mteb 2.5.3__py3-none-any.whl → 2.5.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +10 -15
- mteb/_evaluators/any_sts_evaluator.py +1 -4
- mteb/_evaluators/evaluator.py +2 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +5 -6
- mteb/_evaluators/pair_classification_evaluator.py +3 -1
- mteb/_evaluators/retrieval_metrics.py +17 -16
- mteb/_evaluators/sklearn_evaluator.py +9 -8
- mteb/_evaluators/text/bitext_mining_evaluator.py +23 -16
- mteb/_evaluators/text/summarization_evaluator.py +20 -16
- mteb/abstasks/_data_filter/filters.py +1 -1
- mteb/abstasks/_data_filter/task_pipelines.py +3 -0
- mteb/abstasks/_statistics_calculation.py +18 -10
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +27 -21
- mteb/abstasks/aggregate_task_metadata.py +1 -9
- mteb/abstasks/aggregated_task.py +3 -16
- mteb/abstasks/classification.py +10 -4
- mteb/abstasks/clustering.py +18 -14
- mteb/abstasks/clustering_legacy.py +8 -8
- mteb/abstasks/image/image_text_pair_classification.py +5 -3
- mteb/abstasks/multilabel_classification.py +20 -16
- mteb/abstasks/pair_classification.py +18 -9
- mteb/abstasks/regression.py +3 -3
- mteb/abstasks/retrieval.py +12 -9
- mteb/abstasks/sts.py +6 -3
- mteb/abstasks/task_metadata.py +20 -16
- mteb/abstasks/text/bitext_mining.py +36 -25
- mteb/abstasks/text/reranking.py +7 -5
- mteb/abstasks/text/summarization.py +8 -3
- mteb/abstasks/zeroshot_classification.py +5 -2
- mteb/benchmarks/benchmark.py +4 -2
- mteb/benchmarks/benchmarks/benchmarks.py +22 -1
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +21 -18
- mteb/cli/_display_tasks.py +2 -2
- mteb/cli/build_cli.py +8 -8
- mteb/cli/generate_model_card.py +39 -20
- mteb/deprecated_evaluator.py +56 -43
- mteb/evaluate.py +35 -29
- mteb/filter_tasks.py +25 -26
- mteb/get_tasks.py +25 -27
- mteb/languages/language_scripts.py +5 -3
- mteb/leaderboard/app.py +1 -1
- mteb/load_results.py +12 -12
- mteb/models/abs_encoder.py +2 -2
- mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +5 -4
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +2 -1
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +30 -13
- mteb/models/cache_wrappers/cache_wrapper.py +2 -2
- mteb/models/get_model_meta.py +8 -1
- mteb/models/instruct_wrapper.py +11 -5
- mteb/models/model_implementations/andersborges.py +2 -2
- mteb/models/model_implementations/blip_models.py +8 -8
- mteb/models/model_implementations/bm25.py +1 -1
- mteb/models/model_implementations/clip_models.py +3 -3
- mteb/models/model_implementations/cohere_models.py +1 -1
- mteb/models/model_implementations/cohere_v.py +2 -2
- mteb/models/model_implementations/dino_models.py +23 -23
- mteb/models/model_implementations/emillykkejensen_models.py +3 -3
- mteb/models/model_implementations/jina_clip.py +1 -1
- mteb/models/model_implementations/jina_models.py +1 -1
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -2
- mteb/models/model_implementations/llm2clip_models.py +3 -3
- mteb/models/model_implementations/moco_models.py +2 -2
- mteb/models/model_implementations/model2vec_models.py +1 -1
- mteb/models/model_implementations/nomic_models.py +8 -8
- mteb/models/model_implementations/openclip_models.py +7 -7
- mteb/models/model_implementations/random_baseline.py +3 -3
- mteb/models/model_implementations/rasgaard_models.py +1 -1
- mteb/models/model_implementations/repllama_models.py +2 -2
- mteb/models/model_implementations/rerankers_custom.py +3 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +3 -3
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +113 -146
- mteb/models/model_implementations/siglip_models.py +10 -10
