mteb 2.5.2__py3-none-any.whl → 2.5.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (104) hide show
  1. mteb/_create_dataloaders.py +10 -15
  2. mteb/_evaluators/any_sts_evaluator.py +1 -4
  3. mteb/_evaluators/evaluator.py +2 -1
  4. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +5 -6
  5. mteb/_evaluators/pair_classification_evaluator.py +3 -1
  6. mteb/_evaluators/retrieval_metrics.py +17 -16
  7. mteb/_evaluators/sklearn_evaluator.py +9 -8
  8. mteb/_evaluators/text/bitext_mining_evaluator.py +23 -16
  9. mteb/_evaluators/text/summarization_evaluator.py +20 -16
  10. mteb/abstasks/_data_filter/filters.py +1 -1
  11. mteb/abstasks/_data_filter/task_pipelines.py +3 -0
  12. mteb/abstasks/_statistics_calculation.py +18 -10
  13. mteb/abstasks/_stratification.py +18 -18
  14. mteb/abstasks/abstask.py +33 -27
  15. mteb/abstasks/aggregate_task_metadata.py +1 -9
  16. mteb/abstasks/aggregated_task.py +7 -26
  17. mteb/abstasks/classification.py +10 -4
  18. mteb/abstasks/clustering.py +18 -14
  19. mteb/abstasks/clustering_legacy.py +8 -8
  20. mteb/abstasks/image/image_text_pair_classification.py +5 -3
  21. mteb/abstasks/multilabel_classification.py +20 -16
  22. mteb/abstasks/pair_classification.py +18 -9
  23. mteb/abstasks/regression.py +3 -3
  24. mteb/abstasks/retrieval.py +12 -9
  25. mteb/abstasks/sts.py +6 -3
  26. mteb/abstasks/task_metadata.py +22 -19
  27. mteb/abstasks/text/bitext_mining.py +36 -25
  28. mteb/abstasks/text/reranking.py +7 -5
  29. mteb/abstasks/text/summarization.py +8 -3
  30. mteb/abstasks/zeroshot_classification.py +5 -2
  31. mteb/benchmarks/benchmark.py +2 -2
  32. mteb/cache.py +27 -22
  33. mteb/cli/_display_tasks.py +2 -2
  34. mteb/cli/build_cli.py +15 -10
  35. mteb/cli/generate_model_card.py +10 -7
  36. mteb/deprecated_evaluator.py +60 -46
  37. mteb/evaluate.py +39 -30
  38. mteb/filter_tasks.py +25 -26
  39. mteb/get_tasks.py +29 -30
  40. mteb/languages/language_scripts.py +5 -3
  41. mteb/leaderboard/app.py +1 -1
  42. mteb/load_results.py +12 -12
  43. mteb/models/abs_encoder.py +7 -5
  44. mteb/models/cache_wrappers/cache_backend_protocol.py +3 -5
  45. mteb/models/cache_wrappers/cache_backends/_hash_utils.py +5 -4
  46. mteb/models/cache_wrappers/cache_backends/faiss_cache.py +6 -2
  47. mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
  48. mteb/models/cache_wrappers/cache_wrapper.py +2 -2
  49. mteb/models/get_model_meta.py +8 -1
  50. mteb/models/instruct_wrapper.py +11 -5
  51. mteb/models/model_implementations/andersborges.py +2 -2
  52. mteb/models/model_implementations/blip_models.py +8 -8
  53. mteb/models/model_implementations/bm25.py +1 -1
  54. mteb/models/model_implementations/clip_models.py +3 -3
  55. mteb/models/model_implementations/cohere_models.py +1 -1
  56. mteb/models/model_implementations/cohere_v.py +2 -2
  57. mteb/models/model_implementations/dino_models.py +23 -23
  58. mteb/models/model_implementations/emillykkejensen_models.py +3 -3
  59. mteb/models/model_implementations/gme_v_models.py +4 -3
  60. mteb/models/model_implementations/jina_clip.py +1 -1
  61. mteb/models/model_implementations/jina_models.py +1 -1
  62. mteb/models/model_implementations/kennethenevoldsen_models.py +2 -2
  63. mteb/models/model_implementations/llm2clip_models.py +3 -3
  64. mteb/models/model_implementations/mcinext_models.py +4 -1
  65. mteb/models/model_implementations/moco_models.py +2 -2
  66. mteb/models/model_implementations/model2vec_models.py +1 -1
  67. mteb/models/model_implementations/nomic_models.py +8 -8
  68. mteb/models/model_implementations/openclip_models.py +7 -7
  69. mteb/models/model_implementations/random_baseline.py +3 -3
  70. mteb/models/model_implementations/rasgaard_models.py +1 -1
  71. mteb/models/model_implementations/repllama_models.py +2 -2
  72. mteb/models/model_implementations/rerankers_custom.py +3 -3
  73. mteb/models/model_implementations/rerankers_monot5_based.py +3 -3
  74. mteb/models/model_implementations/siglip_models.py +10 -10
  75. mteb/models/model_implementations/vlm2vec_models.py +1 -1
  76. mteb/models/model_implementations/voyage_v.py +4 -4
  77. mteb/models/model_meta.py +14 -13
  78. mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +9 -6
  79. mteb/models/search_wrappers.py +26 -12
  80. mteb/models/sentence_transformer_wrapper.py +19 -14
  81. mteb/py.typed +0 -0
  82. mteb/results/benchmark_results.py +28 -20
