mteb 2.6.7__py3-none-any.whl → 2.6.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +7 -3
- mteb/_evaluators/any_sts_evaluator.py +6 -3
- mteb/_evaluators/clustering_evaluator.py +2 -2
- mteb/_evaluators/evaluator.py +2 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +8 -5
- mteb/_evaluators/pair_classification_evaluator.py +2 -2
- mteb/_evaluators/retrieval_evaluator.py +2 -2
- mteb/_evaluators/sklearn_evaluator.py +3 -3
- mteb/_evaluators/text/bitext_mining_evaluator.py +5 -3
- mteb/_evaluators/text/summarization_evaluator.py +3 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +5 -3
- mteb/abstasks/abstask.py +3 -2
- mteb/abstasks/aggregated_task.py +3 -3
- mteb/abstasks/classification.py +3 -3
- mteb/abstasks/clustering.py +2 -2
- mteb/abstasks/clustering_legacy.py +2 -2
- mteb/abstasks/image/image_text_pair_classification.py +2 -1
- mteb/abstasks/multilabel_classification.py +2 -2
- mteb/abstasks/pair_classification.py +2 -2
- mteb/abstasks/retrieval.py +15 -14
- mteb/abstasks/sts.py +2 -2
- mteb/abstasks/text/bitext_mining.py +3 -3
- mteb/abstasks/text/summarization.py +2 -2
- mteb/abstasks/zeroshot_classification.py +3 -2
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +24 -0
- mteb/cli/build_cli.py +2 -1
- mteb/deprecated_evaluator.py +3 -3
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/evaluate.py +5 -3
- mteb/models/abs_encoder.py +3 -1
- mteb/models/instruct_wrapper.py +1 -1
- mteb/models/model_implementations/bm25.py +3 -3
- mteb/models/model_implementations/mxbai_models.py +118 -1
- mteb/models/model_implementations/nvidia_models.py +19 -9
- mteb/models/model_implementations/octen_models.py +30 -0
- mteb/models/model_implementations/pylate_models.py +5 -4
- mteb/models/models_protocols.py +6 -4
- mteb/models/search_wrappers.py +7 -6
- mteb/models/sentence_transformer_wrapper.py +5 -4
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +12 -0
- {mteb-2.6.7.dist-info → mteb-2.6.9.dist-info}/METADATA +1 -1
- {mteb-2.6.7.dist-info → mteb-2.6.9.dist-info}/RECORD +53 -48
- {mteb-2.6.7.dist-info → mteb-2.6.9.dist-info}/WHEEL +0 -0
- {mteb-2.6.7.dist-info → mteb-2.6.9.dist-info}/entry_points.txt +0 -0
- {mteb-2.6.7.dist-info → mteb-2.6.9.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.6.7.dist-info → mteb-2.6.9.dist-info}/top_level.txt +0 -0
|
@@ -8,10 +8,11 @@ import numpy as np
|
|
|
8
8
|
import torch
|
|
9
9
|
from packaging.version import Version
|
|
10
10
|
from torch.utils.data import DataLoader
|
|
11
|
+
from typing_extensions import Unpack
|
|
11
12
|
|
|
12
13
|
from mteb._log_once import LogOnce
|
|
13
14
|
from mteb.models import ModelMeta
|
|
14
|
-
from mteb.types import Array, BatchedInput, PromptType
|
|
15
|
+
from mteb.types import Array, BatchedInput, EncodeKwargs, PromptType
|
|
15
16
|
|
|
16
17
|
from .abs_encoder import AbsEncoder
|
|
17
18
|
|
|
@@ -122,7 +123,7 @@ class SentenceTransformerEncoderWrapper(AbsEncoder):
|
|
|
122
123
|
hf_split: str,
|
|
123
124
|
hf_subset: str,
|
|
124
125
|
prompt_type: PromptType | None = None,
|
|
125
|
-
**kwargs:
|
|
126
|
+
**kwargs: Unpack[EncodeKwargs],
|
|
126
127
|
) -> Array:
|
|
127
128
|
"""Encodes the given sentences using the encoder.
|
|
128
129
|
|
|
@@ -201,7 +202,7 @@ class SentenceTransformerMultimodalEncoderWrapper(SentenceTransformerEncoderWrap
|
|
|
201
202
|
hf_split: str,
|
|
202
203
|
hf_subset: str,
|
|
203
204
|
prompt_type: PromptType | None = None,
|
|
204
|
-
**kwargs:
|
|
205
|
+
**kwargs: Unpack[EncodeKwargs],
|
|
205
206
|
) -> Array:
|
|
206
207
|
"""Encodes the given sentences using the encoder.
|
|
207
208
|
|
|
@@ -292,7 +293,7 @@ class CrossEncoderWrapper:
|
|
|
292
293
|
hf_split: str,
|
|
293
294
|
hf_subset: str,
|
|
294
295
|
prompt_type: PromptType | None = None,
|
|
295
|
-
**kwargs:
|
|
296
|
+
**kwargs: Unpack[EncodeKwargs],
|
|
296
297
|
) -> Array:
|
|
297
298
|
"""Predicts relevance scores for pairs of inputs. Note that, unlike the encoder, the cross-encoder can compare across inputs.