- mteb/models/model_implementations/vlm2vec_models.py +1 -1
- mteb/models/model_implementations/voyage_v.py +4 -4
- mteb/models/model_meta.py +30 -14
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +5 -5
- mteb/models/search_wrappers.py +22 -10
- mteb/models/sentence_transformer_wrapper.py +9 -4
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +25 -19
- mteb/results/model_result.py +49 -21
- mteb/results/task_result.py +45 -51
- mteb/similarity_functions.py +11 -7
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
- mteb/tasks/classification/est/estonian_valence.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +12 -12
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +9 -3
- {mteb-2.5.3.dist-info → mteb-2.5.5.dist-info}/METADATA +1 -1
- {mteb-2.5.3.dist-info → mteb-2.5.5.dist-info}/RECORD +105 -104
- {mteb-2.5.3.dist-info → mteb-2.5.5.dist-info}/WHEEL +0 -0
- {mteb-2.5.3.dist-info → mteb-2.5.5.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.3.dist-info → mteb-2.5.5.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.3.dist-info → mteb-2.5.5.dist-info}/top_level.txt +0 -0
mteb/models/get_model_meta.py
CHANGED
|
@@ -93,7 +93,14 @@ def get_model(
|
|
|
93
93
|
meta = get_model_meta(model_name, revision)
|
|
94
94
|
model = meta.load_model(**kwargs)
|
|
95
95
|
|
|
96
|
-
|
|
96
|
+
if kwargs:
|
|
97
|
+
logger.info(
|
|
98
|
+
f"Model '{model_name}' loaded with additional arguments: {list(kwargs.keys())}"
|
|
99
|
+
)
|
|
100
|
+
meta = meta.model_copy(deep=True)
|
|
101
|
+
meta.loader_kwargs |= kwargs
|
|
102
|
+
|
|
103
|
+
model.mteb_model_meta = meta # type: ignore[misc]
|
|
97
104
|
return model
|
|
98
105
|
|
|
99
106
|
|
mteb/models/instruct_wrapper.py
CHANGED
|
@@ -17,7 +17,7 @@ logger = logging.getLogger(__name__)
|
|
|
17
17
|
def instruct_wrapper(
|
|
18
18
|
model_name_or_path: str,
|
|
19
19
|
mode: str,
|
|
20
|
-
instruction_template: str | Callable[[str], str] | None = None,
|
|
20
|
+
instruction_template: str | Callable[[str, PromptType | None], str] | None = None,
|
|
21
21
|
**kwargs,
|
|
22
22
|
):
|
|
23
23
|
"""Instruct wrapper for models. Uses GritLM to pass instructions to the model.
|
|
@@ -40,7 +40,9 @@ def instruct_wrapper(
|
|
|
40
40
|
self,
|
|
41
41
|
model_name_or_path: str,
|
|
42
42
|
mode: str,
|
|
43
|
-
instruction_template: str
|
|
43
|
+
instruction_template: str
|
|
44
|
+
| Callable[[str, PromptType | None], str]
|
|
45
|
+
| None = None,
|
|
44
46
|
**kwargs,
|
|
45
47
|
):
|
|
46
48
|
if (
|
|
@@ -82,8 +84,11 @@ def instruct_wrapper(
|
|
|
82
84
|
logger.info(
|
|
83
85
|
f"Using instruction: '{instruction}' for task: '{task_metadata.name}'"
|
|
84
86
|
)
|
|
85
|
-
embeddings = super().encode(
|
|
86
|
-
_inputs,
|
|
87
|
+
embeddings = super().encode( # type: ignore[safe-super]
|
|
88
|
+
_inputs, # type: ignore[arg-type]
|
|
89
|
+
instruction=instruction,
|
|
90
|
+
*args,
|
|
91
|
+
**kwargs,
|
|
87
92
|
)
|
|
88
93
|
if isinstance(embeddings, torch.Tensor):
|
|
89
94
|
# sometimes in kwargs can be return_tensors=True
|
|
@@ -141,7 +146,7 @@ class InstructSentenceTransformerModel(AbsEncoder):
|
|
|
141
146
|
)
|
|
142
147
|
|
|
143
148
|
self.instruction_template = instruction_template
|
|
144
|
-
tokenizer_params = {}
|
|
149
|
+
tokenizer_params: dict[str, Any] = {}
|
|
145
150
|
if add_eos_token:
|
|
146
151
|
tokenizer_params["add_eos_token"] = add_eos_token
|
|
147
152
|
if max_seq_length is not None:
|
|
@@ -193,6 +198,7 @@ class InstructSentenceTransformerModel(AbsEncoder):
|
|
|
193
198
|
The encoded input in a numpy array or torch tensor of the shape (Number of sentences) x (Embedding dimension).
