mteb 2.6.7__py3-none-any.whl → 2.6.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (53) hide show
  1. mteb/_create_dataloaders.py +7 -3
  2. mteb/_evaluators/any_sts_evaluator.py +6 -3
  3. mteb/_evaluators/clustering_evaluator.py +2 -2
  4. mteb/_evaluators/evaluator.py +2 -1
  5. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +8 -5
  6. mteb/_evaluators/pair_classification_evaluator.py +2 -2
  7. mteb/_evaluators/retrieval_evaluator.py +2 -2
  8. mteb/_evaluators/sklearn_evaluator.py +3 -3
  9. mteb/_evaluators/text/bitext_mining_evaluator.py +5 -3
  10. mteb/_evaluators/text/summarization_evaluator.py +3 -2
  11. mteb/_evaluators/zeroshot_classification_evaluator.py +5 -3
  12. mteb/abstasks/abstask.py +3 -2
  13. mteb/abstasks/aggregated_task.py +3 -3
  14. mteb/abstasks/classification.py +3 -3
  15. mteb/abstasks/clustering.py +2 -2
  16. mteb/abstasks/clustering_legacy.py +2 -2
  17. mteb/abstasks/image/image_text_pair_classification.py +2 -1
  18. mteb/abstasks/multilabel_classification.py +2 -2
  19. mteb/abstasks/pair_classification.py +2 -2
  20. mteb/abstasks/retrieval.py +15 -14
  21. mteb/abstasks/sts.py +2 -2
  22. mteb/abstasks/text/bitext_mining.py +3 -3
  23. mteb/abstasks/text/summarization.py +2 -2
  24. mteb/abstasks/zeroshot_classification.py +3 -2
  25. mteb/benchmarks/benchmarks/__init__.py +2 -0
  26. mteb/benchmarks/benchmarks/benchmarks.py +24 -0
  27. mteb/cli/build_cli.py +2 -1
  28. mteb/deprecated_evaluator.py +3 -3
  29. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
  30. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
  31. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
  32. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
  33. mteb/evaluate.py +5 -3
  34. mteb/models/abs_encoder.py +3 -1
  35. mteb/models/instruct_wrapper.py +1 -1
  36. mteb/models/model_implementations/bm25.py +3 -3
  37. mteb/models/model_implementations/mxbai_models.py +118 -1
  38. mteb/models/model_implementations/nvidia_models.py +19 -9
  39. mteb/models/model_implementations/octen_models.py +30 -0
  40. mteb/models/model_implementations/pylate_models.py +5 -4
  41. mteb/models/models_protocols.py +6 -4
  42. mteb/models/search_wrappers.py +7 -6
  43. mteb/models/sentence_transformer_wrapper.py +5 -4
  44. mteb/tasks/retrieval/kor/__init__.py +15 -1
  45. mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
  46. mteb/types/__init__.py +2 -0
  47. mteb/types/_encoder_io.py +12 -0
  48. {mteb-2.6.7.dist-info → mteb-2.6.9.dist-info}/METADATA +1 -1
  49. {mteb-2.6.7.dist-info → mteb-2.6.9.dist-info}/RECORD +53 -48
  50. {mteb-2.6.7.dist-info → mteb-2.6.9.dist-info}/WHEEL +0 -0
  51. {mteb-2.6.7.dist-info → mteb-2.6.9.dist-info}/entry_points.txt +0 -0
  52. {mteb-2.6.7.dist-info → mteb-2.6.9.dist-info}/licenses/LICENSE +0 -0
  53. {mteb-2.6.7.dist-info → mteb-2.6.9.dist-info}/top_level.txt +0 -0
@@ -8,10 +8,11 @@ import numpy as np
8
8
  import torch
9
9
  from packaging.version import Version
10
10
  from torch.utils.data import DataLoader
11
+ from typing_extensions import Unpack
11
12
 
12
13
  from mteb._log_once import LogOnce
13
14
  from mteb.models import ModelMeta
14
- from mteb.types import Array, BatchedInput, PromptType
15
+ from mteb.types import Array, BatchedInput, EncodeKwargs, PromptType
15
16
 
16
17
  from .abs_encoder import AbsEncoder
17
18
 
@@ -122,7 +123,7 @@ class SentenceTransformerEncoderWrapper(AbsEncoder):
122
123
  hf_split: str,
123
124
  hf_subset: str,
124
125
  prompt_type: PromptType | None = None,
125
- **kwargs: Any,
126
+ **kwargs: Unpack[EncodeKwargs],
126
127
  ) -> Array:
127
128
  """Encodes the given sentences using the encoder.
128
129
 
@@ -201,7 +202,7 @@ class SentenceTransformerMultimodalEncoderWrapper(SentenceTransformerEncoderWrap
201
202
  hf_split: str,
202
203
  hf_subset: str,
203
204
  prompt_type: PromptType | None = None,
204
- **kwargs: Any,
205
+ **kwargs: Unpack[EncodeKwargs],
205
206
  ) -> Array:
206
207
  """Encodes the given sentences using the encoder.
207
208
 
@@ -292,7 +293,7 @@ class CrossEncoderWrapper:
292
293
  hf_split: str,
293
294
  hf_subset: str,
294
295
  prompt_type: PromptType | None = None,
295
- **kwargs: Any,
296
+ **kwargs: Unpack[EncodeKwargs],
296
297
  ) -> Array:
297
298
  """Predicts relevance scores for pairs of inputs. Note that, unlike the encoder, the cross-encoder can compare across inputs.