|
|
298
299
|
|
|
@@ -1,5 +1,19 @@
|
|
|
1
1
|
from .auto_rag_retrieval import AutoRAGRetrieval
|
|
2
2
|
from .ko_strategy_qa import KoStrategyQA
|
|
3
|
+
from .kovidore2_bench_retrieval import (
|
|
4
|
+
KoVidore2CybersecurityRetrieval,
|
|
5
|
+
KoVidore2EconomicRetrieval,
|
|
6
|
+
KoVidore2EnergyRetrieval,
|
|
7
|
+
KoVidore2HrRetrieval,
|
|
8
|
+
)
|
|
3
9
|
from .squad_kor_v1_retrieval import SQuADKorV1Retrieval
|
|
4
10
|
|
|
5
|
-
__all__ = [
|
|
11
|
+
__all__ = [
|
|
12
|
+
"AutoRAGRetrieval",
|
|
13
|
+
"KoStrategyQA",
|
|
14
|
+
"KoVidore2CybersecurityRetrieval",
|
|
15
|
+
"KoVidore2EconomicRetrieval",
|
|
16
|
+
"KoVidore2EnergyRetrieval",
|
|
17
|
+
"KoVidore2HrRetrieval",
|
|
18
|
+
"SQuADKorV1Retrieval",
|
|
19
|
+
]
|
|
@@ -0,0 +1,142 @@
|
|
|
1
|
+
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class KoVidore2CybersecurityRetrieval(AbsTaskRetrieval):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="KoVidore2CybersecurityRetrieval",
|
|
8
|
+
description="Retrieve associated pages according to questions. This dataset, Cybersecurity, is a corpus of technical reports on cyber threat trends and security incident responses in Korea, intended for complex-document understanding tasks.",
|
|
9
|
+
reference="https://github.com/whybe-choi/kovidore-data-generator",
|
|
10
|
+
dataset={
|
|
11
|
+
"path": "whybe-choi/kovidore-v2-cybersecurity-mteb",
|
|
12
|
+
"revision": "577d7c45f79d8eb4e7584db3990f91daa7e47956",
|
|
13
|
+
},
|
|
14
|
+
type="DocumentUnderstanding",
|
|
15
|
+
category="t2i",
|
|
16
|
+
eval_splits=["test"],
|
|
17
|
+
eval_langs=["kor-Hang"],
|
|
18
|
+
main_score="ndcg_at_10",
|
|
19
|
+
date=("2025-12-21", "2026-01-06"),
|
|
20
|
+
domains=["Social"],
|
|
21
|
+
task_subtypes=["Image Text Retrieval"],
|
|
22
|
+
license="cc-by-4.0",
|
|
23
|
+
annotations_creators="derived",
|
|
24
|
+
dialect=[],
|
|
25
|
+
modalities=["text", "image"],
|
|
26
|
+
sample_creation="created",
|
|
27
|
+
bibtex_citation="""
|
|
28
|
+
@misc{choi2026kovidorev2,
|
|
29
|
+
author = {Yongbin Choi},
|
|
30
|
+
note = {A benchmark for evaluating Korean vision document retrieval with multi-page reasoning queries in practical domains},
|
|
31
|
+
title = {KoViDoRe v2: a comprehensive evaluation of vision document retrieval for enterprise use-cases},
|
|
32
|
+
url = {https://github.com/whybe-choi/kovidore-data-generator},
|
|
33
|
+
year = {2026},
|
|
34
|
+
}
|
|
35
|
+
""",
|
|
36
|
+
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
class KoVidore2EconomicRetrieval(AbsTaskRetrieval):
|
|
41
|
+
metadata = TaskMetadata(
|
|
42
|
+
name="KoVidore2EconomicRetrieval",
|
|
43
|
+
description="Retrieve associated pages according to questions. This dataset, Economic trends, is a corpus of periodic reports on major economic indicators in Korea, intended for complex-document understanding tasks.",
|
|
44
|
+
reference="https://github.com/whybe-choi/kovidore-data-generator",
|
|
45
|
+
dataset={
|
|
46
|
+
"path": "whybe-choi/kovidore-v2-economic-mteb",
|
|
47
|
+
"revision": "0189c26211290a902cd9d41a0db932808a54c0a8",
|
|
48
|
+
},
|
|
49
|
+
type="DocumentUnderstanding",
|
|
50
|
+
category="t2i",
|
|
51
|
+
eval_splits=["test"],
|
|
52
|
+
eval_langs=["kor-Hang"],
|
|
53
|
+
main_score="ndcg_at_10",
|
|
54
|
+
date=("2025-12-21", "2026-01-06"),
|
|
55
|
+
domains=["Social"],
|
|
56
|
+
task_subtypes=["Image Text Retrieval"],
|
|
57
|
+
license="cc-by-4.0",
|
|
58
|
+
annotations_creators="derived",
|
|
59
|
+
dialect=[],
|
|
60
|
+
modalities=["text", "image"],
|
|
61
|
+
sample_creation="created",
|
|
62
|
+
bibtex_citation="""
|
|
63
|
+
@misc{choi2026kovidorev2,
|
|
64
|
+
author = {Yongbin Choi},
|
|
65
|
+
note = {A benchmark for evaluating Korean vision document retrieval with multi-page reasoning queries in practical domains},
|
|
66
|
+
title = {KoViDoRe v2: a comprehensive evaluation of vision document retrieval for enterprise use-cases},
|
|
67
|
+
url = {https://github.com/whybe-choi/kovidore-data-generator},
|
|
68
|
+
year = {2026},
|
|
69
|
+
}
|
|
70
|
+
""",
|
|
71
|
+
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
class KoVidore2EnergyRetrieval(AbsTaskRetrieval):
|
|
76
|
+
metadata = TaskMetadata(
|
|
77
|
+
name="KoVidore2EnergyRetrieval",
|
|
78
|
+