|
|
194
199
|
"""
|
|
195
200
|
sentences = [text for batch in inputs for text in batch["text"]]
|
|
201
|
+
instruction: str | None
|
|
196
202
|
instruction = self.get_task_instruction(task_metadata, prompt_type)
|
|
197
203
|
|
|
198
204
|
# to passage prompts won't be applied to passages
|
|
@@ -4,7 +4,7 @@ from mteb.models.model_implementations.model2vec_models import Model2VecModel
|
|
|
4
4
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
5
5
|
|
|
6
6
|
model2vecdk = ModelMeta(
|
|
7
|
-
loader=Model2VecModel,
|
|
7
|
+
loader=Model2VecModel,
|
|
8
8
|
name="andersborges/model2vecdk",
|
|
9
9
|
model_type=["dense"],
|
|
10
10
|
languages=["dan-Latn"],
|
|
@@ -35,7 +35,7 @@ model2vecdk = ModelMeta(
|
|
|
35
35
|
|
|
36
36
|
|
|
37
37
|
model2vecdk_stem = ModelMeta(
|
|
38
|
-
loader=Model2VecModel,
|
|
38
|
+
loader=Model2VecModel,
|
|
39
39
|
name="andersborges/model2vecdk-stem",
|
|
40
40
|
model_type=["dense"],
|
|
41
41
|
languages=["dan-Latn"],
|
|
@@ -128,7 +128,7 @@ class BLIPModel(AbsEncoder):
|
|
|
128
128
|
|
|
129
129
|
# in descending order of usage (downloads from huggingface)
|
|
130
130
|
blip_image_captioning_large = ModelMeta(
|
|
131
|
-
loader=BLIPModel,
|
|
131
|
+
loader=BLIPModel,
|
|
132
132
|
name="Salesforce/blip-image-captioning-large",
|
|
133
133
|
model_type=["dense"],
|
|
134
134
|
languages=["eng-Latn"],
|
|
@@ -156,7 +156,7 @@ blip_image_captioning_large = ModelMeta(
|
|
|
156
156
|
)
|
|
157
157
|
|
|
158
158
|
blip_image_captioning_base = ModelMeta(
|
|
159
|
-
loader=BLIPModel,
|
|
159
|
+
loader=BLIPModel,
|
|
160
160
|
name="Salesforce/blip-image-captioning-base",
|
|
161
161
|
model_type=["dense"],
|
|
162
162
|
languages=["eng-Latn"],
|
|
@@ -185,7 +185,7 @@ blip_image_captioning_base = ModelMeta(
|
|
|
185
185
|
|
|
186
186
|
|
|
187
187
|
blip_vqa_base = ModelMeta(
|
|
188
|
-
loader=BLIPModel,
|
|
188
|
+
loader=BLIPModel,
|
|
189
189
|
name="Salesforce/blip-vqa-base",
|
|
190
190
|
model_type=["dense"],
|
|
191
191
|
languages=["eng-Latn"],
|
|
@@ -212,7 +212,7 @@ blip_vqa_base = ModelMeta(
|
|
|
212
212
|
)
|
|
213
213
|
|
|
214
214
|
blip_vqa_capfilt_large = ModelMeta(
|
|
215
|
-
loader=BLIPModel,
|
|
215
|
+
loader=BLIPModel,
|
|
216
216
|
name="Salesforce/blip-vqa-capfilt-large",
|
|
217
217
|
model_type=["dense"],
|
|
218
218
|
languages=["eng-Latn"],
|
|
@@ -239,7 +239,7 @@ blip_vqa_capfilt_large = ModelMeta(
|
|
|
239
239
|
)
|
|
240
240
|
|
|
241
241
|
blip_itm_base_coco = ModelMeta(
|
|
242
|
-
loader=BLIPModel,
|
|
242
|
+
loader=BLIPModel,
|
|
243
243
|
name="Salesforce/blip-itm-base-coco",
|
|
244
244
|
model_type=["dense"],
|
|
245
245
|
languages=["eng-Latn"],
|
|
@@ -266,7 +266,7 @@ blip_itm_base_coco = ModelMeta(
|
|
|
266
266
|
)
|
|
267
267
|
|
|
268
268
|
blip_itm_large_coco = ModelMeta(
|
|
269
|
-
loader=BLIPModel,
|
|
269
|
+
loader=BLIPModel,
|
|
270
270
|
name="Salesforce/blip-itm-large-coco",
|
|
271
271
|
model_type=["dense"],
|
|
272
272
|
languages=["eng-Latn"],
|
|
@@ -294,7 +294,7 @@ blip_itm_large_coco = ModelMeta(
|
|
|
294
294
|
)
|
|
295
295
|
|
|
296
296
|
blip_itm_base_flickr = ModelMeta(
|
|
297
|
-
loader=BLIPModel,
|
|
297
|
+
loader=BLIPModel,
|
|
298
298
|
name="Salesforce/blip-itm-base-flickr",
|
|
299
299
|
model_type=["dense"],
|
|
300
300
|
languages=["eng-Latn"],
|
|
@@ -322,7 +322,7 @@ blip_itm_base_flickr = ModelMeta(
|
|
|
322
322
|
)
|
|
323
323
|
|
|
324
324
|
blip_itm_large_flickr = ModelMeta(
|
|
325
|
-
loader=BLIPModel,
|
|
325
|
+
loader=BLIPModel,
|
|
326
326
|
name="Salesforce/blip-itm-large-flickr",
|
|
327
327
|
model_type=["dense"],
|
|
328
328
|
languages=["eng-Latn"],
|
|
@@ -113,7 +113,7 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
|
|
|
113
113
|
|
|
114
114
|
def encode(self, texts: list[str]):
|
|
115
115
|
"""Encode input text as term vectors"""
|
|
116
|
-
return bm25s.tokenize(texts, stopwords=self.stopwords, stemmer=self.stemmer)