298
299
 
@@ -1,5 +1,19 @@
1
1
  from .auto_rag_retrieval import AutoRAGRetrieval
2
2
  from .ko_strategy_qa import KoStrategyQA
3
+ from .kovidore2_bench_retrieval import (
4
+ KoVidore2CybersecurityRetrieval,
5
+ KoVidore2EconomicRetrieval,
6
+ KoVidore2EnergyRetrieval,
7
+ KoVidore2HrRetrieval,
8
+ )
3
9
  from .squad_kor_v1_retrieval import SQuADKorV1Retrieval
4
10
 
5
- __all__ = ["AutoRAGRetrieval", "KoStrategyQA", "SQuADKorV1Retrieval"]
11
+ __all__ = [
12
+ "AutoRAGRetrieval",
13
+ "KoStrategyQA",
14
+ "KoVidore2CybersecurityRetrieval",
15
+ "KoVidore2EconomicRetrieval",
16
+ "KoVidore2EnergyRetrieval",
17
+ "KoVidore2HrRetrieval",
18
+ "SQuADKorV1Retrieval",
19
+ ]
@@ -0,0 +1,142 @@
1
+ from mteb.abstasks.retrieval import AbsTaskRetrieval
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class KoVidore2CybersecurityRetrieval(AbsTaskRetrieval):
6
+ metadata = TaskMetadata(
7
+ name="KoVidore2CybersecurityRetrieval",
8
+ description="Retrieve associated pages according to questions. This dataset, Cybersecurity, is a corpus of technical reports on cyber threat trends and security incident responses in Korea, intended for complex-document understanding tasks.",
9
+ reference="https://github.com/whybe-choi/kovidore-data-generator",
10
+ dataset={
11
+ "path": "whybe-choi/kovidore-v2-cybersecurity-mteb",
12
+ "revision": "577d7c45f79d8eb4e7584db3990f91daa7e47956",
13
+ },
14
+ type="DocumentUnderstanding",
15
+ category="t2i",
16
+ eval_splits=["test"],
17
+ eval_langs=["kor-Hang"],
18
+ main_score="ndcg_at_10",
19
+ date=("2025-12-21", "2026-01-06"),
20
+ domains=["Social"],
21
+ task_subtypes=["Image Text Retrieval"],
22
+ license="cc-by-4.0",
23
+ annotations_creators="derived",
24
+ dialect=[],
25
+ modalities=["text", "image"],
26
+ sample_creation="created",
27
+ bibtex_citation="""
28
+ @misc{choi2026kovidorev2,
29
+ author = {Yongbin Choi},
30
+ note = {A benchmark for evaluating Korean vision document retrieval with multi-page reasoning queries in practical domains},
31
+ title = {KoViDoRe v2: a comprehensive evaluation of vision document retrieval for enterprise use-cases},
32
+ url = {https://github.com/whybe-choi/kovidore-data-generator},
33
+ year = {2026},
34
+ }
35
+ """,
36
+ prompt={"query": "Find a screenshot that is relevant to the user's question."},
37
+ )
38
+
39
+
40
+ class KoVidore2EconomicRetrieval(AbsTaskRetrieval):
41
+ metadata = TaskMetadata(
42
+ name="KoVidore2EconomicRetrieval",
43
+ description="Retrieve associated pages according to questions. This dataset, Economic trends, is a corpus of periodic reports on major economic indicators in Korea, intended for complex-document understanding tasks.",
44
+ reference="https://github.com/whybe-choi/kovidore-data-generator",
45
+ dataset={
46
+ "path": "whybe-choi/kovidore-v2-economic-mteb",
47
+ "revision": "0189c26211290a902cd9d41a0db932808a54c0a8",
48
+ },
49
+ type="DocumentUnderstanding",
50
+ category="t2i",
51
+ eval_splits=["test"],
52
+ eval_langs=["kor-Hang"],
53
+ main_score="ndcg_at_10",
54
+ date=("2025-12-21", "2026-01-06"),
55
+ domains=["Social"],
56
+ task_subtypes=["Image Text Retrieval"],
57
+ license="cc-by-4.0",
58
+ annotations_creators="derived",
59
+ dialect=[],
60
+ modalities=["text", "image"],
61
+ sample_creation="created",
62
+ bibtex_citation="""
63
+ @misc{choi2026kovidorev2,
64
+ author = {Yongbin Choi},
65
+ note = {A benchmark for evaluating Korean vision document retrieval with multi-page reasoning queries in practical domains},
66
+ title = {KoViDoRe v2: a comprehensive evaluation of vision document retrieval for enterprise use-cases},
67
+ url = {https://github.com/whybe-choi/kovidore-data-generator},
68
+ year = {2026},
69
+ }
70
+ """,
71
+ prompt={"query": "Find a screenshot that is relevant to the user's question."},
72
+ )
73
+
74
+
75
+ class KoVidore2EnergyRetrieval(AbsTaskRetrieval):
76
+ metadata = TaskMetadata(
77
+ name="KoVidore2EnergyRetrieval",
78
+ description="Retrieve associated pages according to questions. This dataset, Energy, is a corpus of reports on energy market trends, policy planning, and industry statistics, intended for complex-document understanding tasks.",