  83. mteb/results/model_result.py +52 -22
  84. mteb/results/task_result.py +55 -58
  85. mteb/similarity_functions.py +11 -7
  86. mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
  87. mteb/tasks/classification/est/estonian_valence.py +1 -1
  88. mteb/tasks/classification/multilingual/scala_classification.py +1 -1
  89. mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
  90. mteb/tasks/retrieval/code/code_rag.py +12 -12
  91. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
  92. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
  93. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
  94. mteb/tasks/retrieval/nob/norquad.py +2 -2
  95. mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
  96. mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
  97. mteb/types/_result.py +2 -1
  98. mteb/types/statistics.py +9 -3
  99. {mteb-2.5.2.dist-info → mteb-2.5.4.dist-info}/METADATA +1 -1
  100. {mteb-2.5.2.dist-info → mteb-2.5.4.dist-info}/RECORD +104 -103
  101. {mteb-2.5.2.dist-info → mteb-2.5.4.dist-info}/WHEEL +0 -0
  102. {mteb-2.5.2.dist-info → mteb-2.5.4.dist-info}/entry_points.txt +0 -0
  103. {mteb-2.5.2.dist-info → mteb-2.5.4.dist-info}/licenses/LICENSE +0 -0
  104. {mteb-2.5.2.dist-info → mteb-2.5.4.dist-info}/top_level.txt +0 -0
@@ -1,71 +1,72 @@
1
1
  mteb/__init__.py,sha256=h2kru--zMEC0mmLQ688kggdDpBH7dxYz1HhLVHbRjcI,1376
2
2
  mteb/__main__.py,sha256=KKWed4HW-OpfpJhCuKDNDPuAAIoppQY1g2gRuCdAmlw,34
3
- mteb/_create_dataloaders.py,sha256=9aUHM1q2q748XHax_YYcPBmckIOOVCrJ_N2bJYVbn3s,14338
3
+ mteb/_create_dataloaders.py,sha256=6X0DAbbdIHFlrAujpAUjfBK8vEIcs6tL_r4b4-Acc84,14279
4
4
  mteb/_helpful_enum.py,sha256=jh73N1jlcpg7RGz4bj8UpctiMNvqvHpp9wrB7SYEzIU,510
5
5
  mteb/_log_once.py,sha256=-tUKzxGQzf2LZSuQXi97oYFXMta1B6GEYXd7BPqssvY,1095
6
6
  mteb/_requires_package.py,sha256=eHg_TD9BVZRzNCcQQrUP17d8M1DF_vOd_tVx54AmAnM,3017
7
7
  mteb/_set_seed.py,sha256=HPlPRl__Pe6IG-4UgJqTfplcivJ_wA2kaClbXoHQedM,1178
8
- mteb/cache.py,sha256=EogjsGZjoD6wZmVr4R3Lrc25C0x50Oie_i29K_4iHwo,21236
9
- mteb/deprecated_evaluator.py,sha256=9cJIahJHNZphoqo6KZfp30LLhIdyiR3SSLcut4FR_Ek,26778
10
- mteb/evaluate.py,sha256=IcaNu3VQwoeH7F1m8_7qJ6_lffHPujRcjKOBo4A7JBI,18631
11
- mteb/filter_tasks.py,sha256=5XE1OYmgDDoJYnXwFf4ma_PIT_Lekzs420sQF_kpCiY,7240
12
- mteb/get_tasks.py,sha256=6Gc18a2bZoLQV1Ms_qdr2KieAqIXg8TDg4l7ZN8rW2I,14218
13
- mteb/load_results.py,sha256=Xw2ZX7BToU92WwUTQUQKPAgPhX7ucyRRdoCrxAoPHdI,6414
14
- mteb/similarity_functions.py,sha256=ySSnrKl4cSKOWfyIKQPVTJtxuy2ZNfcv0COXDp22QlQ,10630
8
+ mteb/cache.py,sha256=8EB1irD7AHKxYuELFYzEC4GA04TMNThXJJSHixQZw6k,21494
9
+ mteb/deprecated_evaluator.py,sha256=LCnM-kG2SBkh-xqVd4MurExsVMlFOIycSb7sHz2S_Cw,27634
10
+ mteb/evaluate.py,sha256=6h06XsolgVCJEq9j6NA5ebwH2rSLsyIdtrxHanlqQfk,19185
11
+ mteb/filter_tasks.py,sha256=D9g2o79aQiA5va7u_QKtMlZNDUmYwZGqCDpaKhBimWQ,7335
12
+ mteb/get_tasks.py,sha256=UoxxsGVgeCm_qonCihl7EOFqWN_9BOCW2IP7GMN7ICw,14319
13
+ mteb/load_results.py,sha256=9SovAzy7TQn-hibClDfH5B-YDMVdi4tZmDgGYfiL2Hc,6431
14
+ mteb/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
+ mteb/similarity_functions.py,sha256=7mv2dFpMiWNDnGCjCsRQOT77RTtsIsoKUma_FsXG5z0,10790
15
16
  mteb/_evaluators/__init__.py,sha256=Ag1_RWpxBGMpujzd3FZjI40gY_KQKIpY31tJPuk-hFg,1013
16
17
  mteb/_evaluators/_download.py,sha256=jntlcURbJxcxUjTmn2D9Tu6ZnWgDc9t5bY8p9CZCqv4,586
17
- mteb/_evaluators/any_sts_evaluator.py,sha256=f0V3NDP5Bfp8qEeBwP8E-Enj5F5NbFze-kGmzlkObQA,3762
18
+ mteb/_evaluators/any_sts_evaluator.py,sha256=V22PHqcscukru73vcqeM5SNQnH6EAYEFDwAzw1ygULA,3737
18
19
  mteb/_evaluators/classification_metrics.py,sha256=TI-cMPWrIpMqpsNhhwSBY4bZUu2yM469fbcu44zolW0,1926
19
20
  mteb/_evaluators/clustering_evaluator.py,sha256=5XoKHl5LcG9jQ9oBzNAWYVpZWWUxrars3t7TdIV7xS0,2052
20
- mteb/_evaluators/evaluator.py,sha256=gwaeftcAKoGcIQs8jIaafynbcYrYErj6AitHBxgjn2w,807
21
- mteb/_evaluators/pair_classification_evaluator.py,sha256=6lgDI9wRfEK937YTS4l0W1OL1IQpHYZ4l34-Lxi9KdA,6401
21
+ mteb/_evaluators/evaluator.py,sha256=YicM1o4nv09pIJNLjDY5yO2Dj_k7NSkpd5KKpJG6I-A,872
22
+ mteb/_evaluators/pair_classification_evaluator.py,sha256=8SEuvYCujv6MWEThPB22Bud3QrXh_MKNh912NBJtn9g,6428
22
23
  mteb/_evaluators/retrieval_evaluator.py,sha256=HsowKZkqRCNzTwM7EcsHX18KhVKAjrm0sa_wFrreCb8,3031
23
- mteb/_evaluators/retrieval_metrics.py,sha256=we0damQCJrdaRUD6JlU2MM7Ls9xERP_OBS5gHt53u9Q,23588