|
|
116
|
+
return bm25s.tokenize(texts, stopwords=self.stopwords, stemmer=self.stemmer)
|
|
117
117
|
|
|
118
118
|
return BM25Search(**kwargs)
|
|
119
119
|
|
|
@@ -115,7 +115,7 @@ CLIP_CITATION = """
|
|
|
115
115
|
|
|
116
116
|
|
|
117
117
|
clip_vit_large_patch14 = ModelMeta(
|
|
118
|
-
loader=CLIPModel,
|
|
118
|
+
loader=CLIPModel,
|
|
119
119
|
name="openai/clip-vit-large-patch14",
|
|
120
120
|
model_type=["dense"],
|
|
121
121
|
languages=["eng-Latn"],
|
|
@@ -139,7 +139,7 @@ clip_vit_large_patch14 = ModelMeta(
|
|
|
139
139
|
)
|
|
140
140
|
|
|
141
141
|
clip_vit_base_patch32 = ModelMeta(
|
|
142
|
-
loader=CLIPModel,
|
|
142
|
+
loader=CLIPModel,
|
|
143
143
|
name="openai/clip-vit-base-patch32",
|
|
144
144
|
model_type=["dense"],
|
|
145
145
|
languages=["eng-Latn"],
|
|
@@ -163,7 +163,7 @@ clip_vit_base_patch32 = ModelMeta(
|
|
|
163
163
|
)
|
|
164
164
|
|
|
165
165
|
clip_vit_base_patch16 = ModelMeta(
|
|
166
|
-
loader=CLIPModel,
|
|
166
|
+
loader=CLIPModel,
|
|
167
167
|
name="openai/clip-vit-base-patch16",
|
|
168
168
|
model_type=["dense"],
|
|
169
169
|
languages=["eng-Latn"],
|
|
@@ -222,7 +222,7 @@ class CohereTextEmbeddingModel(AbsEncoder):
|
|
|
222
222
|
) -> None:
|
|
223
223
|
requires_package(self, "cohere", model_name, "pip install 'mteb[cohere]'")
|
|
224
224
|
|
|
225
|
-
import cohere
|
|
225
|
+
import cohere
|
|
226
226
|
|
|
227
227
|
self.model_name = model_name.removeprefix("Cohere/Cohere-")
|
|
228
228
|
self.sep = sep
|
|
@@ -378,7 +378,7 @@ def cohere_v_loader(model_name, **kwargs):
|
|
|
378
378
|
|
|
379
379
|
|
|
380
380
|
cohere_mult_3 = ModelMeta(
|
|
381
|
-
loader=cohere_v_loader,
|
|
381
|
+
loader=cohere_v_loader,
|
|
382
382
|
loader_kwargs={"model_name": "embed-multilingual-v3.0"},
|
|
383
383
|
name="cohere/embed-multilingual-v3.0",
|
|
384
384
|
model_type=["dense"],
|
|
@@ -402,7 +402,7 @@ cohere_mult_3 = ModelMeta(
|
|
|
402
402
|
)
|
|
403
403
|
|
|
404
404
|
cohere_eng_3 = ModelMeta(
|
|
405
|
-
loader=cohere_v_loader,
|
|
405
|
+
loader=cohere_v_loader,
|
|
406
406
|
loader_kwargs={"model_name": "embed-english-v3.0"},
|
|
407
407
|
name="cohere/embed-english-v3.0",
|
|
408
408
|
model_type=["dense"],
|
|
@@ -104,7 +104,7 @@ dinov2_training_datasets = set(
|
|
|
104
104
|
|
|
105
105
|
|
|
106
106
|
dinov2_small = ModelMeta(
|
|
107
|
-
loader=DINOModel,
|
|
107
|
+
loader=DINOModel,
|
|
108
108
|
name="facebook/dinov2-small",
|
|
109
109
|
model_type=["dense"],
|
|
110
110
|
languages=["eng-Latn"],
|
|
@@ -125,7 +125,7 @@ dinov2_small = ModelMeta(
|
|
|
125
125
|
use_instructions=False,
|
|
126
126
|
training_datasets=dinov2_training_datasets,
|
|
127
127
|
citation="""@misc{oquab2023dinov2,
|
|
128
|
-
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
128
|
+
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
129
129
|
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
|
130
130
|
year={2023},
|
|
131
131
|
eprint={2304.07193},
|
|
@@ -135,7 +135,7 @@ dinov2_small = ModelMeta(
|
|
|
135
135
|
)
|
|
136
136
|
|
|
137
137
|
dinov2_base = ModelMeta(
|
|
138
|
-
loader=DINOModel,
|
|
138
|
+
loader=DINOModel,
|
|
139
139
|
name="facebook/dinov2-base",
|
|
140
140
|
model_type=["dense"],
|
|
141
141
|
languages=["eng-Latn"],
|
|
@@ -156,7 +156,7 @@ dinov2_base = ModelMeta(
|
|
|
156
156
|
use_instructions=False,
|
|
157
157
|
training_datasets=dinov2_training_datasets,
|
|
158
158
|
citation="""@misc{oquab2023dinov2,
|
|
159
|
-
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
159
|
+
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
160
160
|
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
|
161
161
|
year={2023},
|
|
162
162
|
eprint={2304.07193},
|
|
@@ -166,7 +166,7 @@ dinov2_base = ModelMeta(
|
|
|
166
166
|
)
|
|
167
167
|
|
|
168
168
|
dinov2_large = ModelMeta(
|
|
169
|
-
loader=DINOModel,
|
|
169
|
+
loader=DINOModel,
|
|
170
170
|
name="facebook/dinov2-large",
|