79
+ reference="https://github.com/whybe-choi/kovidore-data-generator",
80
+ dataset={
81
+ "path": "whybe-choi/kovidore-v2-energy-mteb",
82
+ "revision": "8c09a3d22b1fa3a7f5e815e9521da9b048754211",
83
+ },
84
+ type="DocumentUnderstanding",
85
+ category="t2i",
86
+ eval_splits=["test"],
87
+ eval_langs=["kor-Hang"],
88
+ main_score="ndcg_at_10",
89
+ date=("2025-12-21", "2026-01-06"),
90
+ domains=["Social"],
91
+ task_subtypes=["Image Text Retrieval"],
92
+ license="cc-by-4.0",
93
+ annotations_creators="derived",
94
+ dialect=[],
95
+ modalities=["text", "image"],
96
+ sample_creation="created",
97
+ bibtex_citation="""
98
+ @misc{choi2026kovidorev2,
99
+ author = {Yongbin Choi},
100
+ note = {A benchmark for evaluating Korean vision document retrieval with multi-page reasoning queries in practical domains},
101
+ title = {KoViDoRe v2: a comprehensive evaluation of vision document retrieval for enterprise use-cases},
102
+ url = {https://github.com/whybe-choi/kovidore-data-generator},
103
+ year = {2026},
104
+ }
105
+ """,
106
+ prompt={"query": "Find a screenshot that is relevant to the user's question."},
107
+ )
108
+
109
+
110
+ class KoVidore2HrRetrieval(AbsTaskRetrieval):
111
+ metadata = TaskMetadata(
112
+ name="KoVidore2HrRetrieval",
113
+ description="Retrieve associated pages according to questions. This dataset, HR, is a corpus of reports on workforce outlook and employment policy in korea, intended for complex-document understanding tasks.",
114
+ reference="https://github.com/whybe-choi/kovidore-data-generator",
115
+ dataset={
116
+ "path": "whybe-choi/kovidore-v2-hr-mteb",
117
+ "revision": "d9432c782a9a3e2eed064f6fac08b4c967d92b99",
118
+ },
119
+ type="DocumentUnderstanding",
120
+ category="t2i",
121
+ eval_splits=["test"],
122
+ eval_langs=["kor-Hang"],
123
+ main_score="ndcg_at_10",
124
+ date=("2025-12-21", "2026-01-06"),
125
+ domains=["Social"],
126
+ task_subtypes=["Image Text Retrieval"],
127
+ license="cc-by-4.0",
128
+ annotations_creators="derived",
129
+ dialect=[],
130
+ modalities=["text", "image"],
131
+ sample_creation="created",
132
+ bibtex_citation="""
133
+ @misc{choi2026kovidorev2,
134
+ author = {Yongbin Choi},
135
+ note = {A benchmark for evaluating Korean vision document retrieval with multi-page reasoning queries in practical domains},
136
+ title = {KoViDoRe v2: a comprehensive evaluation of vision document retrieval for enterprise use-cases},
137
+ url = {https://github.com/whybe-choi/kovidore-data-generator},
138
+ year = {2026},
139
+ }
140
+ """,
141
+ prompt={"query": "Find a screenshot that is relevant to the user's question."},
142
+ )
mteb/types/__init__.py CHANGED
@@ -4,6 +4,7 @@ from ._encoder_io import (
4
4
  Conversation,
5
5
  ConversationTurn,
6
6
  CorpusDatasetType,
7
+ EncodeKwargs,
7
8
  InstructionDatasetType,
8
9
  PromptType,
9
10
  QueryDatasetType,
@@ -30,6 +31,7 @@ __all__ = [
30
31
  "Conversation",
31
32
  "ConversationTurn",
32
33
  "CorpusDatasetType",
34
+ "EncodeKwargs",
33
35
  "HFSubset",
34
36
  "ISOLanguage",
35
37
  "ISOLanguageScript",
mteb/types/_encoder_io.py CHANGED
@@ -13,6 +13,18 @@ if TYPE_CHECKING:
13
13
  from PIL import Image
14
14
 
15
15
 
16
+ class EncodeKwargs(TypedDict):
17
+ """Keyword arguments for encoding methods.
18
+
19
+ Attributes:
20
+ batch_size: The batch size to use for encoding.
21
+ show_progress_bar: Whether to show a progress bar during encoding.
22
+ """
23
+
24
+ batch_size: NotRequired[int]
25
+ show_progress_bar: NotRequired[bool]
26
+
27
+
16
28
  # --- Output types ---
17
29
  Array = np.ndarray | torch.Tensor
18
30
  """General array type, can be a numpy array or a torch tensor."""
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.6.7
3
+ Version: 2.6.9
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -1,13 +1,13 @@
1
1
  mteb/__init__.py,sha256=h2kru--zMEC0mmLQ688kggdDpBH7dxYz1HhLVHbRjcI,1376
2
2
  mteb/__main__.py,sha256=KKWed4HW-OpfpJhCuKDNDPuAAIoppQY1g2gRuCdAmlw,34