description="Retrieve associated pages according to questions. This dataset, Energy, is a corpus of reports on energy market trends, policy planning, and industry statistics, intended for complex-document understanding tasks.",
|
|
79
|
+
reference="https://github.com/whybe-choi/kovidore-data-generator",
|
|
80
|
+
dataset={
|
|
81
|
+
"path": "whybe-choi/kovidore-v2-energy-mteb",
|
|
82
|
+
"revision": "8c09a3d22b1fa3a7f5e815e9521da9b048754211",
|
|
83
|
+
},
|
|
84
|
+
type="DocumentUnderstanding",
|
|
85
|
+
category="t2i",
|
|
86
|
+
eval_splits=["test"],
|
|
87
|
+
eval_langs=["kor-Hang"],
|
|
88
|
+
main_score="ndcg_at_10",
|
|
89
|
+
date=("2025-12-21", "2026-01-06"),
|
|
90
|
+
domains=["Social"],
|
|
91
|
+
task_subtypes=["Image Text Retrieval"],
|
|
92
|
+
license="cc-by-4.0",
|
|
93
|
+
annotations_creators="derived",
|
|
94
|
+
dialect=[],
|
|
95
|
+
modalities=["text", "image"],
|
|
96
|
+
sample_creation="created",
|
|
97
|
+
bibtex_citation="""
|
|
98
|
+
@misc{choi2026kovidorev2,
|
|
99
|
+
author = {Yongbin Choi},
|
|
100
|
+
note = {A benchmark for evaluating Korean vision document retrieval with multi-page reasoning queries in practical domains},
|
|
101
|
+
title = {KoViDoRe v2: a comprehensive evaluation of vision document retrieval for enterprise use-cases},
|
|
102
|
+
url = {https://github.com/whybe-choi/kovidore-data-generator},
|
|
103
|
+
year = {2026},
|
|
104
|
+
}
|
|
105
|
+
""",
|
|
106
|
+
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
class KoVidore2HrRetrieval(AbsTaskRetrieval):
|
|
111
|
+
metadata = TaskMetadata(
|
|
112
|
+
name="KoVidore2HrRetrieval",
|
|
113
|
+
description="Retrieve associated pages according to questions. This dataset, HR, is a corpus of reports on workforce outlook and employment policy in korea, intended for complex-document understanding tasks.",
|
|
114
|
+
reference="https://github.com/whybe-choi/kovidore-data-generator",
|
|
115
|
+
dataset={
|
|
116
|
+
"path": "whybe-choi/kovidore-v2-hr-mteb",
|
|
117
|
+
"revision": "d9432c782a9a3e2eed064f6fac08b4c967d92b99",
|
|
118
|
+
},
|
|
119
|
+
type="DocumentUnderstanding",
|
|
120
|
+
category="t2i",
|
|
121
|
+
eval_splits=["test"],
|
|
122
|
+
eval_langs=["kor-Hang"],
|
|
123
|
+
main_score="ndcg_at_10",
|
|
124
|
+
date=("2025-12-21", "2026-01-06"),
|
|
125
|
+
domains=["Social"],
|
|
126
|
+
task_subtypes=["Image Text Retrieval"],
|
|
127
|
+
license="cc-by-4.0",
|
|
128
|
+
annotations_creators="derived",
|
|
129
|
+
dialect=[],
|
|
130
|
+
modalities=["text", "image"],
|
|
131
|
+
sample_creation="created",
|
|
132
|
+
bibtex_citation="""
|
|
133
|
+
@misc{choi2026kovidorev2,
|
|
134
|
+
author = {Yongbin Choi},
|
|
135
|
+
note = {A benchmark for evaluating Korean vision document retrieval with multi-page reasoning queries in practical domains},
|
|
136
|
+
title = {KoViDoRe v2: a comprehensive evaluation of vision document retrieval for enterprise use-cases},
|
|
137
|
+
url = {https://github.com/whybe-choi/kovidore-data-generator},
|
|
138
|
+
year = {2026},
|
|
139
|
+
}
|
|
140
|
+
""",
|
|
141
|
+
prompt={"query": "Find a screenshot that is relevant to the user's question."},
|
|
142
|
+
)
|
mteb/types/__init__.py
CHANGED
|
@@ -4,6 +4,7 @@ from ._encoder_io import (
|
|
|
4
4
|
Conversation,
|
|
5
5
|
ConversationTurn,
|
|
6
6
|
CorpusDatasetType,
|
|
7
|
+
EncodeKwargs,
|
|
7
8
|
InstructionDatasetType,
|
|
8
9
|
PromptType,
|
|
9
10
|
QueryDatasetType,
|
|
@@ -30,6 +31,7 @@ __all__ = [
|
|
|
30
31
|
"Conversation",
|
|
31
32
|
"ConversationTurn",
|
|
32
33
|
"CorpusDatasetType",
|
|
34
|
+
"EncodeKwargs",
|
|
33
35
|
"HFSubset",
|
|
34
36
|
"ISOLanguage",
|
|
35
37
|
"ISOLanguageScript",
|
mteb/types/_encoder_io.py
CHANGED
|
@@ -13,6 +13,18 @@ if TYPE_CHECKING:
|
|
|
13
13
|
from PIL import Image
|
|
14
14
|
|
|
15
15
|
|
|
16
|
+
class EncodeKwargs(TypedDict):
|
|
17
|
+
"""Keyword arguments for encoding methods.
|
|
18
|
+
|
|
19
|
+
Attributes:
|
|
20
|
+
batch_size: The batch size to use for encoding.
|
|
21
|
+
show_progress_bar: Whether to show a progress bar during encoding.
|
|
22
|
+
"""
|
|
23
|
+
|
|
24
|
+
batch_size: NotRequired[int]
|
|
25
|
+
show_progress_bar: NotRequired[bool]
|
|
26
|
+
|
|
27
|
+
|
|
16
28
|
# --- Output types ---
|
|
17
29
|
Array = np.ndarray | torch.Tensor
|
|
18
30
|
"""General array type, can be a numpy array or a torch tensor."""
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.6.