|
171
171
|
model_type=["dense"],
|
|
172
172
|
languages=["eng-Latn"],
|
|
@@ -187,7 +187,7 @@ dinov2_large = ModelMeta(
|
|
|
187
187
|
use_instructions=False,
|
|
188
188
|
training_datasets=dinov2_training_datasets,
|
|
189
189
|
citation="""@misc{oquab2023dinov2,
|
|
190
|
-
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
190
|
+
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
191
191
|
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
|
192
192
|
year={2023},
|
|
193
193
|
eprint={2304.07193},
|
|
@@ -197,7 +197,7 @@ dinov2_large = ModelMeta(
|
|
|
197
197
|
)
|
|
198
198
|
|
|
199
199
|
dinov2_giant = ModelMeta(
|
|
200
|
-
loader=DINOModel,
|
|
200
|
+
loader=DINOModel,
|
|
201
201
|
name="facebook/dinov2-giant",
|
|
202
202
|
model_type=["dense"],
|
|
203
203
|
languages=["eng-Latn"],
|
|
@@ -218,7 +218,7 @@ dinov2_giant = ModelMeta(
|
|
|
218
218
|
use_instructions=False,
|
|
219
219
|
training_datasets=dinov2_training_datasets,
|
|
220
220
|
citation="""@misc{oquab2023dinov2,
|
|
221
|
-
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
221
|
+
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
222
222
|
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
|
223
223
|
year={2023},
|
|
224
224
|
eprint={2304.07193},
|
|
@@ -253,7 +253,7 @@ webssl_dino300m_full2b = ModelMeta(
|
|
|
253
253
|
use_instructions=False,
|
|
254
254
|
training_datasets=webssl_dino_training_datasets,
|
|
255
255
|
citation="""@article{fan2025scaling,
|
|
256
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
256
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
257
257
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
258
258
|
year={2025},
|
|
259
259
|
eprint={2504.01017},
|
|
@@ -284,7 +284,7 @@ webssl_dino1b_full2b = ModelMeta(
|
|
|
284
284
|
use_instructions=False,
|
|
285
285
|
training_datasets=webssl_dino_training_datasets,
|
|
286
286
|
citation="""@article{fan2025scaling,
|
|
287
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
287
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
288
288
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
289
289
|
year={2025},
|
|
290
290
|
eprint={2504.01017},
|
|
@@ -315,7 +315,7 @@ webssl_dino2b_full2b = ModelMeta(
|
|
|
315
315
|
use_instructions=False,
|
|
316
316
|
training_datasets=webssl_dino_training_datasets,
|
|
317
317
|
citation="""@article{fan2025scaling,
|
|
318
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
318
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
319
319
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
320
320
|
year={2025},
|
|
321
321
|
eprint={2504.01017},
|
|
@@ -346,7 +346,7 @@ webssl_dino3b_full2b = ModelMeta(
|
|
|
346
346
|
use_instructions=False,
|
|
347
347
|
training_datasets=webssl_dino_training_datasets,
|
|
348
348
|
citation="""@article{fan2025scaling,
|
|
349
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
349
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
350
350
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
351
351
|
year={2025},
|
|
352
352
|
eprint={2504.01017},
|
|
@@ -377,7 +377,7 @@ webssl_dino5b_full2b = ModelMeta(
|
|
|
377
377
|
use_instructions=False,
|
|
378
378
|
training_datasets=webssl_dino_training_datasets,
|
|
379
379
|
citation="""@article{fan2025scaling,
|
|
380
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
380
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
381
381
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
382
382
|
year={2025},
|
|
383
383
|
eprint={2504.01017},
|
|
@@ -408,7 +408,7 @@ webssl_dino7b_full8b_224 = ModelMeta(
|
|
|
408
408
|
use_instructions=False,
|
|
409
409
|
training_datasets=webssl_dino_training_datasets,
|
|
410
410
|
citation="""@article{fan2025scaling,
|
|
411
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
411
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
412
412
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