24
- mteb/_evaluators/sklearn_evaluator.py,sha256=f9SgBbvgCrkltdTebQTixT7KmIagGkjQ_cNnKuHTb3w,3772
24
+ mteb/_evaluators/retrieval_metrics.py,sha256=jd5BEinfGPdHPK3kXf6kfBs0gvDuBXEWyx-RS7G4c8g,23756
25
+ mteb/_evaluators/sklearn_evaluator.py,sha256=CvJgH9-fGDNMlLPgvAN92-OUplRAGhywVZEN5Jtgspw,3828
25
26
  mteb/_evaluators/zeroshot_classification_evaluator.py,sha256=dQq6g9my-0xn_0fLJXSnhN9Qu6PuJtWCKGIDrlkeyJk,2282
26
27
  mteb/_evaluators/image/__init__.py,sha256=CsQd7OMkeV2Phun7paPWjayZ5qRnvj8H0TYBFeqMxag,148
27
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py,sha256=lVizL_11s0yFAZzuGqv-wtkBbMaK7cArD1eUkxwG4uU,4883
28
+ mteb/_evaluators/image/imagetext_pairclassification_evaluator.py,sha256=8vOuuu_krbnz9U-WejDo6isuDHzb0yM9lKDioQ3SvKw,4940
28
29
  mteb/_evaluators/text/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
- mteb/_evaluators/text/bitext_mining_evaluator.py,sha256=XS7AVml5-BpQWtG1XFHf6fx8VMVPRwibg-9si4b-A_U,6308
30
- mteb/_evaluators/text/summarization_evaluator.py,sha256=l0AwjVO594mtzPV9Kcqf_xtHHpkx6uhDJ61KnolcVAo,10461
30
+ mteb/_evaluators/text/bitext_mining_evaluator.py,sha256=MasngW0geNUfPOcN7j0qADx-lyXMF7qtjpW9Tq-fRMs,6556
31
+ mteb/_evaluators/text/summarization_evaluator.py,sha256=b21w62v8ZAPvUIci4YCJf6tsViJcU9WqCgD7KlbSV9I,10727
31
32
  mteb/abstasks/__init__.py,sha256=1iAwpYTWX7U-goak2KMmacPFCzxPchLQAmZ_uI0t-p0,1130
32
- mteb/abstasks/_statistics_calculation.py,sha256=UP2H2Cy8yqwtqeimTWfe4unmZ4iyyr5qiBNZzzFjy9o,5669
33
- mteb/abstasks/_stratification.py,sha256=zfwkIVmD7Aq7mR2Yt8jTeW1j5ZVV7CIweW842VzcfXc,14364
34
- mteb/abstasks/abstask.py,sha256=nZwiY_5d0VVtUrlCATngpFLG3JAovO5AvmD0nkkWsLE,25118
35
- mteb/abstasks/aggregate_task_metadata.py,sha256=vzt1z2wDl0sXD7ErZFwKojYwmFUBPAnGlXLuqLA_-6Q,5992
36
- mteb/abstasks/aggregated_task.py,sha256=puY6-EAqbL5ehKvFHTMriIdy3rAuqqYHF3ezog1eYxw,6671
37
- mteb/abstasks/classification.py,sha256=k_wrM1rq2XcVEK97RpU_uEcqhiWWbV7sm3B0dtvP5yY,13376
38
- mteb/abstasks/clustering.py,sha256=4KcaU8_sNLmLvMhwDpNmcY2nD3BNyx_LcM-ddSv-wtY,14410
39
- mteb/abstasks/clustering_legacy.py,sha256=zkibXenniqmSfFr8B8KvGGLoALkuxNZo_vJkeu_7GWQ,8803
33
+ mteb/abstasks/_statistics_calculation.py,sha256=FI2kAK1fLf1HreoBNYZ1YKKjD26xI0UUhfmoC7x6Qss,5974
34
+ mteb/abstasks/_stratification.py,sha256=GnqYRtkFYsB-412EvMR2iMqIinFr98NCSmxHeCXctlw,14347
35
+ mteb/abstasks/abstask.py,sha256=0q6o6y_F5fe9l8V-DyQT7oJkGJHD0pjuWXxgAj-6CPc,25535
36
+ mteb/abstasks/aggregate_task_metadata.py,sha256=nDkXU-_mxPdf_YK8d4P-fPGAzX3jBfwA19P7ZOgn0Fc,5646
37
+ mteb/abstasks/aggregated_task.py,sha256=l7Qbr6sVKzRizlXd8Hio9LMrI545Www4fZafjylsrN0,6056
38
+ mteb/abstasks/classification.py,sha256=g_Ie6poDDA6CjkeLMYYi6g1nKoq-f7rNwC6rYmksOxM,13690
39
+ mteb/abstasks/clustering.py,sha256=q8EBZJGvNSXMO4YghnGjI294jSGWyxe5PEpnYYURCDo,14612
40
+ mteb/abstasks/clustering_legacy.py,sha256=OFBmHwLIOTpzwgGLuxhmSyp13vBJog9-ZCq0Ambo6eU,8853
40
41
  mteb/abstasks/dataset_card_template.md,sha256=aD6l8qc3_jxwoIGJNYLzse-jpRa8hu92AxpnUtNgges,5122
41
- mteb/abstasks/multilabel_classification.py,sha256=rpIwI3jV2YKtmXlFS2_Ytg4yYjdjPy0q5OU4MsRJFqo,9211
42
- mteb/abstasks/pair_classification.py,sha256=ToOBFDiokZOz9ea-klMLj_37slbVFR3lSuihP81x9Lc,13263
43
- mteb/abstasks/regression.py,sha256=SeacOErZUXGLGOcwqAvht6BlbD8fcsn9QhNiFIuJGyc,8832
44
- mteb/abstasks/retrieval.py,sha256=7QTKYlGaGvF1lOQkB_B4qj8Vm2FxxFXNVTHhfwZO8Bw,26439
42
+ mteb/abstasks/multilabel_classification.py,sha256=uRUPGRig5K-_Lex79X2tnWOwIgC0_noezMUIBKv7B5A,9538
43
+ mteb/abstasks/pair_classification.py,sha256=vp8gJXlr11kwdg6wdgkIgouAdSKMAczVjdG8VQw-y5U,13755
44
+ mteb/abstasks/regression.py,sha256=-t57ZfZzNIa8iKQgJHCs7uZcKkX-RwdBZm7bUjintas,8880
45
+ mteb/abstasks/retrieval.py,sha256=dwQZcqNOD1T8k4kYdTTMCTlEuB0fFRDkzbNm45asTXw,26542
45
46
  mteb/abstasks/retrieval_dataset_loaders.py,sha256=WukcFAn54rUpXULCG43eysHozXHAxo2CaPhQyL_2Yg8,9401
46
- mteb/abstasks/sts.py,sha256=aKTivjvDtAaoYb1hz1NBv2o3UpDR-3AaeHgkDFHMBGI,9077
47
- mteb/abstasks/task_metadata.py,sha256=7CzYK1y-vwLUiWaEGPgU3HiolpW3UCul8Y2KJ-WSpeE,26892
48
- mteb/abstasks/zeroshot_classification.py,sha256=4UxBIZ1e1iRK8PRAhCWnnSDirK2vi5-w2N5ZomCnaIM,5882
47
+ mteb/abstasks/sts.py,sha256=61hb19uZnmM0-NtaMLhVjo-5kvRW2nzA3PrEafIjhJA,9233
48
+ mteb/abstasks/task_metadata.py,sha256=11bkcVzINK1nX18kiugGP5kfQHc8YqPaCeYh4HckJng,27061
49
+ mteb/abstasks/zeroshot_classification.py,sha256=JeRSqEj2wILM5AziKw02-0iwzCp7g7X5ALh4LX7mhU8,6024