|
|
3
|
+
Version: 2.6.9
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -1,13 +1,13 @@
|
|
|
1
1
|
mteb/__init__.py,sha256=h2kru--zMEC0mmLQ688kggdDpBH7dxYz1HhLVHbRjcI,1376
|
|
2
2
|
mteb/__main__.py,sha256=KKWed4HW-OpfpJhCuKDNDPuAAIoppQY1g2gRuCdAmlw,34
|
|
3
|
-
mteb/_create_dataloaders.py,sha256=
|
|
3
|
+
mteb/_create_dataloaders.py,sha256=WgQmfAgz1fuPvCvk20Oo1HSt2g-KCGITqi8yF_5MGGg,14324
|
|
4
4
|
mteb/_helpful_enum.py,sha256=jh73N1jlcpg7RGz4bj8UpctiMNvqvHpp9wrB7SYEzIU,510
|
|
5
5
|
mteb/_log_once.py,sha256=-tUKzxGQzf2LZSuQXi97oYFXMta1B6GEYXd7BPqssvY,1095
|
|
6
6
|
mteb/_requires_package.py,sha256=eHg_TD9BVZRzNCcQQrUP17d8M1DF_vOd_tVx54AmAnM,3017
|
|
7
7
|
mteb/_set_seed.py,sha256=HPlPRl__Pe6IG-4UgJqTfplcivJ_wA2kaClbXoHQedM,1178
|
|
8
8
|
mteb/cache.py,sha256=dTx_oumF3JEIMorq-YQDqjTjKH4oIDQQq0MdnFf76Js,27603
|
|
9
|
-
mteb/deprecated_evaluator.py,sha256=
|
|
10
|
-
mteb/evaluate.py,sha256=
|
|
9
|
+
mteb/deprecated_evaluator.py,sha256=ASPodCDsqofAPUEGBikZA1ZCIDiSnxyL4xuic63OkYQ,27661
|
|
10
|
+
mteb/evaluate.py,sha256=RFHQ3NEI0qPD3EmMYrxH9RtDTjPJ3R4ZLX4ZmT14IO4,19247
|
|
11
11
|
mteb/filter_tasks.py,sha256=D9g2o79aQiA5va7u_QKtMlZNDUmYwZGqCDpaKhBimWQ,7335
|
|
12
12
|
mteb/get_tasks.py,sha256=UoxxsGVgeCm_qonCihl7EOFqWN_9BOCW2IP7GMN7ICw,14319
|
|
13
13
|
mteb/load_results.py,sha256=9SovAzy7TQn-hibClDfH5B-YDMVdi4tZmDgGYfiL2Hc,6431
|
|
@@ -15,57 +15,57 @@ mteb/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
|
15
15
|
mteb/similarity_functions.py,sha256=7mv2dFpMiWNDnGCjCsRQOT77RTtsIsoKUma_FsXG5z0,10790
|
|
16
16
|
mteb/_evaluators/__init__.py,sha256=Ag1_RWpxBGMpujzd3FZjI40gY_KQKIpY31tJPuk-hFg,1013
|
|
17
17
|
mteb/_evaluators/_download.py,sha256=jntlcURbJxcxUjTmn2D9Tu6ZnWgDc9t5bY8p9CZCqv4,586
|
|
18
|
-
mteb/_evaluators/any_sts_evaluator.py,sha256=
|
|
18
|
+
mteb/_evaluators/any_sts_evaluator.py,sha256=Xdl78CJo7yfeXjGhUBrrilzq_Uz3yzaakAugVlaqV5E,3769
|
|
19
19
|
mteb/_evaluators/classification_metrics.py,sha256=TI-cMPWrIpMqpsNhhwSBY4bZUu2yM469fbcu44zolW0,1926
|
|
20
|
-
mteb/_evaluators/clustering_evaluator.py,sha256=
|
|
21
|
-
mteb/_evaluators/evaluator.py,sha256=
|
|
22
|
-
mteb/_evaluators/pair_classification_evaluator.py,sha256=
|
|
23
|
-
mteb/_evaluators/retrieval_evaluator.py,sha256=
|
|
20
|
+
mteb/_evaluators/clustering_evaluator.py,sha256=YfjwpZL03Tiu0jfd6HBSavrOs_WALwIpoPC25JGkVvE,2063
|
|
21
|
+
mteb/_evaluators/evaluator.py,sha256=CZIFM84KJcbygBqHrd6Reg0FA1ZT5dfVjFTuBYgGyMw,906
|
|
22
|
+
mteb/_evaluators/pair_classification_evaluator.py,sha256=kgxvnzsZPFF7c6GNRWtyAP3AJ3v_heRQUYwmYvNATzI,6440
|
|
23
|
+
mteb/_evaluators/retrieval_evaluator.py,sha256=UVrGtjOQdbDD2ZeH1oVm9ouIlU7Uup2a09ylzm0-QaM,3024
|
|
24
24
|
mteb/_evaluators/retrieval_metrics.py,sha256=jd5BEinfGPdHPK3kXf6kfBs0gvDuBXEWyx-RS7G4c8g,23756
|
|
25
|
-
mteb/_evaluators/sklearn_evaluator.py,sha256=
|
|
26
|
-
mteb/_evaluators/zeroshot_classification_evaluator.py,sha256=
|
|
25
|
+
mteb/_evaluators/sklearn_evaluator.py,sha256=lipgxkGXWeKGD2jhaNL9WQqLBS1_2L_WZpUobZR7iBI,3838
|
|
26
|
+
mteb/_evaluators/zeroshot_classification_evaluator.py,sha256=Y5ZFUsBAWXMpKnZ6Iw1K0lm0_L4chLMxC4LAdZCBbPs,2296
|
|
27
27
|
mteb/_evaluators/image/__init__.py,sha256=CsQd7OMkeV2Phun7paPWjayZ5qRnvj8H0TYBFeqMxag,148
|
|
28
|
-
mteb/_evaluators/image/imagetext_pairclassification_evaluator.py,sha256=
|
|
28
|
+
mteb/_evaluators/image/imagetext_pairclassification_evaluator.py,sha256=6_xhsLSq8ZxGkE9Z_rBXR_FvrKcZ_DEvAaJsQVlLAGo,4962
|
|
29
29
|
mteb/_evaluators/text/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
30
|
-
mteb/_evaluators/text/bitext_mining_evaluator.py,sha256=
|
|
31
|
-
mteb/_evaluators/text/summarization_evaluator.py,sha256=
|
|
30
|
+
mteb/_evaluators/text/bitext_mining_evaluator.py,sha256=RhWD_Q-xrKfTPoSzAVlhv31ays-jogYqO7ZtKUCiEgo,6570
|
|
31
|
+
mteb/_evaluators/text/summarization_evaluator.py,sha256=USjeo4Z1yhsSNkFq2c-I9okJSAHYyDDkqF-vRyBb828,10756