3
- mteb/_create_dataloaders.py,sha256=6X0DAbbdIHFlrAujpAUjfBK8vEIcs6tL_r4b4-Acc84,14279
3
+ mteb/_create_dataloaders.py,sha256=WgQmfAgz1fuPvCvk20Oo1HSt2g-KCGITqi8yF_5MGGg,14324
4
4
  mteb/_helpful_enum.py,sha256=jh73N1jlcpg7RGz4bj8UpctiMNvqvHpp9wrB7SYEzIU,510
5
5
  mteb/_log_once.py,sha256=-tUKzxGQzf2LZSuQXi97oYFXMta1B6GEYXd7BPqssvY,1095
6
6
  mteb/_requires_package.py,sha256=eHg_TD9BVZRzNCcQQrUP17d8M1DF_vOd_tVx54AmAnM,3017
7
7
  mteb/_set_seed.py,sha256=HPlPRl__Pe6IG-4UgJqTfplcivJ_wA2kaClbXoHQedM,1178
8
8
  mteb/cache.py,sha256=dTx_oumF3JEIMorq-YQDqjTjKH4oIDQQq0MdnFf76Js,27603
9
- mteb/deprecated_evaluator.py,sha256=gaXEG3HRQpPyd-6PYSFHDJgtIXnFv2y_LyC-mNo1Ihw,27651
10
- mteb/evaluate.py,sha256=6h06XsolgVCJEq9j6NA5ebwH2rSLsyIdtrxHanlqQfk,19185
9
+ mteb/deprecated_evaluator.py,sha256=ASPodCDsqofAPUEGBikZA1ZCIDiSnxyL4xuic63OkYQ,27661
10
+ mteb/evaluate.py,sha256=RFHQ3NEI0qPD3EmMYrxH9RtDTjPJ3R4ZLX4ZmT14IO4,19247
11
11
  mteb/filter_tasks.py,sha256=D9g2o79aQiA5va7u_QKtMlZNDUmYwZGqCDpaKhBimWQ,7335
12
12
  mteb/get_tasks.py,sha256=UoxxsGVgeCm_qonCihl7EOFqWN_9BOCW2IP7GMN7ICw,14319
13
13
  mteb/load_results.py,sha256=9SovAzy7TQn-hibClDfH5B-YDMVdi4tZmDgGYfiL2Hc,6431
@@ -15,57 +15,57 @@ mteb/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
15
  mteb/similarity_functions.py,sha256=7mv2dFpMiWNDnGCjCsRQOT77RTtsIsoKUma_FsXG5z0,10790
16
16
  mteb/_evaluators/__init__.py,sha256=Ag1_RWpxBGMpujzd3FZjI40gY_KQKIpY31tJPuk-hFg,1013
17
17
  mteb/_evaluators/_download.py,sha256=jntlcURbJxcxUjTmn2D9Tu6ZnWgDc9t5bY8p9CZCqv4,586
18
- mteb/_evaluators/any_sts_evaluator.py,sha256=V22PHqcscukru73vcqeM5SNQnH6EAYEFDwAzw1ygULA,3737
18
+ mteb/_evaluators/any_sts_evaluator.py,sha256=Xdl78CJo7yfeXjGhUBrrilzq_Uz3yzaakAugVlaqV5E,3769
19
19
  mteb/_evaluators/classification_metrics.py,sha256=TI-cMPWrIpMqpsNhhwSBY4bZUu2yM469fbcu44zolW0,1926
20
- mteb/_evaluators/clustering_evaluator.py,sha256=5XoKHl5LcG9jQ9oBzNAWYVpZWWUxrars3t7TdIV7xS0,2052
21
- mteb/_evaluators/evaluator.py,sha256=YicM1o4nv09pIJNLjDY5yO2Dj_k7NSkpd5KKpJG6I-A,872
22
- mteb/_evaluators/pair_classification_evaluator.py,sha256=8SEuvYCujv6MWEThPB22Bud3QrXh_MKNh912NBJtn9g,6428
23
- mteb/_evaluators/retrieval_evaluator.py,sha256=HsowKZkqRCNzTwM7EcsHX18KhVKAjrm0sa_wFrreCb8,3031
20
+ mteb/_evaluators/clustering_evaluator.py,sha256=YfjwpZL03Tiu0jfd6HBSavrOs_WALwIpoPC25JGkVvE,2063
21
+ mteb/_evaluators/evaluator.py,sha256=CZIFM84KJcbygBqHrd6Reg0FA1ZT5dfVjFTuBYgGyMw,906
22
+ mteb/_evaluators/pair_classification_evaluator.py,sha256=kgxvnzsZPFF7c6GNRWtyAP3AJ3v_heRQUYwmYvNATzI,6440
23
+ mteb/_evaluators/retrieval_evaluator.py,sha256=UVrGtjOQdbDD2ZeH1oVm9ouIlU7Uup2a09ylzm0-QaM,3024
24
24
  mteb/_evaluators/retrieval_metrics.py,sha256=jd5BEinfGPdHPK3kXf6kfBs0gvDuBXEWyx-RS7G4c8g,23756
25
- mteb/_evaluators/sklearn_evaluator.py,sha256=CvJgH9-fGDNMlLPgvAN92-OUplRAGhywVZEN5Jtgspw,3828
26
- mteb/_evaluators/zeroshot_classification_evaluator.py,sha256=dQq6g9my-0xn_0fLJXSnhN9Qu6PuJtWCKGIDrlkeyJk,2282
25
+ mteb/_evaluators/sklearn_evaluator.py,sha256=lipgxkGXWeKGD2jhaNL9WQqLBS1_2L_WZpUobZR7iBI,3838
26
+ mteb/_evaluators/zeroshot_classification_evaluator.py,sha256=Y5ZFUsBAWXMpKnZ6Iw1K0lm0_L4chLMxC4LAdZCBbPs,2296
27
27
  mteb/_evaluators/image/__init__.py,sha256=CsQd7OMkeV2Phun7paPWjayZ5qRnvj8H0TYBFeqMxag,148
28
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py,sha256=8vOuuu_krbnz9U-WejDo6isuDHzb0yM9lKDioQ3SvKw,4940
28
+ mteb/_evaluators/image/imagetext_pairclassification_evaluator.py,sha256=6_xhsLSq8ZxGkE9Z_rBXR_FvrKcZ_DEvAaJsQVlLAGo,4962
29
29
  mteb/_evaluators/text/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
30
- mteb/_evaluators/text/bitext_mining_evaluator.py,sha256=MasngW0geNUfPOcN7j0qADx-lyXMF7qtjpW9Tq-fRMs,6556
31
- mteb/_evaluators/text/summarization_evaluator.py,sha256=b21w62v8ZAPvUIci4YCJf6tsViJcU9WqCgD7KlbSV9I,10727
30
+ mteb/_evaluators/text/bitext_mining_evaluator.py,sha256=RhWD_Q-xrKfTPoSzAVlhv31ays-jogYqO7ZtKUCiEgo,6570
31
+ mteb/_evaluators/text/summarization_evaluator.py,sha256=USjeo4Z1yhsSNkFq2c-I9okJSAHYyDDkqF-vRyBb828,10756
32
32