413
413
|
year={2025},
|
|
414
414
|
eprint={2504.01017},
|
|
@@ -439,7 +439,7 @@ webssl_dino7b_full8b_378 = ModelMeta(
|
|
|
439
439
|
use_instructions=False,
|
|
440
440
|
training_datasets=webssl_dino_training_datasets,
|
|
441
441
|
citation="""@article{fan2025scaling,
|
|
442
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
442
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
443
443
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
444
444
|
year={2025},
|
|
445
445
|
eprint={2504.01017},
|
|
@@ -470,7 +470,7 @@ webssl_dino7b_full8b_518 = ModelMeta(
|
|
|
470
470
|
use_instructions=False,
|
|
471
471
|
training_datasets=webssl_dino_training_datasets,
|
|
472
472
|
citation="""@article{fan2025scaling,
|
|
473
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
473
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
474
474
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
475
475
|
year={2025},
|
|
476
476
|
eprint={2504.01017},
|
|
@@ -502,7 +502,7 @@ webssl_dino2b_light2b = ModelMeta(
|
|
|
502
502
|
use_instructions=False,
|
|
503
503
|
training_datasets=webssl_dino_training_datasets,
|
|
504
504
|
citation="""@article{fan2025scaling,
|
|
505
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
505
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
506
506
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
507
507
|
year={2025},
|
|
508
508
|
eprint={2504.01017},
|
|
@@ -533,7 +533,7 @@ webssl_dino2b_heavy2b = ModelMeta(
|
|
|
533
533
|
use_instructions=False,
|
|
534
534
|
training_datasets=webssl_dino_training_datasets,
|
|
535
535
|
citation="""@article{fan2025scaling,
|
|
536
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
536
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
537
537
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
538
538
|
year={2025},
|
|
539
539
|
eprint={2504.01017},
|
|
@@ -564,7 +564,7 @@ webssl_dino3b_light2b = ModelMeta(
|
|
|
564
564
|
use_instructions=False,
|
|
565
565
|
training_datasets=webssl_dino_training_datasets,
|
|
566
566
|
citation="""@article{fan2025scaling,
|
|
567
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
567
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
568
568
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
569
569
|
year={2025},
|
|
570
570
|
eprint={2504.01017},
|
|
@@ -595,7 +595,7 @@ webssl_dino3b_heavy2b = ModelMeta(
|
|
|
595
595
|
use_instructions=False,
|
|
596
596
|
training_datasets=webssl_dino_training_datasets,
|
|
597
597
|
citation="""@article{fan2025scaling,
|
|
598
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
598
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
599
599
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
600
600
|
year={2025},
|
|
601
601
|
eprint={2504.01017},
|
|
@@ -626,7 +626,7 @@ webssl_mae300m_full2b = ModelMeta(
|
|
|
626
626
|
use_instructions=False,
|
|
627
627
|
training_datasets=webssl_dino_training_datasets,
|
|
628
628
|
citation="""@article{fan2025scaling,
|
|
629
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
629
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
630
630
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
631
631
|
year={2025},
|
|
632
632
|
eprint={2504.01017},
|
|
@@ -657,7 +657,7 @@ webssl_mae700m_full2b = ModelMeta(
|
|
|
657
657
|
use_instructions=False,
|
|
658
658
|
training_datasets=webssl_dino_training_datasets,
|
|
659
659
|
citation="""@article{fan2025scaling,
|
|
660
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
660
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
661
661
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
662
662
|
year={2025},
|
|
663
663
|
eprint={2504.01017},
|
|
@@ -688,7 +688,7 @@ webssl_mae1b_full2b = ModelMeta(
|
|
|
688
688
|
use_instructions=False,
|
|
689
689
|
training_datasets=webssl_dino_training_datasets,
|
|
690
690
|
citation="""@article{fan2025scaling,
|
|
691