49
50
  mteb/abstasks/_data_filter/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
- mteb/abstasks/_data_filter/filters.py,sha256=p1QLy7V9jYVFicef61fwzCpbSpTA6rOv8CxkwEUTMvc,4585
51
- mteb/abstasks/_data_filter/task_pipelines.py,sha256=L56nKTGwLH3QqmzkO-Wx4Vi5vfovnnKIDN_f3M8FSiA,3078
51
+ mteb/abstasks/_data_filter/filters.py,sha256=znU7pjA7GYbChxUVyPGgCIdp7OvFeawBvksXki5LMcg,4611
52
+ mteb/abstasks/_data_filter/task_pipelines.py,sha256=HUB2fXX5IsLJ9MchLoh3cEjiywkPEY1wFgKBlv1wz58,3158
52
53
  mteb/abstasks/image/__init__.py,sha256=NgvMJnp1g2mUv27RL-TvzA7s1BOdMG-EB1CrZfdbWdg,136
53
- mteb/abstasks/image/image_text_pair_classification.py,sha256=SejETTXc3g2VSWYafTe-VAHZcNpX98bgzsWsqQisIzI,7712
54
+ mteb/abstasks/image/image_text_pair_classification.py,sha256=eaiwwhJproazPm3vyagVa4Dx2h-REQsMYHi2xA1c178,7901
54
55
  mteb/abstasks/text/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
55
- mteb/abstasks/text/bitext_mining.py,sha256=8m86XHJ3TxguC9itxZRq2Bt_p0NYojojS2BtkAiW-QM,10508
56
- mteb/abstasks/text/reranking.py,sha256=rfRGRBeSjZLgkh8pneMgRm-vd9NHr5jSFH92YfOHfmU,7776
57
- mteb/abstasks/text/summarization.py,sha256=KYEb8gh4JjpSsrvGUmQ2VlrVdzzVxIWcitXOJUaHhO4,6954
56
+ mteb/abstasks/text/bitext_mining.py,sha256=42MFopdRZMlIHfMREmP2YAkyScElOsNEq6z3XnM8JvQ,11142
57
+ mteb/abstasks/text/reranking.py,sha256=QMgAAndGYRzvQdlhjLRMxrh_yrJZ0VQH40I-7mXo1O0,7872
58
+ mteb/abstasks/text/summarization.py,sha256=Sr-QX7T8SDS2dudSEspZHUtH_sxF_8A_tgfbkZNT3cA,7137
58
59
  mteb/benchmarks/__init__.py,sha256=MQEVeli-zLaJ7Xg0z7RhXQwsdmm7Ht_W2Ln0rZo1Szc,225
59
60
  mteb/benchmarks/_create_table.py,sha256=b2RqGqi0ZonKbHecEcZiF4pkfE96smFRIzxOI82ETA8,22304
60
- mteb/benchmarks/benchmark.py,sha256=E6hydDE9rkm4egsj52aDjQ0w4BQ1TBBP9gOAvw_Uh48,5583
61
+ mteb/benchmarks/benchmark.py,sha256=MdRdGIGyYOH1_wK9O6NSAGjsA_QGjU5VKBoLPJcd4PE,5583
61
62
  mteb/benchmarks/get_benchmark.py,sha256=-n_O-gitRKZi48gJKNgGuI36hsP7yLVSiwulnMHN7Gw,3935
62
63
  mteb/benchmarks/benchmarks/__init__.py,sha256=73NYNv98q-tRCqf2YHabvElz_a8g_mF75HTup0J-E5E,2220
63
64
  mteb/benchmarks/benchmarks/benchmarks.py,sha256=_8zds06sQj41JzR6BHGWk33DZE2VGvabhBoyty5oAHk,97949
64
65
  mteb/benchmarks/benchmarks/rteb_benchmarks.py,sha256=QnCSrTTaBfcRlAQp2Nu81tgv1idMXqiM16Fp2zKJ5Ys,10607
65
66
  mteb/cli/__init__.py,sha256=v-csUr3eUZElIvrGB6QGtaIdndDfNWEe9oZchsGsJpg,64
66
- mteb/cli/_display_tasks.py,sha256=7A06dT9sSoTz6shyMvskPxuc5eHY_H7PGPlROzMP0yw,2196
67
- mteb/cli/build_cli.py,sha256=SzYrKEdbtfyA08ATPPL4_Z5REzNKp5965R_ANEKc3ug,12408
68
- mteb/cli/generate_model_card.py,sha256=IZ7C96xvtBcqERm1goTynwo8A9fpI_KDUxGiyZeLfGE,4053
67
+ mteb/cli/_display_tasks.py,sha256=pWKupzak8uxEIwJZbYpZpteeVprOgVT9Wr0HYeypitQ,2206
68
+ mteb/cli/build_cli.py,sha256=ccxmjPDLT4GqBq_son4VyfxpGTnY0w_L-4H1p9izLTk,12608
69
+ mteb/cli/generate_model_card.py,sha256=thc0I1suK87g-ND9fsKHHxrYlnQ_7AmjWFaydLtXc6Q,4288
69
70
  mteb/descriptive_stats/BitextMining/BUCC.json,sha256=7zXoJaZacNdqMSG60jPZGIDJ1is_bxbVlcrVyImPRxw,3745
70
71
  mteb/descriptive_stats/BitextMining/BUCC.v2.json,sha256=IRPOKaIaUD31okNe12nQV2E1JeYK_Fo25Tz7d-utATM,3716
71
72
  mteb/descriptive_stats/BitextMining/BibleNLPBitextMining.json,sha256=BxzjiVoeXrSKaeBIVytLKMf2yx_6ksZ4GddPtTU8MWY,1248649
@@ -1435,33 +1436,33 @@ mteb/languages/iso_15924_to_script.json,sha256=agZvrYqSc0YJDXoqluncshuaMeg5RGkd_
1435
1436
  mteb/languages/iso_639_3_to_language.json,sha256=KDVAh3TQziSyUd8xGDwpUHRUeTrngwp-MDuOxM9bpgo,193114
1436
1437
  mteb/languages/iso_mappings.py,sha256=TKpAmP9KL-KmY5EsHjsrfbnnluvCHES5mTlXNUC-pp0,891
1437
1438
  mteb/languages/language_family.json,sha256=OUGcHeOIPcZPb2FWmYLhxTS0JxjK5y3Fo6x0PeK0cKM,1833535
1438
- mteb/languages/language_scripts.py,sha256=5wix9HTYolNIpTiS5oXf2pGJyL7ftdGKs_m432w81V8,3998
1439
+ mteb/languages/language_scripts.py,sha256=p7AM10Fe3b3EOMlPj8i5_MDjtyoH4FMCCBv_zrABWBg,4053
1439
1440
  mteb/languages/programming_languages.py,sha256=zxAakT3OSUnAuTnQ34VyeFIECnNXMlleZmAake6jsZE,211
1440
1441
  mteb/leaderboard/__init__.py,sha256=991roXmtRwEQysV-37hWEzWpkvPgMCGRqZTHR-hm2io,88
1441
- mteb/leaderboard/app.py,sha256=5n17etnkh6TNgzPxOVhRx3vFmoji8ymBU-BVFZXUIFM,37157
1442
+ mteb/leaderboard/app.py,sha256=gqDqnMFunYndpTkQbT3OA0Khdjqya_Leghnl4c3dIDo,37141
1442
1443
  mteb/leaderboard/benchmark_selector.py,sha256=qd-2L20RQ4ACke01UlytkhZok1dkWgfUlXzfET52kGc,7956
1443
1444