  mteb/abstasks/__init__.py,sha256=1iAwpYTWX7U-goak2KMmacPFCzxPchLQAmZ_uI0t-p0,1130
33
33
  mteb/abstasks/_statistics_calculation.py,sha256=FI2kAK1fLf1HreoBNYZ1YKKjD26xI0UUhfmoC7x6Qss,5974
34
34
  mteb/abstasks/_stratification.py,sha256=GnqYRtkFYsB-412EvMR2iMqIinFr98NCSmxHeCXctlw,14347
35
- mteb/abstasks/abstask.py,sha256=0q6o6y_F5fe9l8V-DyQT7oJkGJHD0pjuWXxgAj-6CPc,25535
35
+ mteb/abstasks/abstask.py,sha256=NMm-BSKcDEwveE5qW4D8wRH0b7MsI_tgbhix21dIM6c,25579
36
36
  mteb/abstasks/aggregate_task_metadata.py,sha256=nDkXU-_mxPdf_YK8d4P-fPGAzX3jBfwA19P7ZOgn0Fc,5646
37
- mteb/abstasks/aggregated_task.py,sha256=l7Qbr6sVKzRizlXd8Hio9LMrI545Www4fZafjylsrN0,6056
38
- mteb/abstasks/classification.py,sha256=8MyQqGBqknPaaNgsfO9wnhgPc2nI-sggZpPFA4znUNc,13570
39
- mteb/abstasks/clustering.py,sha256=q8EBZJGvNSXMO4YghnGjI294jSGWyxe5PEpnYYURCDo,14612
40
- mteb/abstasks/clustering_legacy.py,sha256=OFBmHwLIOTpzwgGLuxhmSyp13vBJog9-ZCq0Ambo6eU,8853
37
+ mteb/abstasks/aggregated_task.py,sha256=-L0ke7A_jmOZYQRW1NmOaAVTUll2bGWRTjmCiH__1S0,6066
38
+ mteb/abstasks/classification.py,sha256=0pumzQSqCySo8EjNlUCu6xQgqfLFU7wugmH-0VCXX-4,13580
39
+ mteb/abstasks/clustering.py,sha256=xuad_3QHuqpxfZo250NBVAvxKC-jLBec37REcerG-BQ,14624
40
+ mteb/abstasks/clustering_legacy.py,sha256=XGGq-5kBMWOEpWt6LBLkeUNqHTSDw3GRRipfHW9ve8M,8865
41
41
  mteb/abstasks/dataset_card_template.md,sha256=aD6l8qc3_jxwoIGJNYLzse-jpRa8hu92AxpnUtNgges,5122
42
- mteb/abstasks/multilabel_classification.py,sha256=4HWIZY2zXv_1gbcmMj04G5yEKSErS6m97KpuWXcRJyg,9528
43
- mteb/abstasks/pair_classification.py,sha256=vp8gJXlr11kwdg6wdgkIgouAdSKMAczVjdG8VQw-y5U,13755
42
+ mteb/abstasks/multilabel_classification.py,sha256=D_bdK3yyZFgaH1pg9PpO5LHQMVaJP3IkzvXCmYgmPjI,9540
43
+ mteb/abstasks/pair_classification.py,sha256=-T8q7JQRjHZ3ihLqnuR2yuuci9xljvUqCldsHGnGLGc,13767
44
44
  mteb/abstasks/regression.py,sha256=sROjvfasLS89KRPUTsc1ONFsBTzfoqlpxLQfIkKBQXs,8763
45
- mteb/abstasks/retrieval.py,sha256=NirMpZYVM4jPUfpBiqlO2icwKPLN3QbBpfv0_oBrvKg,26547
45
+ mteb/abstasks/retrieval.py,sha256=keuf7GeYyM0ODPlVFGZIFBmBoSil0c1glmcu6C0YzhA,26921
46
46
  mteb/abstasks/retrieval_dataset_loaders.py,sha256=WukcFAn54rUpXULCG43eysHozXHAxo2CaPhQyL_2Yg8,9401
47
- mteb/abstasks/sts.py,sha256=61hb19uZnmM0-NtaMLhVjo-5kvRW2nzA3PrEafIjhJA,9233
47
+ mteb/abstasks/sts.py,sha256=b_19QvclU0_q0aEJdfvB3weUQ96bUS7uDuuRrjpz8Bc,9245
48
48
  mteb/abstasks/task_metadata.py,sha256=7TM_ls5bzYA1dHFq3VQgeioiyLrvMQz4i3hmWIsnD4M,27029
49
- mteb/abstasks/zeroshot_classification.py,sha256=JeRSqEj2wILM5AziKw02-0iwzCp7g7X5ALh4LX7mhU8,6024
49
+ mteb/abstasks/zeroshot_classification.py,sha256=O8jxoBgnrRx-BzOnr1aJVK3wIEBwkA4xuMxdVxlzJqI,6053
50
50
  mteb/abstasks/_data_filter/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
51
  mteb/abstasks/_data_filter/filters.py,sha256=znU7pjA7GYbChxUVyPGgCIdp7OvFeawBvksXki5LMcg,4611
52
52
  mteb/abstasks/_data_filter/task_pipelines.py,sha256=HUB2fXX5IsLJ9MchLoh3cEjiywkPEY1wFgKBlv1wz58,3158
53
53
  mteb/abstasks/image/__init__.py,sha256=NgvMJnp1g2mUv27RL-TvzA7s1BOdMG-EB1CrZfdbWdg,136
54
- mteb/abstasks/image/image_text_pair_classification.py,sha256=eaiwwhJproazPm3vyagVa4Dx2h-REQsMYHi2xA1c178,7901
54
+ mteb/abstasks/image/image_text_pair_classification.py,sha256=4RfPdAlb4ZlAE-9DiFQUvm7YpcQg9kTY7HRjRVenLmk,7935
55
55
  mteb/abstasks/text/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
56
- mteb/abstasks/text/bitext_mining.py,sha256=42MFopdRZMlIHfMREmP2YAkyScElOsNEq6z3XnM8JvQ,11142
56
+ mteb/abstasks/text/bitext_mining.py,sha256=0Ff7t1jMEonajHzB5CzZZoSMVkC5KTa0muoytcNzOjM,11152
57
57
  mteb/abstasks/text/reranking.py,sha256=QMgAAndGYRzvQdlhjLRMxrh_yrJZ0VQH40I-7mXo1O0,7872
58
- mteb/abstasks/text/summarization.py,sha256=Sr-QX7T8SDS2dudSEspZHUtH_sxF_8A_tgfbkZNT3cA,7137
58
+ mteb/abstasks/text/summarization.py,sha256=qCUWfxaVAW0EYTFClUh9puBMGttyV6C7qKpCcHPAZN8,7148
59
59
  mteb/benchmarks/__init__.py,sha256=MQEVeli-zLaJ7Xg0z7RhXQwsdmm7Ht_W2Ln0rZo1Szc,225
60
60
  mteb/benchmarks/_create_table.py,sha256=b2RqGqi0ZonKbHecEcZiF4pkfE96smFRIzxOI82ETA8,22304
61
61
  mteb/benchmarks/benchmark.py,sha256=RheQOo0iQbu_ylN7oFLr2r-z_ahrMCTvKscVuwUx6yo,5694