|
|
32
32
|
mteb/abstasks/__init__.py,sha256=1iAwpYTWX7U-goak2KMmacPFCzxPchLQAmZ_uI0t-p0,1130
|
|
33
33
|
mteb/abstasks/_statistics_calculation.py,sha256=FI2kAK1fLf1HreoBNYZ1YKKjD26xI0UUhfmoC7x6Qss,5974
|
|
34
34
|
mteb/abstasks/_stratification.py,sha256=GnqYRtkFYsB-412EvMR2iMqIinFr98NCSmxHeCXctlw,14347
|
|
35
|
-
mteb/abstasks/abstask.py,sha256=
|
|
35
|
+
mteb/abstasks/abstask.py,sha256=NMm-BSKcDEwveE5qW4D8wRH0b7MsI_tgbhix21dIM6c,25579
|
|
36
36
|
mteb/abstasks/aggregate_task_metadata.py,sha256=nDkXU-_mxPdf_YK8d4P-fPGAzX3jBfwA19P7ZOgn0Fc,5646
|
|
37
|
-
mteb/abstasks/aggregated_task.py,sha256
|
|
38
|
-
mteb/abstasks/classification.py,sha256=
|
|
39
|
-
mteb/abstasks/clustering.py,sha256=
|
|
40
|
-
mteb/abstasks/clustering_legacy.py,sha256=
|
|
37
|
+
mteb/abstasks/aggregated_task.py,sha256=-L0ke7A_jmOZYQRW1NmOaAVTUll2bGWRTjmCiH__1S0,6066
|
|
38
|
+
mteb/abstasks/classification.py,sha256=0pumzQSqCySo8EjNlUCu6xQgqfLFU7wugmH-0VCXX-4,13580
|
|
39
|
+
mteb/abstasks/clustering.py,sha256=xuad_3QHuqpxfZo250NBVAvxKC-jLBec37REcerG-BQ,14624
|
|
40
|
+
mteb/abstasks/clustering_legacy.py,sha256=XGGq-5kBMWOEpWt6LBLkeUNqHTSDw3GRRipfHW9ve8M,8865
|
|
41
41
|
mteb/abstasks/dataset_card_template.md,sha256=aD6l8qc3_jxwoIGJNYLzse-jpRa8hu92AxpnUtNgges,5122
|
|
42
|
-
mteb/abstasks/multilabel_classification.py,sha256=
|
|
43
|
-
mteb/abstasks/pair_classification.py,sha256
|
|
42
|
+
mteb/abstasks/multilabel_classification.py,sha256=D_bdK3yyZFgaH1pg9PpO5LHQMVaJP3IkzvXCmYgmPjI,9540
|
|
43
|
+
mteb/abstasks/pair_classification.py,sha256=-T8q7JQRjHZ3ihLqnuR2yuuci9xljvUqCldsHGnGLGc,13767
|
|
44
44
|
mteb/abstasks/regression.py,sha256=sROjvfasLS89KRPUTsc1ONFsBTzfoqlpxLQfIkKBQXs,8763
|
|
45
|
-
mteb/abstasks/retrieval.py,sha256=
|
|
45
|
+
mteb/abstasks/retrieval.py,sha256=keuf7GeYyM0ODPlVFGZIFBmBoSil0c1glmcu6C0YzhA,26921
|
|
46
46
|
mteb/abstasks/retrieval_dataset_loaders.py,sha256=WukcFAn54rUpXULCG43eysHozXHAxo2CaPhQyL_2Yg8,9401
|
|
47
|
-
mteb/abstasks/sts.py,sha256=
|
|
47
|
+
mteb/abstasks/sts.py,sha256=b_19QvclU0_q0aEJdfvB3weUQ96bUS7uDuuRrjpz8Bc,9245
|
|
48
48
|
mteb/abstasks/task_metadata.py,sha256=7TM_ls5bzYA1dHFq3VQgeioiyLrvMQz4i3hmWIsnD4M,27029
|
|
49
|
-
mteb/abstasks/zeroshot_classification.py,sha256=
|
|
49
|
+
mteb/abstasks/zeroshot_classification.py,sha256=O8jxoBgnrRx-BzOnr1aJVK3wIEBwkA4xuMxdVxlzJqI,6053
|
|
50
50
|
mteb/abstasks/_data_filter/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
51
51
|
mteb/abstasks/_data_filter/filters.py,sha256=znU7pjA7GYbChxUVyPGgCIdp7OvFeawBvksXki5LMcg,4611
|
|
52
52
|
mteb/abstasks/_data_filter/task_pipelines.py,sha256=HUB2fXX5IsLJ9MchLoh3cEjiywkPEY1wFgKBlv1wz58,3158
|
|
53
53
|
mteb/abstasks/image/__init__.py,sha256=NgvMJnp1g2mUv27RL-TvzA7s1BOdMG-EB1CrZfdbWdg,136
|
|
54
|
-
mteb/abstasks/image/image_text_pair_classification.py,sha256=
|
|
54
|
+
mteb/abstasks/image/image_text_pair_classification.py,sha256=4RfPdAlb4ZlAE-9DiFQUvm7YpcQg9kTY7HRjRVenLmk,7935
|
|
55
55
|
mteb/abstasks/text/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
56
|
-
mteb/abstasks/text/bitext_mining.py,sha256=
|
|
56
|
+
mteb/abstasks/text/bitext_mining.py,sha256=0Ff7t1jMEonajHzB5CzZZoSMVkC5KTa0muoytcNzOjM,11152
|
|
57
57
|
mteb/abstasks/text/reranking.py,sha256=QMgAAndGYRzvQdlhjLRMxrh_yrJZ0VQH40I-7mXo1O0,7872
|
|
58
|
-
mteb/abstasks/text/summarization.py,sha256=
|
|
58
|
+
mteb/abstasks/text/summarization.py,sha256=qCUWfxaVAW0EYTFClUh9puBMGttyV6C7qKpCcHPAZN8,7148
|
|
59
59
|
mteb/benchmarks/__init__.py,sha256=MQEVeli-zLaJ7Xg0z7RhXQwsdmm7Ht_W2Ln0rZo1Szc,225
|
|
60
60
|
mteb/benchmarks/_create_table.py,sha256=b2RqGqi0ZonKbHecEcZiF4pkfE96smFRIzxOI82ETA8,22304
|
|
61
61
|
mteb/benchmarks/benchmark.py,sha256=RheQOo0iQbu_ylN7oFLr2r-z_ahrMCTvKscVuwUx6yo,5694
|
|
62
62
|
mteb/benchmarks/get_benchmark.py,sha256=nzR6cu5yXu1kIJKhd4A2R62xp43Z62bluPbOpNXHMWQ,2545