  mteb/leaderboard/figures.py,sha256=cfOK82rRf-7sCjyP7GBxh4ezhOIt0OhD0_86mKtzLrg,7530
1444
1445
  mteb/leaderboard/table.py,sha256=KqU8aAbZ_tDp1O_qXRGWR32QnB7v_lsF6k5jxLcQVN0,10366
1445
1446
  mteb/leaderboard/text_segments.py,sha256=iMIkS04QQjPbT-SkU0x6fOcS8xRbUYevryu9HydipKM,6570
1446
1447
  mteb/models/__init__.py,sha256=ABTuoqiBjBtBWW3LYY7ItBHdylR6jWoy06HH0g6j6fU,910
1447
- mteb/models/abs_encoder.py,sha256=XblcGJYJlbTwhX43wvRft_XqnSq2WpzjFcNIwOyRjYo,16443
1448
- mteb/models/get_model_meta.py,sha256=BMzlqTuzzhIFmfzmtshnRu2KCWxw9mCPyClJfe4oGdQ,5396
1449
- mteb/models/instruct_wrapper.py,sha256=G4dMcmD5A4M3hmKATf5OYezmZv8-Ie189BrdmipBo7Y,9091
1450
- mteb/models/model_meta.py,sha256=FkAgijAyfDBUK9Dn00o3zPVNtj2NPZ1717G0iO2Z3tU,29740
1448
+ mteb/models/abs_encoder.py,sha256=HSJTjvcPYJRsKhhZeK2r6YP241EqpovwBcAuX1NevKE,16553
1449
+ mteb/models/get_model_meta.py,sha256=76BlPX5NuoNpo223OrcjD6a15Ee23G2RRlQfQt8mrAA,5620
1450
+ mteb/models/instruct_wrapper.py,sha256=e6id0oNMQd7ulDCkB-2IGaF2JK5S3Tiwcn-QFG-ufDk,9292
1451
+ mteb/models/model_meta.py,sha256=p4Xl4Yae3kIp2k_ebV4VNGAzthQVDgDWDW8toiuV8S8,29842
1451
1452
  mteb/models/models_protocols.py,sha256=D2hYWn_UBGMaKtRwBx3u0B0ni6lHJjSzTxX21XFNwIc,8917
1452
- mteb/models/search_wrappers.py,sha256=zpCvxUVNQWekyC4Fiz7mvlI0VPdSrFq41A0GrCDvBK4,20331
1453
- mteb/models/sentence_transformer_wrapper.py,sha256=xSkFcw6EiCmPJeeMPYm0A0jONRIi0lQc0jBSEhUgXN8,12144
1453
+ mteb/models/search_wrappers.py,sha256=yu3BnXLqE5JbOD14cF2mhyjvlF5LRKPfgk8uUuDhbjI,20939
1454
+ mteb/models/sentence_transformer_wrapper.py,sha256=3zmWttzmIvU8Uuz48sHJ4VQf1Mu_kvSLCdxezoQ6FN4,12545
1454
1455
  mteb/models/cache_wrappers/__init__.py,sha256=1w1TnMwulWJSzNkLXjbh5MY3sqgHWc6vUntYn49i9X8,169
1455
- mteb/models/cache_wrappers/cache_backend_protocol.py,sha256=TR7kD7KbN1J4piszIecpegtLZYGy7sRHZt3SDWlImKk,1665
1456
- mteb/models/cache_wrappers/cache_wrapper.py,sha256=KLDeOCe_ndQshbZa5ep2u3jovsl--tfpQzvt9EXyxCA,6589
1456
+ mteb/models/cache_wrappers/cache_backend_protocol.py,sha256=iGWdqDEoaCxUVEnwsXhy-m9d2QX8KTaQ9m2ZyawrMes,1634
1457
+ mteb/models/cache_wrappers/cache_wrapper.py,sha256=GPC0UhHfkUH-i-Q4HdFvBev6h6GtMlWEId_B3tL-J54,6600
1457
1458
  mteb/models/cache_wrappers/cache_backends/__init__.py,sha256=hN2Tq7cpTxoOYSCJ1Wnpvb8dEm-kQLfCCahT1N9Bacw,123
1458
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py,sha256=zAp7BDuYyGETn2kX58uk8_tn1G2B7bgcsItDDxgyn-w,488
1459
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py,sha256=i9IfaCv1-_BvVokXFW1UZ9hMLCuM6rZ0tI-ZesoBkt4,3734
1460
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py,sha256=GyTVC5DLph3EeRnDMO1EEQzBDoOgk2J1hPqpl07lefM,7442
1459
+ mteb/models/cache_wrappers/cache_backends/_hash_utils.py,sha256=CeewRAwKr2RhFB7VOpam-4NDFMjFl8VaVPaZolbGGq8,550
1460
+ mteb/models/cache_wrappers/cache_backends/faiss_cache.py,sha256=oAm5Ca7iR0AE1ivSvOF3Nbbtb_jhfCwp8O1Ck4vSk3s,3828
1461
+ mteb/models/cache_wrappers/cache_backends/numpy_cache.py,sha256=V275IY-0lyh2REqZjIZOgJJ7SY05yiWdHNF2kiSdRfo,8071
1461
1462
  mteb/models/model_implementations/__init__.py,sha256=BZDdde6ajKv-yroy9mqE2YS3Hw1KBdKoxBPg8aPTZEs,1164
1462
1463
  mteb/models/model_implementations/align_models.py,sha256=hKnheWaRqpAcPo1SJa_c2vBbB1ayrKjWmSjbZ5bwGAw,4544
1463
1464
  mteb/models/model_implementations/amazon_models.py,sha256=a9bLYQ1ZGWDo4RdyaPNsBqadMrBm550fLIFr1Zfp2Nk,720
1464
- mteb/models/model_implementations/andersborges.py,sha256=AsVkRjIQKxJPdGW0ASRw_9hbfoDOYnROytV2Es-53BU,2413
1465
+ mteb/models/model_implementations/andersborges.py,sha256=RCLv31Bj8FzktPWnWpBoWAi1oOr-mAQibgzp83l5ABQ,2381
1465
1466
  mteb/models/model_implementations/ara_models.py,sha256=UUTvLOZyKlF0-pTDniwQ-ItDONdH2JsyJKUdwtZ6aZI,1447
1466
1467
  mteb/models/model_implementations/arctic_models.py,sha256=Ca4OzC89F0kKb5CRd-r2Wo65MF2dsS5GiB6bCWnjfQY,10558
1467
1468
  mteb/models/model_implementations/b1ade_models.py,sha256=voOc0gTpqE31UxzaMZq_8AnWULJZwQBiFzViVx-m2Lk,1635
@@ -1469,34 +1470,34 @@ mteb/models/model_implementations/bedrock_models.py,sha256=KKs_0_Cl6f0nzzmxmmKJ1
1469
1470
  mteb/models/model_implementations/bge_models.py,sha256=L98iw0GkSY5BDBVC3LELf2MYwjNG_sANlVwKxObD2xY,24528
1470
1471
  mteb/models/model_implementations/bica_model.py,sha256=Q2dg0w_lrcBhnOUjI4ej9ec9U82aWUyzNx7ezRv81vQ,1253
1471
1472
  mteb/models/model_implementations/blip2_models.py,sha256=F55NYHrK-rprWblIfkKg3GRsOuTqBNZlOY1R33UnLms,7687
1472