62
62
  mteb/benchmarks/get_benchmark.py,sha256=nzR6cu5yXu1kIJKhd4A2R62xp43Z62bluPbOpNXHMWQ,2545
63
- mteb/benchmarks/benchmarks/__init__.py,sha256=73NYNv98q-tRCqf2YHabvElz_a8g_mF75HTup0J-E5E,2220
64
- mteb/benchmarks/benchmarks/benchmarks.py,sha256=48yX0qsPL07rr14ygT28qQrCF7MBhFdrb_d2bzRkfWA,98612
63
+ mteb/benchmarks/benchmarks/__init__.py,sha256=NeFt0CGdY25-UWJ2aGCjDnpzr5-geih_1jjp1GQXJz4,2256
64
+ mteb/benchmarks/benchmarks/benchmarks.py,sha256=w62HyautMAuRrwxUHjGpDqxTrXkb2zTD5cqXJV29Fyo,99644
65
65
  mteb/benchmarks/benchmarks/rteb_benchmarks.py,sha256=QnCSrTTaBfcRlAQp2Nu81tgv1idMXqiM16Fp2zKJ5Ys,10607
66
66
  mteb/cli/__init__.py,sha256=v-csUr3eUZElIvrGB6QGtaIdndDfNWEe9oZchsGsJpg,64
67
67
  mteb/cli/_display_tasks.py,sha256=pWKupzak8uxEIwJZbYpZpteeVprOgVT9Wr0HYeypitQ,2206
68
- mteb/cli/build_cli.py,sha256=ySOOv3B4IEBZjJWzi1Nq83tBmY92XmDUUI62xHQPyVM,15327
68
+ mteb/cli/build_cli.py,sha256=LkpAPwirASdfDzDdAbyRIAJ87tUAWZk7i75E8hN5iVA,15389
69
69
  mteb/cli/generate_model_card.py,sha256=wX1ApQHCbox9z8QIiHSomcbTiCIHmsoUTnsxmAv7e-g,4945
70
70
  mteb/descriptive_stats/BitextMining/BUCC.json,sha256=7zXoJaZacNdqMSG60jPZGIDJ1is_bxbVlcrVyImPRxw,3745
71
71
  mteb/descriptive_stats/BitextMining/BUCC.v2.json,sha256=IRPOKaIaUD31okNe12nQV2E1JeYK_Fo25Tz7d-utATM,3716
@@ -783,6 +783,10 @@ mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRTatQARetrieval.json,sh
783
783
  mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRTweetStockSyntheticsRetrieval.json,sha256=13JnQILz--KA2j9xooDkf2hp_4bdAttKcM_co6m0VMo,14073
784
784
  mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRWikimediaCommonsDocumentsRetrieval.json,sha256=caHYDGWGBmlOdL3HHT0djzOgj1hwfGfNMpgNptRRdVs,27289
785
785
  mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRWikimediaCommonsMapsRetrieval.json,sha256=HIoVgPD7wSHz7Ro-HKXh_YpAJFCJb6WzUsziBP2a1fI,1089
786
+ mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json,sha256=stPxkKTyZNw3mVVnuZRrWLfSsxYYEnd8Ym2NvBppdXw,1088
787
+ mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json,sha256=bUkZyMf7f00Wz0KCwcezjp_KJcq5hEbop50dWcMa6T4,1088
788
+ mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json,sha256=iMt--FqlwQrj3skZ6MnPW9GHh5yH8wcuA5hfr7e4D3w,1088
789
+ mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json,sha256=nJJkkRNCo26iVXk0ZQCbHR5iii8zeyTrpthnzQ_MIRU,1091
786
790
  mteb/descriptive_stats/Image/DocumentUnderstanding/MIRACLVisionRetrieval.json,sha256=LY6SQHcLESsRrRmfzt9h2sGHfxAdnQD1fhMG0KCQmaU,24510
787
791
  mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore2BioMedicalLecturesRetrieval.json,sha256=L4xuWlJVfd8WDIRtj8gJoOWbBnbm3BigWrQC2nOojpc,6365
788
792
  mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore2ESGReportsHLRetrieval.json,sha256=DWI0Au4nsfUCSNWkAhK_ffGfmcRdgIHc_JYekjFlXKg,1091
@@ -1452,13 +1456,13 @@ mteb/leaderboard/figures.py,sha256=cfOK82rRf-7sCjyP7GBxh4ezhOIt0OhD0_86mKtzLrg,7
1452
1456
  mteb/leaderboard/table.py,sha256=KqU8aAbZ_tDp1O_qXRGWR32QnB7v_lsF6k5jxLcQVN0,10366
1453
1457
  mteb/leaderboard/text_segments.py,sha256=iMIkS04QQjPbT-SkU0x6fOcS8xRbUYevryu9HydipKM,6570
1454
1458
  mteb/models/__init__.py,sha256=ABTuoqiBjBtBWW3LYY7ItBHdylR6jWoy06HH0g6j6fU,910
1455
- mteb/models/abs_encoder.py,sha256=HSJTjvcPYJRsKhhZeK2r6YP241EqpovwBcAuX1NevKE,16553
1459
+ mteb/models/abs_encoder.py,sha256=6e9UAk7ckYsJ6hItIPMfSaPdlX_FxfJ-OdJ87oqT2OM,16625
1456
1460
  mteb/models/get_model_meta.py,sha256=wVh2FaWevJ10hJlbm-FQtTQazLMfnkEV3IK7PUyBPOQ,6082
1457
- mteb/models/instruct_wrapper.py,sha256=PjgDKFnc160QP9jcPkxdI3OtcljyUdapuOcKZNGkNHo,9661
1461
+ mteb/models/instruct_wrapper.py,sha256=GLHg9KcgYu2rF15LEMKesRpPudGfKE2y-aLXVG_CLj0,9670
1458
1462
  mteb/models/model_meta.py,sha256=x8EuA8Zpc4DqhK_50v5TAZ7n2J2yhHqf5U0ldCpPnw0,31101
1459
- mteb/models/models_protocols.py,sha256=LvHS14Rv22AsfY-391yau_cPAQwoKXRsvyYWCBy6VVQ,9165
1460
- mteb/models/search_wrappers.py,sha256=yu3BnXLqE5JbOD14cF2mhyjvlF5LRKPfgk8uUuDhbjI,20939
1461
- mteb/models/sentence_transformer_wrapper.py,sha256=KLleEFx31773zPT-5mqHGBOT5Km6fVkwwxtMYuepeZY,12829