|
|
63
|
-
mteb/benchmarks/benchmarks/__init__.py,sha256=
|
|
64
|
-
mteb/benchmarks/benchmarks/benchmarks.py,sha256=
|
|
63
|
+
mteb/benchmarks/benchmarks/__init__.py,sha256=NeFt0CGdY25-UWJ2aGCjDnpzr5-geih_1jjp1GQXJz4,2256
|
|
64
|
+
mteb/benchmarks/benchmarks/benchmarks.py,sha256=w62HyautMAuRrwxUHjGpDqxTrXkb2zTD5cqXJV29Fyo,99644
|
|
65
65
|
mteb/benchmarks/benchmarks/rteb_benchmarks.py,sha256=QnCSrTTaBfcRlAQp2Nu81tgv1idMXqiM16Fp2zKJ5Ys,10607
|
|
66
66
|
mteb/cli/__init__.py,sha256=v-csUr3eUZElIvrGB6QGtaIdndDfNWEe9oZchsGsJpg,64
|
|
67
67
|
mteb/cli/_display_tasks.py,sha256=pWKupzak8uxEIwJZbYpZpteeVprOgVT9Wr0HYeypitQ,2206
|
|
68
|
-
mteb/cli/build_cli.py,sha256=
|
|
68
|
+
mteb/cli/build_cli.py,sha256=LkpAPwirASdfDzDdAbyRIAJ87tUAWZk7i75E8hN5iVA,15389
|
|
69
69
|
mteb/cli/generate_model_card.py,sha256=wX1ApQHCbox9z8QIiHSomcbTiCIHmsoUTnsxmAv7e-g,4945
|
|
70
70
|
mteb/descriptive_stats/BitextMining/BUCC.json,sha256=7zXoJaZacNdqMSG60jPZGIDJ1is_bxbVlcrVyImPRxw,3745
|
|
71
71
|
mteb/descriptive_stats/BitextMining/BUCC.v2.json,sha256=IRPOKaIaUD31okNe12nQV2E1JeYK_Fo25Tz7d-utATM,3716
|
|
@@ -783,6 +783,10 @@ mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRTatQARetrieval.json,sh
|
|
|
783
783
|
mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRTweetStockSyntheticsRetrieval.json,sha256=13JnQILz--KA2j9xooDkf2hp_4bdAttKcM_co6m0VMo,14073
|
|
784
784
|
mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRWikimediaCommonsDocumentsRetrieval.json,sha256=caHYDGWGBmlOdL3HHT0djzOgj1hwfGfNMpgNptRRdVs,27289
|
|
785
785
|
mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRWikimediaCommonsMapsRetrieval.json,sha256=HIoVgPD7wSHz7Ro-HKXh_YpAJFCJb6WzUsziBP2a1fI,1089
|
|
786
|
+
mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json,sha256=stPxkKTyZNw3mVVnuZRrWLfSsxYYEnd8Ym2NvBppdXw,1088
|
|
787
|
+
mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json,sha256=bUkZyMf7f00Wz0KCwcezjp_KJcq5hEbop50dWcMa6T4,1088
|
|
788
|
+
mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json,sha256=iMt--FqlwQrj3skZ6MnPW9GHh5yH8wcuA5hfr7e4D3w,1088
|
|
789
|
+
mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json,sha256=nJJkkRNCo26iVXk0ZQCbHR5iii8zeyTrpthnzQ_MIRU,1091
|
|
786
790
|
mteb/descriptive_stats/Image/DocumentUnderstanding/MIRACLVisionRetrieval.json,sha256=LY6SQHcLESsRrRmfzt9h2sGHfxAdnQD1fhMG0KCQmaU,24510
|
|
787
791
|
mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore2BioMedicalLecturesRetrieval.json,sha256=L4xuWlJVfd8WDIRtj8gJoOWbBnbm3BigWrQC2nOojpc,6365
|
|
788
792
|
mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore2ESGReportsHLRetrieval.json,sha256=DWI0Au4nsfUCSNWkAhK_ffGfmcRdgIHc_JYekjFlXKg,1091
|
|
@@ -1452,13 +1456,13 @@ mteb/leaderboard/figures.py,sha256=cfOK82rRf-7sCjyP7GBxh4ezhOIt0OhD0_86mKtzLrg,7
|
|
|
1452
1456
|
mteb/leaderboard/table.py,sha256=KqU8aAbZ_tDp1O_qXRGWR32QnB7v_lsF6k5jxLcQVN0,10366
|
|
1453
1457
|
mteb/leaderboard/text_segments.py,sha256=iMIkS04QQjPbT-SkU0x6fOcS8xRbUYevryu9HydipKM,6570
|
|
1454
1458
|
mteb/models/__init__.py,sha256=ABTuoqiBjBtBWW3LYY7ItBHdylR6jWoy06HH0g6j6fU,910
|
|
1455
|
-
mteb/models/abs_encoder.py,sha256=
|
|
1459
|
+
mteb/models/abs_encoder.py,sha256=6e9UAk7ckYsJ6hItIPMfSaPdlX_FxfJ-OdJ87oqT2OM,16625
|
|
1456
1460
|
mteb/models/get_model_meta.py,sha256=wVh2FaWevJ10hJlbm-FQtTQazLMfnkEV3IK7PUyBPOQ,6082
|
|
1457
|
-
mteb/models/instruct_wrapper.py,sha256=
|
|
1461
|
+
mteb/models/instruct_wrapper.py,sha256=GLHg9KcgYu2rF15LEMKesRpPudGfKE2y-aLXVG_CLj0,9670
|
|
1458
1462
|
mteb/models/model_meta.py,sha256=x8EuA8Zpc4DqhK_50v5TAZ7n2J2yhHqf5U0ldCpPnw0,31101
|
|
1459
|
-
mteb/models/models_protocols.py,sha256=
|
|
1460
|
-
mteb/models/search_wrappers.py,sha256=
|
|
1461
|
-
mteb/models/sentence_transformer_wrapper.py,sha256=
|
|
1463
|
+
mteb/models/models_protocols.py,sha256=5WYOZw3-T-wK7ux0YZVCfbcMTkAisqAqbu44ZNoir4A,9250
|
|
1464
|
+