- mteb/models/model_implementations/blip_models.py,sha256=AIVaMfXngIUxYV_HKeq4I531zKlDkiPMbadb8jDrelI,11724
1473
- mteb/models/model_implementations/bm25.py,sha256=gsAHQSt10cU40Q-SOfmHCnzc4EY7GZyU0HzOVC-LhJQ,4862
1473
+ mteb/models/model_implementations/blip_models.py,sha256=LZrk5tn_9gokuZTfuv-DasJqx3UTgZsAEFmlJpQ-9xc,11596
1474
+ mteb/models/model_implementations/bm25.py,sha256=nSDtTXu5a5EkjuaF6V4iParwpxlnXKVNDFntp6uj1Q8,4846
1474
1475
  mteb/models/model_implementations/bmretriever_models.py,sha256=54OO8DJxlN3Fq-AfURZiFIbVMKisrnkOf59NNEKpYB0,6659
1475
1476
  mteb/models/model_implementations/cadet_models.py,sha256=wzbPmhsvBogFAEukubUir8EItlcmjcmfIGNMhtj-p7Y,2251
1476
1477
  mteb/models/model_implementations/cde_models.py,sha256=WdpoL_59fgRv2qq1nw9-oqkIvL8KAhHdSTxe5GB17fc,9064
1477
- mteb/models/model_implementations/clip_models.py,sha256=A4AyhjDiTtFTqFC_Ae6oVuWoRbjVHkoe_c9YWFOsoV0,6185
1478
+ mteb/models/model_implementations/clip_models.py,sha256=snF74_5ISfrRYJwB4yHslO5SEF1cXYa6XIlNaplEqX0,6137
1478
1479
  mteb/models/model_implementations/clips_models.py,sha256=QV9fIoyP2dKrra9aS04TE6rveUecVggr3jfXwNeSAOw,3488
1479
1480
  mteb/models/model_implementations/codefuse_models.py,sha256=NXkFqb1Pdp-HLWkzhh0ZzjVxd45fP0cQgGZ1KvXBk_s,14053
1480
1481
  mteb/models/model_implementations/codesage_models.py,sha256=ZPr2475aZI0vPbbLbetH2kDEY-1yNeO7OjzEfvykvg8,3076
1481
- mteb/models/model_implementations/cohere_models.py,sha256=d2CjfrVLvkb1AATf5D1el5iMbRwW62bbZq02SwVXgvU,13936
1482
- mteb/models/model_implementations/cohere_v.py,sha256=OM0Euckp4B0H8WI_xWfL1HrwC0gOS4NwYC3h-fpOPhk,15890
1482
+ mteb/models/model_implementations/cohere_models.py,sha256=vAN11i_YaVK_ZwTRE46AG7i1YlSlmVIlw_G6dUWvaBM,13920
1483
+ mteb/models/model_implementations/cohere_v.py,sha256=bDrvREsuL1Ea3ZGCGsvXTWQ4nMJND3T0dYqOKAl1vls,15858
1483
1484
  mteb/models/model_implementations/colpali_models.py,sha256=9SooeNDU12nsisM6RIT9B9TOe56qX5vnL1rOctA4Wrc,9219
1484
1485
  mteb/models/model_implementations/colqwen_models.py,sha256=JOhrLlGBF1VEq-KqU6F8wAw80U96RWrGvXl3Ue6rBak,15886
1485
1486
  mteb/models/model_implementations/colsmol_models.py,sha256=TCxNsllRkI6DIb-JLtBlD5s9SrJhVLraP-DT1CNy0EQ,3041
1486
1487
  mteb/models/model_implementations/conan_models.py,sha256=AJJ8_Mv4QR1kQoKamjoZqgjLsosLb3AzNWNuWwvoNq4,6528
1487
- mteb/models/model_implementations/dino_models.py,sha256=XMlcjKOpiM9PXqb35Ve1NpgxIsDnYsGNCVST7bYYpQY,25512
1488
+ mteb/models/model_implementations/dino_models.py,sha256=P2f_iOFYK4bdDDiYmNgmtWFBaQbyE-0DHUdBAeMI2LE,25429
1488
1489
  mteb/models/model_implementations/e5_instruct.py,sha256=6bQLMC8Nea59qSu8RSqZp9n8XuQokBJHoxfZb2l6BQM,7780
1489
1490
  mteb/models/model_implementations/e5_models.py,sha256=18--kpfMSKxgflGjB3GvyDHOjzOpuooc3iSVe-no2U0,9607
1490
1491
  mteb/models/model_implementations/e5_v.py,sha256=Ko0ImRjhkzRM9kAvJozmHzUJg5pUtT4xf22f0AjXHI4,6716
1491
1492
  mteb/models/model_implementations/eagerworks_models.py,sha256=7bSInJGHOUqc9N-yzq0KUAtJZDX0zZkmEkzbCG_Pz0c,5770
1492
- mteb/models/model_implementations/emillykkejensen_models.py,sha256=OveUjIikL81na6Qr8U0AcBfr9gzc0mnEKPqJXwBFSXc,3743
1493
+ mteb/models/model_implementations/emillykkejensen_models.py,sha256=8TY70wiyDfjqN3BdAD9DJMnIXObTczCRYk4hYWmQOjE,3695
1493
1494
  mteb/models/model_implementations/en_code_retriever.py,sha256=6sSJ7l8Zrf71fYlcGaWAdF0vcZ9OAFeC1IsVtM2W_i8,1069
1494
1495
  mteb/models/model_implementations/euler_models.py,sha256=ftNTnLJ42cjvcUCuM5VyYcm3cQBHk6la5Gezj67_gt8,1132
1495
1496
  mteb/models/model_implementations/evaclip_models.py,sha256=oEoHnKQ4W09EQUCnNwpEd1ieDZGbth4j6lXfC-9jVBc,8104
1496
1497
  mteb/models/model_implementations/fa_models.py,sha256=Hnw2E2D1ahleS15kkC0aGDIKW1Y-0wIMOlXtqEG6Bks,9818
1497
1498
  mteb/models/model_implementations/facebookai.py,sha256=0x2c8LmvIFg6kGXtmDa9cbJeTmG3tia12vyr7lgycI0,4886
1498
1499
  mteb/models/model_implementations/geogpt_models.py,sha256=X85_jeFzBZMjNRsyqwFbIQBgXXP7rZAr5PI-wbuy828,1949
1499
- mteb/models/model_implementations/gme_v_models.py,sha256=5hWzk2cuuxoQq6IbGbHu_BngVS4F7BT7epak3g6dHk0,13709
1500
+ mteb/models/model_implementations/gme_v_models.py,sha256=c5OAMnMsNamnjrSiOR9nAav7hXYLUWbe7mEksPJvL48,13748
1500
1501
  mteb/models/model_implementations/google_models.py,sha256=lEpk1pOkp30kg6xljw8Gtkf-QGXAe8oJVp7JZhzWlik,11143
1501
1502
  mteb/models/model_implementations/granite_vision_embedding_models.py,sha256=A9yWcQezu_2yVxSm3pv0Da76Hl_uNUfrDVtPK1uqYFo,7341
1502