1463
+ mteb/models/models_protocols.py,sha256=5WYOZw3-T-wK7ux0YZVCfbcMTkAisqAqbu44ZNoir4A,9250
1464
+ mteb/models/search_wrappers.py,sha256=9lXLXUyL6atMCwXp-HBUong6msT3UAUY9QI7zKXbSVU,20945
1465
+ mteb/models/sentence_transformer_wrapper.py,sha256=3sAev15a07ULA_ikFBBsMta0toy9AGPBbBPi37j_K-A,12932
1462
1466
  mteb/models/cache_wrappers/__init__.py,sha256=1w1TnMwulWJSzNkLXjbh5MY3sqgHWc6vUntYn49i9X8,169
1463
1467
  mteb/models/cache_wrappers/cache_backend_protocol.py,sha256=iGWdqDEoaCxUVEnwsXhy-m9d2QX8KTaQ9m2ZyawrMes,1634
1464
1468
  mteb/models/cache_wrappers/cache_wrapper.py,sha256=GPC0UhHfkUH-i-Q4HdFvBev6h6GtMlWEId_B3tL-J54,6600
@@ -1478,7 +1482,7 @@ mteb/models/model_implementations/bge_models.py,sha256=YMatt2zsOx3EVA7DQp6m6NgnT
1478
1482
  mteb/models/model_implementations/bica_model.py,sha256=vfScW0FBqWG00C7-lb9krWzWnAS7pTzDvBsqMPjeJAM,1266
1479
1483
  mteb/models/model_implementations/blip2_models.py,sha256=mNnWANEeQoPfgx1I3lDP4jzb3KgejohUMOQz9_KYKWM,7749
1480
1484
  mteb/models/model_implementations/blip_models.py,sha256=Tfsk0mEo7brFQ9paDTtGri8axZUHzNqAUK7WHEqOfWM,11754
1481
- mteb/models/model_implementations/bm25.py,sha256=nSDtTXu5a5EkjuaF6V4iParwpxlnXKVNDFntp6uj1Q8,4846
1485
+ mteb/models/model_implementations/bm25.py,sha256=QBzWCyo_X4rVxL2ua-L1WTPpDMf9OVQcD9zwMkQkOrI,4837
1482
1486
  mteb/models/model_implementations/bmretriever_models.py,sha256=UMvSNK7ZgC0SfHp9nGjvdBSwDB2M-ZqpGlSIaieSl3Y,6845
1483
1487
  mteb/models/model_implementations/cadet_models.py,sha256=CtY4ioYb7W8LcIYRCO5dh6-Nr1QDp6UYvTUR6FGwTik,2266
1484
1488
  mteb/models/model_implementations/cde_models.py,sha256=rPyvpd1rEK0F_wwHoJ1GGXWEKZmoNJyR7Km7AOUT5BM,9271
@@ -1535,14 +1539,14 @@ mteb/models/model_implementations/moco_models.py,sha256=DOFXJINU3LV0gk83PRE5bXxv
1535
1539
  mteb/models/model_implementations/mod_models.py,sha256=6Cs08pqKrvSPYGNCil-T2Q151AmOCCBKMF54KkzdxJY,6350
1536
1540
  mteb/models/model_implementations/model2vec_models.py,sha256=7O6y-8fPtaHOoOfPn2-ZqmxSNHAG3r8-DIeK7sthzBg,14568
1537
1541
  mteb/models/model_implementations/moka_models.py,sha256=M3nhjDoisunpYojtU-dEZYaLjBkndOGhWByz17_x5_w,5088
1538
- mteb/models/model_implementations/mxbai_models.py,sha256=KTGnaj6zTlWPsaUrgEpQqBxNZWI-2XlQc79SL_Gmz-4,4148
1542
+ mteb/models/model_implementations/mxbai_models.py,sha256=1IqBwht4asnNveuA1B8nLcSyLFqphlbY2oloGAgpp78,7550
1539
1543
  mteb/models/model_implementations/nbailab.py,sha256=LM00HJIr4yrA45qh2O21BIDXku9KcoTz-mttczEx_qM,2567
1540
1544
  mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=qLiMok_OxKvIYXWnP0KNWqH1monZx-OdSZrSx3QEhtI,4049
1541
1545
  mteb/models/model_implementations/nomic_models.py,sha256=dmQC_cWg6hAmiBHK7fXoXEiGBJnJvrq0RsnCcJ2qe1Q,15137
1542
1546
  mteb/models/model_implementations/nomic_models_vision.py,sha256=usCKfZCR7aEi_DnNmVAYjH-lXx_ipQkBVtUAmhJ90QI,6870
1543
1547
  mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=6dTGtK1GiaYdpJ4IQFgCCOkGyHQyuEUatKs-Uv-1YmE,6450
1544
- mteb/models/model_implementations/nvidia_models.py,sha256=JMy0x7EWGrAxZ9s63F2vSPdPS-9yF3RIS4uj3N2UrVI,24315
1545
- mteb/models/model_implementations/octen_models.py,sha256=FwQAcB_z6bFohpFlNQK2ugLBEOQUu533auOhrNqMxaM,7511
1548
+ mteb/models/model_implementations/nvidia_models.py,sha256=XnNiyByz6EFrISz1Msb-cXLVQfKnYP5HMRzAXC1KPDo,24937
1549
+ mteb/models/model_implementations/octen_models.py,sha256=FFR1-yG2euN-6kgL4qJNHYB6cPsds4NGYFPmc5tHhoE,8514
1546
1550
  mteb/models/model_implementations/openai_models.py,sha256=905BajYi_XyOZgqU3AeKpwIttLoUitaAyc48sTWI6Jg,9482
1547
1551
  mteb/models/model_implementations/openclip_models.py,sha256=MyosgeYSrgBXGuGFtI2Tyxksxpb7bADFJVSYFCLweVA,11622
1548
1552
  mteb/models/model_implementations/opensearch_neural_sparse_models.py,sha256=TnIHut_IHvplvovlcTZ-PWnEldTzcru5JdUIaTH-8Do,8636
@@ -1551,7 +1555,7 @@ mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py,
1551
1555
  mteb/models/model_implementations/pawan_models.py,sha256=Fwpxqool7lHOMsim0XllWjRrQwxZP2ZU3Y9OtQ0AMvA,1192
1552
1556
  mteb/models/model_implementations/piccolo_models.py,sha256=rIdT5pLInGyjLXpLcECLPWFJ1N-XfzCte0k3Em5Vy-M,2181