mteb/models/search_wrappers.py,sha256=9lXLXUyL6atMCwXp-HBUong6msT3UAUY9QI7zKXbSVU,20945
|
|
1465
|
+
mteb/models/sentence_transformer_wrapper.py,sha256=3sAev15a07ULA_ikFBBsMta0toy9AGPBbBPi37j_K-A,12932
|
|
1462
1466
|
mteb/models/cache_wrappers/__init__.py,sha256=1w1TnMwulWJSzNkLXjbh5MY3sqgHWc6vUntYn49i9X8,169
|
|
1463
1467
|
mteb/models/cache_wrappers/cache_backend_protocol.py,sha256=iGWdqDEoaCxUVEnwsXhy-m9d2QX8KTaQ9m2ZyawrMes,1634
|
|
1464
1468
|
mteb/models/cache_wrappers/cache_wrapper.py,sha256=GPC0UhHfkUH-i-Q4HdFvBev6h6GtMlWEId_B3tL-J54,6600
|
|
@@ -1478,7 +1482,7 @@ mteb/models/model_implementations/bge_models.py,sha256=YMatt2zsOx3EVA7DQp6m6NgnT
|
|
|
1478
1482
|
mteb/models/model_implementations/bica_model.py,sha256=vfScW0FBqWG00C7-lb9krWzWnAS7pTzDvBsqMPjeJAM,1266
|
|
1479
1483
|
mteb/models/model_implementations/blip2_models.py,sha256=mNnWANEeQoPfgx1I3lDP4jzb3KgejohUMOQz9_KYKWM,7749
|
|
1480
1484
|
mteb/models/model_implementations/blip_models.py,sha256=Tfsk0mEo7brFQ9paDTtGri8axZUHzNqAUK7WHEqOfWM,11754
|
|
1481
|
-
mteb/models/model_implementations/bm25.py,sha256=
|
|
1485
|
+
mteb/models/model_implementations/bm25.py,sha256=QBzWCyo_X4rVxL2ua-L1WTPpDMf9OVQcD9zwMkQkOrI,4837
|
|
1482
1486
|
mteb/models/model_implementations/bmretriever_models.py,sha256=UMvSNK7ZgC0SfHp9nGjvdBSwDB2M-ZqpGlSIaieSl3Y,6845
|
|
1483
1487
|
mteb/models/model_implementations/cadet_models.py,sha256=CtY4ioYb7W8LcIYRCO5dh6-Nr1QDp6UYvTUR6FGwTik,2266
|
|
1484
1488
|
mteb/models/model_implementations/cde_models.py,sha256=rPyvpd1rEK0F_wwHoJ1GGXWEKZmoNJyR7Km7AOUT5BM,9271
|
|
@@ -1535,14 +1539,14 @@ mteb/models/model_implementations/moco_models.py,sha256=DOFXJINU3LV0gk83PRE5bXxv
|
|
|
1535
1539
|
mteb/models/model_implementations/mod_models.py,sha256=6Cs08pqKrvSPYGNCil-T2Q151AmOCCBKMF54KkzdxJY,6350
|
|
1536
1540
|
mteb/models/model_implementations/model2vec_models.py,sha256=7O6y-8fPtaHOoOfPn2-ZqmxSNHAG3r8-DIeK7sthzBg,14568
|
|
1537
1541
|
mteb/models/model_implementations/moka_models.py,sha256=M3nhjDoisunpYojtU-dEZYaLjBkndOGhWByz17_x5_w,5088
|
|
1538
|
-
mteb/models/model_implementations/mxbai_models.py,sha256=
|
|
1542
|
+
mteb/models/model_implementations/mxbai_models.py,sha256=1IqBwht4asnNveuA1B8nLcSyLFqphlbY2oloGAgpp78,7550
|
|
1539
1543
|
mteb/models/model_implementations/nbailab.py,sha256=LM00HJIr4yrA45qh2O21BIDXku9KcoTz-mttczEx_qM,2567
|
|
1540
1544
|
mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=qLiMok_OxKvIYXWnP0KNWqH1monZx-OdSZrSx3QEhtI,4049
|
|
1541
1545
|
mteb/models/model_implementations/nomic_models.py,sha256=dmQC_cWg6hAmiBHK7fXoXEiGBJnJvrq0RsnCcJ2qe1Q,15137
|
|
1542
1546
|
mteb/models/model_implementations/nomic_models_vision.py,sha256=usCKfZCR7aEi_DnNmVAYjH-lXx_ipQkBVtUAmhJ90QI,6870
|
|
1543
1547
|
mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=6dTGtK1GiaYdpJ4IQFgCCOkGyHQyuEUatKs-Uv-1YmE,6450
|
|
1544
|
-
mteb/models/model_implementations/nvidia_models.py,sha256=
|
|
1545
|
-
mteb/models/model_implementations/octen_models.py,sha256=
|
|
1548
|
+
mteb/models/model_implementations/nvidia_models.py,sha256=XnNiyByz6EFrISz1Msb-cXLVQfKnYP5HMRzAXC1KPDo,24937
|
|
1549
|
+
mteb/models/model_implementations/octen_models.py,sha256=FFR1-yG2euN-6kgL4qJNHYB6cPsds4NGYFPmc5tHhoE,8514
|
|
1546
1550
|
mteb/models/model_implementations/openai_models.py,sha256=905BajYi_XyOZgqU3AeKpwIttLoUitaAyc48sTWI6Jg,9482
|
|
1547
1551
|
mteb/models/model_implementations/openclip_models.py,sha256=MyosgeYSrgBXGuGFtI2Tyxksxpb7bADFJVSYFCLweVA,11622
|
|
1548
1552
|
mteb/models/model_implementations/opensearch_neural_sparse_models.py,sha256=TnIHut_IHvplvovlcTZ-PWnEldTzcru5JdUIaTH-8Do,8636
|
|
@@ -1551,7 +1555,7 @@ mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py,
|
|
|
1551
1555
|
mteb/models/model_implementations/pawan_models.py,sha256=Fwpxqool7lHOMsim0XllWjRrQwxZP2ZU3Y9OtQ0AMvA,1192
|
|
1552
1556
|
