-OdSZrSx3QEhtI,4049
1546
1548
  mteb/models/model_implementations/nomic_models.py,sha256=dmQC_cWg6hAmiBHK7fXoXEiGBJnJvrq0RsnCcJ2qe1Q,15137
1547
1549
  mteb/models/model_implementations/nomic_models_vision.py,sha256=usCKfZCR7aEi_DnNmVAYjH-lXx_ipQkBVtUAmhJ90QI,6870
1548
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=DR66nmrIw1dgq7I1AcdgSC-ZqE29dsszVnHsrMxyCT4,6450
1549
- mteb/models/model_implementations/nvidia_models.py,sha256=XnNiyByz6EFrISz1Msb-cXLVQfKnYP5HMRzAXC1KPDo,24937
1550
+ mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=pJqkKBNns6jUYlpI3aGtpmrhXOSYgEvCje1ir_yXdpc,6889
1551
+ mteb/models/model_implementations/nvidia_models.py,sha256=KcnH7wGhz4LQ2F_y9Q9cJTr89DNKeHjVkVgHUfftzIY,26685
1550
1552
  mteb/models/model_implementations/octen_models.py,sha256=FFR1-yG2euN-6kgL4qJNHYB6cPsds4NGYFPmc5tHhoE,8514
1551
1553
  mteb/models/model_implementations/openai_models.py,sha256=905BajYi_XyOZgqU3AeKpwIttLoUitaAyc48sTWI6Jg,9482
1552
1554
  mteb/models/model_implementations/openclip_models.py,sha256=MyosgeYSrgBXGuGFtI2Tyxksxpb7bADFJVSYFCLweVA,11622
@@ -1592,8 +1594,8 @@ mteb/models/model_implementations/vdr_models.py,sha256=8jlfABvO7Z9ebzAPFHqln3B2I
1592
1594
  mteb/models/model_implementations/vi_vn_models.py,sha256=Ep2zj4Xvjyu0a_YiLsYvolKdMGSOtzm-N-yNyXmfNwA,6328
1593
1595
  mteb/models/model_implementations/vista_models.py,sha256=GkQFHIwwjxwM0wDuo-dWJBo4dLExlHtHfXwhcdKA5uQ,10884
1594
1596
  mteb/models/model_implementations/vlm2vec_models.py,sha256=EeWl3kpS_1VDJs4t1QmpaWSuglLPL2GyZu27fVY1VT8,11802
1595
- mteb/models/model_implementations/voyage_models.py,sha256=BdAHT7tpLVu9CMDdX9LzJKAJ6CncZKYIfMk2XdNKxV8,21707
1596
- mteb/models/model_implementations/voyage_v.py,sha256=eFdSOKka5VoLjViZk5umlgTw_ETjyXv4yhZ9SoCR-p0,8124
1597
+ mteb/models/model_implementations/voyage_models.py,sha256=jwVjgx9E6-rZxd8wmuNbbQxKTobuWBNWrs0ezqp4Oik,22525
1598
+ mteb/models/model_implementations/voyage_v.py,sha256=JqtXnICeaODRZHBj_Xsaf3PfIG-XPKopblNxAXHqYNo,8159
1597
1599
  mteb/models/model_implementations/xyz_models.py,sha256=gjwCx3U4AxMcJDTSWVoYV6xeyXLw7lUZI5D6Q7JjWho,1322
1598
1600
  mteb/models/model_implementations/youtu_models.py,sha256=THwWRabutW-qC-JZOVhxXWjKHVyMElzt_xm81ixzN50,5995
1599
1601
  mteb/models/model_implementations/yuan_models.py,sha256=j-QIKECPg4TiBW_3Bp6g5yr2UOdFziFSeoGE4uKepSM,980
@@ -2208,7 +2210,7 @@ mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py,sha256=RYZCPgKaNPi14ncxnvz8_7
2208
2210
  mteb/tasks/retrieval/deu/legal_qu_ad_retrieval.py,sha256=l_UNVkOQxqlKp6wef2BM-GKtyYnmYLYThGZZnUsR_-c,1594
2209
2211
  mteb/tasks/retrieval/ell/__init__.py,sha256=46naXAZtJzyezyqOQGRIlr4zQVkqGQJdj7ztjMrez9Y,72
2210
2212
  mteb/tasks/retrieval/ell/greek_civics_qa.py,sha256=uKmiWHHZvL1o5m17XCrzi16kHWFNhlEUHrtlk-LR1as,2514