1503
  mteb/models/model_implementations/gritlm_models.py,sha256=FKz9AHPaelomNMZP282F5vwsMjEBV3C2IuL3XTxXKCA,3057
@@ -1506,37 +1507,37 @@ mteb/models/model_implementations/human.py,sha256=EtYa8G7Dc8fDcelBVw0xTpxGGx1YKK
1506
1507
  mteb/models/model_implementations/ibm_granite_models.py,sha256=--8N-8Nk2V5TZqGUAo9B-qoDeVTbKIU_jy03ccotmbM,8058
1507
1508
  mteb/models/model_implementations/inf_models.py,sha256=IBC3TaEkOxrUDXkhXaVnxerjWOZZv1v1eEqhweGWKMY,2958
1508
1509
  mteb/models/model_implementations/jasper_models.py,sha256=K2DC0JfMVG8Fa822-xemKNhtuL2fZgiKYTTpXp2yBGg,16263
1509
- mteb/models/model_implementations/jina_clip.py,sha256=Ulmy5lU7bROwaCq54YsxgFehWa8-qUSvzDF_SyvKrnc,5144
1510
- mteb/models/model_implementations/jina_models.py,sha256=5HEUfHqozrrvWHjOyj2CEU6xAM3kduLbXl4GQG9aByc,35021
1510
+ mteb/models/model_implementations/jina_clip.py,sha256=xV1R5xyHqZHyzlpx7O0Pg1SwTagGEwt_kw3wWoshgNM,5128
1511
+ mteb/models/model_implementations/jina_models.py,sha256=WLg-dbVFHI9KbpLSFipdOiAu4t0uMHBSDdq9eaKrEH8,35005
1511
1512
  mteb/models/model_implementations/kalm_models.py,sha256=SHqkw5p7HzmQrb_bIFjRp1rsuv2v531nXIk390h_ojY,62115
1512
1513
  mteb/models/model_implementations/kblab.py,sha256=n6sMGorSIBQlRHipPC3j2UiKA3r7avriwPvw0wuQKe4,1161
1513
- mteb/models/model_implementations/kennethenevoldsen_models.py,sha256=ETKkFHRTSGR951YqU0TAJa2P--cZ7aaFV0CC6fdq5gU,3045
1514
+ mteb/models/model_implementations/kennethenevoldsen_models.py,sha256=KvOhXDuhCtsTBGHg3ukCrQ45oz_hFylH7XjX3yjg1Ys,3013
1514
1515
  mteb/models/model_implementations/kfst.py,sha256=sqlEUfAl84EPw1WjTZdlB4ps6GgkY3dCk3n8U9_YtV0,918
1515
1516
  mteb/models/model_implementations/kowshik24_models.py,sha256=i8fDs8Vm5vcpRTW3kI8P1odyDbogFMlMqGK5AOqXaes,1445
1516
1517
  mteb/models/model_implementations/lens_models.py,sha256=sVgP-wyi7SrMVyXkS1msMEKkE2ZTheYrt3QwGezqqJk,1748
1517
1518
  mteb/models/model_implementations/lgai_embedding_models.py,sha256=aigHsDVY1yhN4hhmaxUlsxbPXe9S8JhfpNq6XSY17s0,2359
1518
1519
  mteb/models/model_implementations/linq_models.py,sha256=huy7c95uYmhmjf6VZtx30YtMiSNrqhm7PJE3Vb3W-5g,1898
1519
1520
  mteb/models/model_implementations/listconranker.py,sha256=EwUAvWefDmx4x_YCIJRVsKI3j3konQIHOiJ4paG2lvY,4492
1520
- mteb/models/model_implementations/llm2clip_models.py,sha256=BatYnh6y1w0zF24Fsp1z30kqmXf3FAKeq6_MEKdzEF8,9343
1521
+ mteb/models/model_implementations/llm2clip_models.py,sha256=0dmONEknh5lmMyARmK4VFJ0mpxvly_xqQZ2OwrE8YZc,9295
1521
1522
  mteb/models/model_implementations/llm2vec_models.py,sha256=0I_UydxopC41lKWcIpCMaKADXcFVUfPwKwk0vZFG2zY,12846
1522
- mteb/models/model_implementations/mcinext_models.py,sha256=tjDFnPpFjSeytcrvGmMeTjSV-vXxyNHgV1r33RsBmUk,19058
1523
+ mteb/models/model_implementations/mcinext_models.py,sha256=h-X9og2Cjj8DarHkaLOfqlIHpeCGnJZv0EuwYG61uzY,19127
1523
1524
  mteb/models/model_implementations/mdbr_models.py,sha256=knDaM_j_kL9uq1Ng5s6InsTEZ-Cu0jBux8zmrbDnrig,2561
1524
1525
  mteb/models/model_implementations/misc_models.py,sha256=djB2ySEBiCvxwWGZUXIwzeH9eaXtlqV7ttQEDUFlKQQ,70754
1525
1526
  mteb/models/model_implementations/mme5_models.py,sha256=Fuge1fqGbaWqw-Hbd75Xr31JTqJTL45yJ4DAw3QJuyE,1510
1526
- mteb/models/model_implementations/moco_models.py,sha256=mfn7JetQByzN09NY30O5KAOlNPYCe7BYfGkS3Uk8xDg,5535
1527
+ mteb/models/model_implementations/moco_models.py,sha256=XcYavxcNWwB9V5OA63_HuaKwfDsMv6nQ7jgvNC9vbrk,5503
1527
1528
  mteb/models/model_implementations/mod_models.py,sha256=jt33SfV476FIQJ-W-FRi_ocyRY1u8ldRFuo-PgejJDU,6335
1528
- mteb/models/model_implementations/model2vec_models.py,sha256=eSHjo_X3I_6MGJdT8Hz_b8RQlO5nL9VUatQgbO2yr04,14103
1529
+ mteb/models/model_implementations/model2vec_models.py,sha256=scVmIw-kBysX_kiQ8j8AnsAKne-T6hJ0WyIErUEaGxw,14087
1529
1530
  mteb/models/model_implementations/moka_models.py,sha256=xY3geXKZwefqVsDZq95AB75GlZpvA9mJKSyPMvb75Us,5073
1530
1531
  mteb/models/model_implementations/mxbai_models.py,sha256=YcgOdcx_vv5UpPi7k7PBuq_M0eqCaktfWfQV5NTlNoc,3929
1531
1532
  mteb/models/model_implementations/nbailab.py,sha256=DtfHjQgGX1YPnlceqZDqDr6IlFwKCJjWN-BEcNt5m-s,2474
1532
1533
  mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=oH_ReS5_q7xzJT26p84uzGiszTATbPU3E-mIy4QKgrk,4002
1533
- mteb/models/model_implementations/nomic_models.py,sha256=S5H03E6YdOccq7fh9Ej-gCE88OdR5Cdj3cpQ63HRSCg,14892
1534
+ mteb/models/model_implementations/nomic_models.py,sha256=oDumLKjoVlNULBYkurWPzhlFQ9AqfNXx9yVsnyW2DIQ,14809
