mteb 2.6.8__py3-none-any.whl → 2.6.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -19,14 +19,24 @@ from mteb.types import Array, BatchedInput, PromptType
19
19
 
20
20
  logger = logging.getLogger(__name__)
21
21
 
22
- NV_RETRIEVER_CITATION = """@misc{moreira2025nvretrieverimprovingtextembedding,
23
- title={NV-Retriever: Improving text embedding models with effective hard-negative mining},
24
- author={Gabriel de Souza P. Moreira and Radek Osmulski and Mengyao Xu and Ronay Ak and Benedikt Schifferer and Even Oldridge},
22
+ NV_RETRIEVER_CITATION = """@misc{lee2025nvembedimprovedtechniquestraining,
23
+ title={NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models},
24
+ author={Chankyu Lee and Rajarshi Roy and Mengyao Xu and Jonathan Raiman and Mohammad Shoeybi and Bryan Catanzaro and Wei Ping},
25
25
  year={2025},
26
- eprint={2407.15831},
26
+ eprint={2405.17428},
27
27
  archivePrefix={arXiv},
28
- primaryClass={cs.IR},
29
- url={https://arxiv.org/abs/2407.15831}
28
+ primaryClass={cs.CL},
29
+ url={https://arxiv.org/abs/2405.17428},
30
+ }"""
31
+
32
+ LlamaEmbedNemotron_CITATION = """@misc{babakhin2025llamaembednemotron8buniversaltextembedding,
33
+ title={Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks},
34
+ author={Yauhen Babakhin and Radek Osmulski and Ronay Ak and Gabriel Moreira and Mengyao Xu and Benedikt Schifferer and Bo Liu and Even Oldridge},
35
+ year={2025},
36
+ eprint={2511.07025},
37
+ archivePrefix={arXiv},
38
+ primaryClass={cs.CL},
39
+ url={https://arxiv.org/abs/2511.07025},
30
40
  }"""
31
41
 
32
42
 
@@ -614,8 +624,8 @@ llama_embed_nemotron_8b = ModelMeta(
614
624
  framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
615
625
  use_instructions=True,
616
626
  training_datasets=llama_embed_nemotron_training_datasets,
617
- public_training_code=None, # Will be released later
618
- public_training_data=None, # Will be released later
627
+ public_training_code="https://github.com/NVIDIA-NeMo/Automodel/tree/main/examples/biencoder/llama_embed_nemotron_8b",
628
+ public_training_data="https://huggingface.co/datasets/nvidia/embed-nemotron-dataset-v1",
619
629
  contacts=["ybabakhin"],
620
- citation=NV_RETRIEVER_CITATION,
630
+ citation=LlamaEmbedNemotron_CITATION,
621
631
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.6.8
3
+ Version: 2.6.9
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -1545,7 +1545,7 @@ mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=qLiMok_O
1545
1545
  mteb/models/model_implementations/nomic_models.py,sha256=dmQC_cWg6hAmiBHK7fXoXEiGBJnJvrq0RsnCcJ2qe1Q,15137
1546
1546
  mteb/models/model_implementations/nomic_models_vision.py,sha256=usCKfZCR7aEi_DnNmVAYjH-lXx_ipQkBVtUAmhJ90QI,6870
1547
1547
  mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=6dTGtK1GiaYdpJ4IQFgCCOkGyHQyuEUatKs-Uv-1YmE,6450
1548
- mteb/models/model_implementations/nvidia_models.py,sha256=JMy0x7EWGrAxZ9s63F2vSPdPS-9yF3RIS4uj3N2UrVI,24315
1548
+ mteb/models/model_implementations/nvidia_models.py,sha256=XnNiyByz6EFrISz1Msb-cXLVQfKnYP5HMRzAXC1KPDo,24937
1549
1549
  mteb/models/model_implementations/octen_models.py,sha256=FFR1-yG2euN-6kgL4qJNHYB6cPsds4NGYFPmc5tHhoE,8514
1550
1550
  mteb/models/model_implementations/openai_models.py,sha256=905BajYi_XyOZgqU3AeKpwIttLoUitaAyc48sTWI6Jg,9482
1551
1551
  mteb/models/model_implementations/openclip_models.py,sha256=MyosgeYSrgBXGuGFtI2Tyxksxpb7bADFJVSYFCLweVA,11622
@@ -2617,9 +2617,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2617
2617
  mteb/types/_result.py,sha256=UKNokV9pu3G74MGebocU512aU_fFU9I9nPKnrG9Q0iE,1035
2618
2618
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2619
2619
  mteb/types/statistics.py,sha256=GwkBPmAr18Onu-vHtzHs0PFrhCozdOMiT13HwnWL4ZM,3961
2620
- mteb-2.6.8.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2621
- mteb-2.6.8.dist-info/METADATA,sha256=WuENjBwmboXEdotPTAcW0lgGdPfZVWxLbOem6RkweA4,14281
2622
- mteb-2.6.8.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2623
- mteb-2.6.8.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2624
- mteb-2.6.8.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2625
- mteb-2.6.8.dist-info/RECORD,,
2620
+ mteb-2.6.9.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2621
+ mteb-2.6.9.dist-info/METADATA,sha256=l-i7rdEestHq4eEfqtwTtdvHS7le1gDwi4EMzu0NW4g,14281
2622
+ mteb-2.6.9.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2623
+ mteb-2.6.9.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2624
+ mteb-2.6.9.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2625
+ mteb-2.6.9.dist-info/RECORD,,
File without changes