2211
- mteb/tasks/retrieval/eng/__init__.py,sha256=loq6PjQTX-ZpCUgy6wFZ74LCpZVmzbiRQKtJQlJbvQM,16093
2213
+ mteb/tasks/retrieval/eng/__init__.py,sha256=dVW7pHRu8SXp2_PJwn6InbfWVQ2VVy0PJvr_-bLBrc4,16158
2212
2214
  mteb/tasks/retrieval/eng/aila_casedocs_retrieval.py,sha256=UKoN9oE8C412REf8MV16aUDgE5NwkHxnXsh4dcLztpk,1398
2213
2215
  mteb/tasks/retrieval/eng/aila_statutes_retrieval.py,sha256=GugjZwaWmTlNyYzK8ACKZHIiUw2YBvLaVyTngN_qQyM,1366
2214
2216
  mteb/tasks/retrieval/eng/alpha_nli_retrieval.py,sha256=GpOkizyeOs_ZMbRu9g1yAXdKkQr8PObUepP1OulbJio,1714
@@ -2229,6 +2231,7 @@ mteb/tasks/retrieval/eng/built_bench_retrieval.py,sha256=pqsIaVMl0ugGl5wx1oHPooq
2229
2231
  mteb/tasks/retrieval/eng/chat_doctor_retrieval.py,sha256=_PQYn3jXgeLKjnb_uKxzHtM9SCICV3bsmgEcEoD2OXo,3582
2230
2232
  mteb/tasks/retrieval/eng/chem_hotpot_qa_retrieval.py,sha256=sLTfqBf967htSU7Ego7zkEC8QYVWFI12YoHxa-urWEw,2114
2231
2233
  mteb/tasks/retrieval/eng/chem_nq_retrieval.py,sha256=8bl4PRKJwYgNF0sZPZQINgn81-r3c_2gDoMQJYdpb8I,1886
2234
+ mteb/tasks/retrieval/eng/chemrxiv.py,sha256=-HS_axsMPaEKr8T0d9WvgfJ_UmAr00InHFjFpt4VDVo,1404
2232
2235
  mteb/tasks/retrieval/eng/cirr_it2i_retrieval.py,sha256=o_4fVGosZjYsfMQy7tzQGaq8aijhUwXKcV7MYIYY4SY,1583
2233
2236
  mteb/tasks/retrieval/eng/climate_fever_retrieval.py,sha256=obIROibY5nQ8oDGbkjG5Z3jrJ-rAXVmF_1w_XN6Nqm0,4615
2234
2237
  mteb/tasks/retrieval/eng/cqa_dupstack_android_retrieval.py,sha256=-Uj8BOIPyjl8egm34qZGRKULGgEoaoac4wOhdWXAPgE,1674
@@ -2393,11 +2396,12 @@ mteb/tasks/retrieval/kor/auto_rag_retrieval.py,sha256=tgffW8zMpDSv1FCOdS4_4SL5zK
2393
2396
  mteb/tasks/retrieval/kor/ko_strategy_qa.py,sha256=jk13ORetYtF0q36h8ljD6TeTHUwvK5F5ZbDoMCP3eWk,1156
2394
2397
  mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py,sha256=AjOLe2l9drBWOCeGzQqxfee3gwwU6ElAJ7-5pbFr6C8,6208
2395
2398
  mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py,sha256=M7T5FkN1efK7euRslx-LZN7hS_QdIwqtUuVlWO-dico,1631
2396
- mteb/tasks/retrieval/multilingual/__init__.py,sha256=mfVGkoB4DO5ktlg8ia-4nImFVmZcqXh1XkgCkIff0tY,6765
2399
+ mteb/tasks/retrieval/multilingual/__init__.py,sha256=rbeuLmNYooHPjgROuEOH84Q6QmGhuXnedej0d6xAgqc,6841
2397
2400
  mteb/tasks/retrieval/multilingual/belebele_retrieval.py,sha256=gaVLEwuLEwMutMi9V-obpiYKbpllX2QNm2j3MVeebfE,7027
2398
2401
  mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py,sha256=_6r34ZvRiLVENYcrd87NjilybGaetBwKFEbO29zYmBU,4676
2399
2402
  mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py,sha256=Puy0PjpRr4M_Bbxdl7oWfa7pQGM04zaRaTNlnhyKejM,4677
2400
2403
  mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py,sha256=dwzo2sqjamM_xkSiC-jbapyhDFezSJpM4S8KfBsuLPk,4562
2404
+ mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py,sha256=rlbgWMRdQgDD8z4ZBPgGU1fRAqjmoFDzh0uD_P6qR-4,1602
2401
2405
  mteb/tasks/retrieval/multilingual/indic_qa_retrieval.py,sha256=K7iWZ-yTftZFQiXBOlkTJXGpQXs-ZFt6OQj_L6HjEwk,1872
2402
2406
  mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py,sha256=dw2YuFrA5OWFTL5zREiix93oAj7WcpcnAhCRh8YRoHI,44579
2403
2407
  mteb/tasks/retrieval/multilingual/mintaka_retrieval.py,sha256=SwOliONITZM679LIBSMrvx_VymqE-zRN6YiYahhzfzw,2229
@@ -2414,7 +2418,7 @@ mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py,sha256=Mmcvrt_1cIxPf
2414
2418
  mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py,sha256=iFUQUlO_ogBdQBVYBQW3o-AJDQ792yg1pJtRxA5I3Qo,3796
2415
2419
  mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py,sha256=UduWKefwP7bPYxiDlztPEvSWXmTdw0xElglMbPY6XhA,4449
2416
2420
  mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py,sha256=vOfiruHywYkP8pccdAuGLyYyFTw1zK0qcXDnUFA8Z5A,9091
2417
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py,sha256=wOoC--IVTz0dR6RMVICbz6OWxfCyVahGDSfX_TScCgA,16934
2421
+ mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py,sha256=V3jtSlWhoKR1PCvHsH0HrONy-oFghomwqihBonQs_50,17414
2418
2422
  mteb/tasks/retrieval/multilingual/web_faq_retrieval.py,sha256=TM-Q98yXZny_PKHAFNEvw9o9ET_L6VM3aNis1NJ9DgM,2686
2419
2423
  mteb/tasks/retrieval/multilingual/wikipedia_retrieval_multilingual.py,sha256=zyqAt63bHXNU_I37jb891pwWUyGzZUGkXCyhWlRbed8,1569
2420
2424
  mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py,sha256=_swZhhMRs5OhzBdJVqQF1i9ZrTvAxaVrG0TpkPWkoHo,4359
@@ -2618,9 +2622,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2618
2622
  mteb/types/_result.py,sha256=UKNokV9pu3G74MGebocU512aU_fFU9I9nPKnrG9Q0iE,1035
2619
2623
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2620
2624
  mteb/types/statistics.py,sha256=GwkBPmAr18Onu-vHtzHs0PFrhCozdOMiT13HwnWL4ZM,3961
2621
- mteb-2.7.0.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2622
- mteb-2.7.0.dist-info/METADATA,sha256=ww41PdZGaQnKWIX3vetD7jRnSf7O36TDKY7OSFGa1aE,14457
2623
- mteb-2.7.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2624
- mteb-2.7.0.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2625
- mteb-2.7.0.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2626
- mteb-2.7.0.dist-info/RECORD,,
2625
+ mteb-2.7.1.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2626
+ mteb-2.7.1.dist-info/METADATA,sha256=olR8WXq0vPmp5FUUNww2hAMIuhr5irC4wnymgFN0xhY,14457
2627
+ mteb-2.7.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2628
+ mteb-2.7.1.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2629
+ mteb-2.7.1.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2630
+ mteb-2.7.1.dist-info/RECORD,,
File without changes