1553
1557
  mteb/models/model_implementations/promptriever_models.py,sha256=Ck_oEuvohgPOhSbyfDGlweKXtKZasWYUwukBMBr1YMc,6492
1554
- mteb/models/model_implementations/pylate_models.py,sha256=Wunh4voSd6qFjHezIYrmfZA_lj5hM8ofLj2A2r4zD7I,16950
1558
+ mteb/models/model_implementations/pylate_models.py,sha256=4Z48zUGtOZRnqmA0XzO8YrVPO8GcaVBpXSln8VIw21g,16960
1555
1559
  mteb/models/model_implementations/qodo_models.py,sha256=bb2iUDdLp1sOZdYojZuzAzV4CQK68Ad1Y-VJul78uho,2151
1556
1560
  mteb/models/model_implementations/qtack_models.py,sha256=GJGZ0zmJw1KT39kIyrQUlEGMkY-lUa36CY_qTN6mPJU,1265
1557
1561
  mteb/models/model_implementations/qwen3_models.py,sha256=7uRzl8Uopi_zAAeJ0G1DUxNH4bl1h5gzMqks6ltbkHE,5303
@@ -2383,9 +2387,10 @@ mteb/tasks/retrieval/jpn/nlp_journal_title_abs_retrieval.py,sha256=JOOW_5pRKHzVn
2383
2387
  mteb/tasks/retrieval/jpn/nlp_journal_title_intro_retrieval.py,sha256=aVFTFiANWrIz68FjHv9KBqlhpWlsmi9EAP052gECzaU,3078
2384
2388
  mteb/tasks/retrieval/kat/__init__.py,sha256=H4phkKqg_yZzkK7T62aCMBzjbGZzLKJ-MngrQlPbW3A,93
2385
2389
  mteb/tasks/retrieval/kat/georgian_faq_retrieval.py,sha256=4zyodSYCtHtBW9WKIGxFZaTXDrtHuaf3uyfIsDRGBqM,2494
2386
- mteb/tasks/retrieval/kor/__init__.py,sha256=gstfs-sW2-qlaVrOJg_NLsQLLUYCWG2gPf64KI2LxoA,217
2390
+ mteb/tasks/retrieval/kor/__init__.py,sha256=KHCU9neGBhnAkNj7-gJ5aBTJQkp9E0AcfRBU8CuG3hY,533
2387
2391
  mteb/tasks/retrieval/kor/auto_rag_retrieval.py,sha256=tgffW8zMpDSv1FCOdS4_4SL5zKQj70JVSt_RKs3CgKY,1576
2388
2392
  mteb/tasks/retrieval/kor/ko_strategy_qa.py,sha256=jk13ORetYtF0q36h8ljD6TeTHUwvK5F5ZbDoMCP3eWk,1156
2393
+ mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py,sha256=AjOLe2l9drBWOCeGzQqxfee3gwwU6ElAJ7-5pbFr6C8,6208
2389
2394
  mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py,sha256=M7T5FkN1efK7euRslx-LZN7hS_QdIwqtUuVlWO-dico,1631
2390
2395
  mteb/tasks/retrieval/multilingual/__init__.py,sha256=mfVGkoB4DO5ktlg8ia-4nImFVmZcqXh1XkgCkIff0tY,6765
2391
2396
  mteb/tasks/retrieval/multilingual/belebele_retrieval.py,sha256=gaVLEwuLEwMutMi9V-obpiYKbpllX2QNm2j3MVeebfE,7027
@@ -2606,15 +2611,15 @@ mteb/tasks/zeroshot_classification/eng/stl10.py,sha256=sd3nV7x7mypsP0Ipxu5TRQj6f
2606
2611
  mteb/tasks/zeroshot_classification/eng/sun397.py,sha256=Nls7tXM2Svu008MmAUjt-o_NSj-VNGKbW8qi-n7C18s,1963
2607
2612
  mteb/tasks/zeroshot_classification/eng/ucf101.py,sha256=kwNRYks-_Oe4VE3GyoHIvN-2OJ6zhkwFr76WDNL9ymU,1884
2608
2613
  mteb/tasks/zeroshot_classification/eng/templates/__init__.py,sha256=da1PTClDMl-IBkrSvq6JC1lnS-K_BASzCvxVhNxN5Ls,13
2609
- mteb/types/__init__.py,sha256=7_q6_84RvMuHeZK51GbLc5gbpTb3C1WmnqDHm6bnCzw,1104
2610
- mteb/types/_encoder_io.py,sha256=Q7llxv3FfiExFKiQGHtATvbSk4_DwdJolLMPTnAPrrI,5536
2614
+ mteb/types/__init__.py,sha256=O26vXPolPReX7iVUBgUsyCkCo4w8KeLs7uueQDWp3fc,1142
2615
+ mteb/types/_encoder_io.py,sha256=6cnr2EbPPy70UV1Ts5C3PKQU6PncWrzgiAGaYVL1jb8,5847
2611
2616
  mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2612
2617
  mteb/types/_result.py,sha256=UKNokV9pu3G74MGebocU512aU_fFU9I9nPKnrG9Q0iE,1035
2613
2618
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2614
2619
  mteb/types/statistics.py,sha256=GwkBPmAr18Onu-vHtzHs0PFrhCozdOMiT13HwnWL4ZM,3961
2615
- mteb-2.6.7.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2616
- mteb-2.6.7.dist-info/METADATA,sha256=p99o5hSYjMeWfoMLwNljk7_mDzsRjVXBbwPzsobuyWA,14281
2617
- mteb-2.6.7.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2618
- mteb-2.6.7.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2619
- mteb-2.6.7.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2620
- mteb-2.6.7.dist-info/RECORD,,
2620
+ mteb-2.6.9.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2621
+ mteb-2.6.9.dist-info/METADATA,sha256=l-i7rdEestHq4eEfqtwTtdvHS7le1gDwi4EMzu0NW4g,14281
2622
+ mteb-2.6.9.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2623
+ mteb-2.6.9.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2624
+ mteb-2.6.9.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2625
+ mteb-2.6.9.dist-info/RECORD,,
File without changes