mteb/models/model_implementations/piccolo_models.py,sha256=rIdT5pLInGyjLXpLcECLPWFJ1N-XfzCte0k3Em5Vy-M,2181
|
|
1553
1557
|
mteb/models/model_implementations/promptriever_models.py,sha256=Ck_oEuvohgPOhSbyfDGlweKXtKZasWYUwukBMBr1YMc,6492
|
|
1554
|
-
mteb/models/model_implementations/pylate_models.py,sha256=
|
|
1558
|
+
mteb/models/model_implementations/pylate_models.py,sha256=4Z48zUGtOZRnqmA0XzO8YrVPO8GcaVBpXSln8VIw21g,16960
|
|
1555
1559
|
mteb/models/model_implementations/qodo_models.py,sha256=bb2iUDdLp1sOZdYojZuzAzV4CQK68Ad1Y-VJul78uho,2151
|
|
1556
1560
|
mteb/models/model_implementations/qtack_models.py,sha256=GJGZ0zmJw1KT39kIyrQUlEGMkY-lUa36CY_qTN6mPJU,1265
|
|
1557
1561
|
mteb/models/model_implementations/qwen3_models.py,sha256=7uRzl8Uopi_zAAeJ0G1DUxNH4bl1h5gzMqks6ltbkHE,5303
|
|
@@ -2383,9 +2387,10 @@ mteb/tasks/retrieval/jpn/nlp_journal_title_abs_retrieval.py,sha256=JOOW_5pRKHzVn
|
|
|
2383
2387
|
mteb/tasks/retrieval/jpn/nlp_journal_title_intro_retrieval.py,sha256=aVFTFiANWrIz68FjHv9KBqlhpWlsmi9EAP052gECzaU,3078
|
|
2384
2388
|
mteb/tasks/retrieval/kat/__init__.py,sha256=H4phkKqg_yZzkK7T62aCMBzjbGZzLKJ-MngrQlPbW3A,93
|
|
2385
2389
|
mteb/tasks/retrieval/kat/georgian_faq_retrieval.py,sha256=4zyodSYCtHtBW9WKIGxFZaTXDrtHuaf3uyfIsDRGBqM,2494
|
|
2386
|
-
mteb/tasks/retrieval/kor/__init__.py,sha256=
|
|
2390
|
+
mteb/tasks/retrieval/kor/__init__.py,sha256=KHCU9neGBhnAkNj7-gJ5aBTJQkp9E0AcfRBU8CuG3hY,533
|
|
2387
2391
|
mteb/tasks/retrieval/kor/auto_rag_retrieval.py,sha256=tgffW8zMpDSv1FCOdS4_4SL5zKQj70JVSt_RKs3CgKY,1576
|
|
2388
2392
|
mteb/tasks/retrieval/kor/ko_strategy_qa.py,sha256=jk13ORetYtF0q36h8ljD6TeTHUwvK5F5ZbDoMCP3eWk,1156
|
|
2393
|
+
mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py,sha256=AjOLe2l9drBWOCeGzQqxfee3gwwU6ElAJ7-5pbFr6C8,6208
|
|
2389
2394
|
mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py,sha256=M7T5FkN1efK7euRslx-LZN7hS_QdIwqtUuVlWO-dico,1631
|
|
2390
2395
|
mteb/tasks/retrieval/multilingual/__init__.py,sha256=mfVGkoB4DO5ktlg8ia-4nImFVmZcqXh1XkgCkIff0tY,6765
|
|
2391
2396
|
mteb/tasks/retrieval/multilingual/belebele_retrieval.py,sha256=gaVLEwuLEwMutMi9V-obpiYKbpllX2QNm2j3MVeebfE,7027
|
|
@@ -2606,15 +2611,15 @@ mteb/tasks/zeroshot_classification/eng/stl10.py,sha256=sd3nV7x7mypsP0Ipxu5TRQj6f
|
|
|
2606
2611
|
mteb/tasks/zeroshot_classification/eng/sun397.py,sha256=Nls7tXM2Svu008MmAUjt-o_NSj-VNGKbW8qi-n7C18s,1963
|
|
2607
2612
|
mteb/tasks/zeroshot_classification/eng/ucf101.py,sha256=kwNRYks-_Oe4VE3GyoHIvN-2OJ6zhkwFr76WDNL9ymU,1884
|
|
2608
2613
|
mteb/tasks/zeroshot_classification/eng/templates/__init__.py,sha256=da1PTClDMl-IBkrSvq6JC1lnS-K_BASzCvxVhNxN5Ls,13
|
|
2609
|
-
mteb/types/__init__.py,sha256=
|
|
2610
|
-
mteb/types/_encoder_io.py,sha256=
|
|
2614
|
+
mteb/types/__init__.py,sha256=O26vXPolPReX7iVUBgUsyCkCo4w8KeLs7uueQDWp3fc,1142
|
|
2615
|
+
mteb/types/_encoder_io.py,sha256=6cnr2EbPPy70UV1Ts5C3PKQU6PncWrzgiAGaYVL1jb8,5847
|
|
2611
2616
|
mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
|
|
2612
2617
|
mteb/types/_result.py,sha256=UKNokV9pu3G74MGebocU512aU_fFU9I9nPKnrG9Q0iE,1035
|
|
2613
2618
|
mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
|
|
2614
2619
|
mteb/types/statistics.py,sha256=GwkBPmAr18Onu-vHtzHs0PFrhCozdOMiT13HwnWL4ZM,3961
|
|
2615
|
-
mteb-2.6.
|
|
2616
|
-
mteb-2.6.
|
|
2617
|
-
mteb-2.6.
|
|
2618
|
-
mteb-2.6.
|
|
2619
|
-
mteb-2.6.
|
|
2620
|
-
mteb-2.6.
|
|
2620
|
+
mteb-2.6.9.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
2621
|
+
mteb-2.6.9.dist-info/METADATA,sha256=l-i7rdEestHq4eEfqtwTtdvHS7le1gDwi4EMzu0NW4g,14281
|
|
2622
|
+
mteb-2.6.9.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
2623
|
+
mteb-2.6.9.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
|
|
2624
|
+
mteb-2.6.9.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
|
|
2625
|
+
mteb-2.6.9.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|