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
691
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
692
692
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
693
693
|
year={2025},
|
|
694
694
|
eprint={2504.01017},
|
|
@@ -2,7 +2,7 @@ from mteb.models.model_meta import ModelMeta
|
|
|
2
2
|
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
3
3
|
|
|
4
4
|
embedding_gemma_300m_scandi = ModelMeta(
|
|
5
|
-
loader=sentence_transformers_loader,
|
|
5
|
+
loader=sentence_transformers_loader,
|
|
6
6
|
name="emillykkejensen/EmbeddingGemma-Scandi-300m",
|
|
7
7
|
model_type=["dense"],
|
|
8
8
|
languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
|
|
@@ -35,7 +35,7 @@ embedding_gemma_300m_scandi = ModelMeta(
|
|
|
35
35
|
|
|
36
36
|
|
|
37
37
|
qwen_scandi = ModelMeta(
|
|
38
|
-
loader=sentence_transformers_loader,
|
|
38
|
+
loader=sentence_transformers_loader,
|
|
39
39
|
name="emillykkejensen/Qwen3-Embedding-Scandi-0.6B",
|
|
40
40
|
model_type=["dense"],
|
|
41
41
|
languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
|
|
@@ -59,7 +59,7 @@ qwen_scandi = ModelMeta(
|
|
|
59
59
|
|
|
60
60
|
|
|
61
61
|
mmbert_scandi = ModelMeta(
|
|
62
|
-
loader=sentence_transformers_loader,
|
|
62
|
+
loader=sentence_transformers_loader,
|
|
63
63
|
name="emillykkejensen/mmBERTscandi-base-embedding",
|
|
64
64
|
model_type=["dense"],
|
|
65
65
|
languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
|
|
@@ -4,7 +4,7 @@ from mteb.models.sentence_transformer_wrapper import (
|
|
|
4
4
|
)
|
|
5
5
|
|
|
6
6
|
dfm_enc_large = ModelMeta(
|
|
7
|
-
loader=sentence_transformers_loader,
|
|
7
|
+
loader=sentence_transformers_loader,
|
|
8
8
|
name="KennethEnevoldsen/dfm-sentence-encoder-large",
|
|
9
9
|
model_type=["dense"],
|
|
10
10
|
languages=["dan-Latn"],
|
|
@@ -39,7 +39,7 @@ dfm_enc_large = ModelMeta(
|
|
|
39
39
|
)
|
|
40
40
|
|
|
41
41
|
dfm_enc_med = ModelMeta(
|
|
42
|
-
loader=sentence_transformers_loader,
|
|
42
|
+
loader=sentence_transformers_loader,
|
|
43
43
|
name="KennethEnevoldsen/dfm-sentence-encoder-medium",
|
|
44
44
|
model_type=["dense"],
|
|
45
45
|
languages=["dan-Latn"],
|
|
@@ -181,7 +181,7 @@ llm2clip_training_sets = set(
|
|
|
181
181
|
)
|
|
182
182
|
|
|
183
183
|
llm2clip_openai_l_14_336 = ModelMeta(
|
|
184
|
-
loader=llm2clip_loader,
|
|
184
|
+
loader=llm2clip_loader,
|
|
185
185
|
name="microsoft/LLM2CLIP-Openai-L-14-336",
|
|
186
186
|
model_type=["dense"],
|
|
187
187
|
languages=["eng-Latn"],
|
|
@@ -206,7 +206,7 @@ llm2clip_openai_l_14_336 = ModelMeta(
|
|
|
206
206
|
|
|
207
207
|
# NOTE: https://huggingface.co/microsoft/LLM2CLIP-Openai-L-14-224/discussions/1
|
|
208
208
|
llm2clip_openai_l_14_224 = ModelMeta(
|
|
209
|
-
loader=llm2clip_loader,
|
|
209
|
+
loader=llm2clip_loader,
|
|
210
210
|
name="microsoft/LLM2CLIP-Openai-L-14-224",
|
|
211
211
|
model_type=["dense"],
|
|
212
212
|
languages=["eng-Latn"],
|
|
@@ -230,7 +230,7 @@ llm2clip_openai_l_14_224 = ModelMeta(
|
|
|
230
230
|
)
|
|
231
231
|
|
|
232
232
|
llm2clip_openai_b_16 = ModelMeta(
|
|
233
|
-
loader=llm2clip_loader,
|
|
233
|
+
loader=llm2clip_loader,
|
|
234
234
|
name="microsoft/LLM2CLIP-Openai-B-16",
|
|
235
235
|
model_type=["dense"],
|
|
236
236
|
languages=["eng-Latn"],
|
|
@@ -117,7 +117,7 @@ mocov3_training_datasets = set(
|
|
|
117
117
|
)
|
|
118
118
|
|
|
119
119
|
mocov3_vit_base = ModelMeta(
|
|
120
|
-
loader=mocov3_loader,
|
|
120
|
+
loader=mocov3_loader,
|
|
121
121
|
name="nyu-visionx/moco-v3-vit-b",
|
|
122
122
|
model_type=["dense"],
|
|
123
123
|
languages=["eng-Latn"],
|
|
@@ -141,7 +141,7 @@ mocov3_vit_base = ModelMeta(
|
|
|
141
141
|
)
|
|
142
142
|
|
|
143
143
|
mocov3_vit_large = ModelMeta(
|
|
144
|
-
loader=mocov3_loader,
|
|
144
|
+
loader=mocov3_loader,
|
|
145
145
|
name="nyu-visionx/moco-v3-vit-l",
|
|
146
146
|
model_type=["dense"],
|
|
147
147
|
languages=["eng-Latn"],
|
|
@@ -139,7 +139,7 @@ class Model2VecModel(AbsEncoder):
|
|
|
139
139
|
**kwargs: Additional arguments to pass to the wrapper.
|
|
140
140
|
"""
|
|
141
141
|
requires_package(self, "model2vec", model_name, "pip install 'mteb[model2vec]'")
|
|
142
|
-
from model2vec import StaticModel
|
|
142
|
+
from model2vec import StaticModel
|
|
143
143
|
|
|
144
144
|
self.model_name = model_name
|
|
145
145
|
self.model = StaticModel.from_pretrained(self.model_name)
|
|
@@ -193,7 +193,7 @@ NOMIC_CITATION = """
|
|
|
193
193
|
"""
|
|
194
194
|
|
|
195
195
|
nomic_embed_v1_5 = ModelMeta(
|
|
196
|
-
loader=NomicWrapper,
|
|
196
|
+
loader=NomicWrapper,
|
|
197
197
|
loader_kwargs=dict(
|
|
198
198
|
trust_remote_code=True,
|
|
199
199
|
model_prompts=model_prompts,
|
|
@@ -222,7 +222,7 @@ nomic_embed_v1_5 = ModelMeta(
|
|
|
222
222
|
)
|
|
223
223
|
|
|
224
224
|
nomic_embed_v1 = ModelMeta(
|
|
225
|
-
loader=NomicWrapper,
|
|
225
|
+
loader=NomicWrapper,
|
|
226
226
|
loader_kwargs=dict(
|
|
227
227
|
trust_remote_code=True,
|
|
228
228
|
model_prompts=model_prompts,
|
|
@@ -251,7 +251,7 @@ nomic_embed_v1 = ModelMeta(
|
|
|
251
251
|
)
|
|
252
252
|
|
|
253
253
|
nomic_embed_v1_ablated = ModelMeta(
|
|
254
|
-
loader=NomicWrapper,
|
|
254
|
+
loader=NomicWrapper,
|
|
255
255
|
loader_kwargs=dict(
|
|
256
256
|
trust_remote_code=True,
|
|
257
257
|
model_prompts=model_prompts,
|
|
@@ -279,7 +279,7 @@ nomic_embed_v1_ablated = ModelMeta(
|
|
|
279
279
|
)
|
|
280
280
|
|
|
281
281
|
nomic_embed_v1_unsupervised = ModelMeta(
|
|
282
|
-
loader=NomicWrapper,
|
|
282
|
+
loader=NomicWrapper,
|
|
283
283
|
loader_kwargs=dict(
|
|
284
284
|
trust_remote_code=True,
|
|
285
285
|
model_prompts=model_prompts,
|
|
@@ -334,7 +334,7 @@ nomic_modern_bert_embed = ModelMeta(
|
|
|
334
334
|
training_datasets=nomic_training_data,
|
|
335
335
|
public_training_data=None,
|
|
336
336
|
citation="""@misc{nussbaum2024nomic,
|
|
337
|
-
title={Nomic Embed: Training a Reproducible Long Context Text Embedder},
|
|
337
|
+
title={Nomic Embed: Training a Reproducible Long Context Text Embedder},
|
|
338
338
|
author={Zach Nussbaum and John X. Morris and Brandon Duderstadt and Andriy Mulyar},
|
|
339
339
|
year={2024},
|
|
340
340
|
eprint={2402.01613},
|
|
@@ -446,7 +446,7 @@ m_languages = [
|
|
|
446
446
|
]
|
|
447
447
|
|
|
448
448
|
nomic_embed_text_v2_moe = ModelMeta(
|
|
449
|
-
loader=NomicWrapper,
|
|
449
|
+
loader=NomicWrapper,
|
|
450
450
|
loader_kwargs=dict(
|
|
451
451
|
trust_remote_code=True,
|
|
452
452
|
model_prompts=model_prompts,
|
|
@@ -472,12 +472,12 @@ nomic_embed_text_v2_moe = ModelMeta(
|
|
|
472
472
|
training_datasets=None, # did not look into this further
|
|
473
473
|
superseded_by=None,
|
|
474
474
|
citation="""@misc{nussbaum2025trainingsparsemixtureexperts,
|
|
475
|
-
title={Training Sparse Mixture Of Experts Text Embedding Models},
|
|
475
|
+
title={Training Sparse Mixture Of Experts Text Embedding Models},
|
|
476
476
|
author={Zach Nussbaum and Brandon Duderstadt},
|
|
477
477
|
year={2025},
|
|
478
478
|
eprint={2502.07972},
|
|
479
479
|
archivePrefix={arXiv},
|
|
480
480
|
primaryClass={cs.CL},
|
|
481
|
-
url={https://arxiv.org/abs/2502.07972},
|
|
481
|
+
url={https://arxiv.org/abs/2502.07972},
|
|
482
482
|
}""",
|
|
483
483
|
)
|