1534
1535
  mteb/models/model_implementations/nomic_models_vision.py,sha256=9AQRJkPkFDPjuSqdIh8wJ0-pqS2fe_oDZzPR4Y0tOSg,6831
1535
1536
  mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=phbwPnRfrEuJTlrUucI1qxcViMQWogeXQkTZbUkNsQc,6388
1536
1537
  mteb/models/model_implementations/nvidia_models.py,sha256=OKRnlhlMyBASe-RpU_8j4_ENFdjOtNsZm5fKlnAtcAo,21633
1537
1538
  mteb/models/model_implementations/octen_models.py,sha256=TT87UHZRK6UDenoIXaarR5oCZ6wgILivu-gondkNqDM,6500
1538
1539
  mteb/models/model_implementations/openai_models.py,sha256=905BajYi_XyOZgqU3AeKpwIttLoUitaAyc48sTWI6Jg,9482
1539
- mteb/models/model_implementations/openclip_models.py,sha256=KrLzLtpudqVSEFHaGqY_dOGfC3ZkjYT4_02DYWMUeI0,11644
1540
+ mteb/models/model_implementations/openclip_models.py,sha256=aFBWqHkWjHm8OfCB8RTNiaO03oaILAE2jVLR1VFZgPk,11532
1540
1541
  mteb/models/model_implementations/opensearch_neural_sparse_models.py,sha256=hS33RteHexhkIekQVKsjx6czKr6YdWINaVa60J91Wnk,8481
1541
1542
  mteb/models/model_implementations/ops_moa_models.py,sha256=EFEDwYuKiLzaSAg2_wWesyqRkaCtTcsa-B8Pu2NvEus,2465
1542
1543
  mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py,sha256=qGXv71qRjNCIFluZOwvfBlFlKKyN2bXBokwUPk4KHmM,1066
@@ -1548,12 +1549,12 @@ mteb/models/model_implementations/qodo_models.py,sha256=jMGlDYyAYp87zOwDN_WNqsU_
1548
1549
  mteb/models/model_implementations/qtack_models.py,sha256=YEuK7Qi1e3NyB1tbOmuqV-BIQIaarhQK-33WejupJiA,1250
1549
1550
  mteb/models/model_implementations/qwen3_models.py,sha256=98yCMHTg8ueCT1fXkaNWMBleSLS-ygcJEnjQmcacGmI,5210
1550
1551
  mteb/models/model_implementations/qzhou_models.py,sha256=TZBX9WXn2X5JyFALx2aSZLGsIseNnhrCVMycHU8LUXk,3588
1551
- mteb/models/model_implementations/random_baseline.py,sha256=Ei6YZWhhJuPI60iUzBCHB9FevtlW02VFOslpz1_-8-4,7596
1552
- mteb/models/model_implementations/rasgaard_models.py,sha256=eGe_J_osCOQ4CRBU4e3-OQbfQL4Ab98Abk98Pv6iWtE,1286
1552
+ mteb/models/model_implementations/random_baseline.py,sha256=_lUTjoEl0nJEPcnN1FNWwKEnoJc29PEpaKbnx8HJnLc,7548
1553
+ mteb/models/model_implementations/rasgaard_models.py,sha256=OMRmfD7m_6gudMNY7ZuKqKPxNuXHhhF_ZFSCpGIhBVc,1270
1553
1554
  mteb/models/model_implementations/reasonir_model.py,sha256=o9-DufwMG3gutecFsX6OwTio9LKCJbAXuBV4fD-Q5p4,2244
1554
- mteb/models/model_implementations/repllama_models.py,sha256=o5qW7zZ8l1XZF8VwcLuPRHVJs30_FYUE3DR-Gj-BVU0,7373
1555
- mteb/models/model_implementations/rerankers_custom.py,sha256=1C3_7GxBf-9B8QjesJMLsGyJFRLWdBgn-5d_AlGUNXc,10672
1556
- mteb/models/model_implementations/rerankers_monot5_based.py,sha256=DiTX1CPVZvH57MHjqs01ke7S0EOKji_vvz3MreAMXLg,34400
1555
+ mteb/models/model_implementations/repllama_models.py,sha256=h1vnFXUwbIjsWGDVjIu9sobBjy1OFTfnm_qGPsXDDjM,7341
1556
+ mteb/models/model_implementations/rerankers_custom.py,sha256=dKDaVzyb6Tu-dkyPyY7g3vYOwkdxJrkFMUuhU5SnN40,10624
1557
+ mteb/models/model_implementations/rerankers_monot5_based.py,sha256=3gtMhg7VLVnBn4-na9sOnr87VKCgjP-RwyFuDdJRt2I,34352
1557
1558
  mteb/models/model_implementations/richinfoai_models.py,sha256=YQHVXVg2Wmb8m6nirLx6vwde_1xjOtlgftTv48asnww,1015
1558
1559
  mteb/models/model_implementations/ru_sentence_models.py,sha256=-CbCCy5JRuDZAsWS7FBS7OOPaziFXjwiJdko9241KgI,41758
1559
1560
  mteb/models/model_implementations/ruri_models.py,sha256=QW_Mk5_4U45RyC-CvwjT2MUWtobrZ37wHNxpJGGJmos,10303
@@ -1566,7 +1567,7 @@ mteb/models/model_implementations/seed_1_6_embedding_models_1215.py,sha256=O0Bls
1566
1567
  mteb/models/model_implementations/seed_models.py,sha256=9UF2AQ0Uue8DD73SjYhHn2hLxey_7Iq9ii9TkRaA3CM,14168
1567
1568
  mteb/models/model_implementations/sentence_transformers_models.py,sha256=_4MbkdjZ58bell8Ss0JkyCAkLzUxTLBMofnHckRtWs0,23252
1568
1569
  mteb/models/model_implementations/shuu_model.py,sha256=8-hoGqELHQRQ1QFhjwyuOY_8rqj_6f9vhE1Xi8OJ8aw,1162
1569
- mteb/models/model_implementations/siglip_models.py,sha256=yHfhk5rHC1as0UG7EdEIaqemNxg3e5DRbZnNOunfXS8,12862
1570
+ mteb/models/model_implementations/siglip_models.py,sha256=A2ic42mlHkZKOjFfDxJBbGR96udd8dy7YtPF_B0Ju7I,12702
1570
1571
  mteb/models/model_implementations/sonar_models.py,sha256=e0zG4ZxCM52mOtIpd43mMORZcX39utOiVDvzX_mz7oQ,4810
1571
1572
  mteb/models/model_implementations/spartan8806_atles_champion.py,sha256=ucTQMRhwSWzzIohVN8Zd7qehqllReG6WFTnD2rkGTLI,1239
1572
1573
  mteb/models/model_implementations/stella_models.py,sha256=9nKuiMXkUE58KGpoDx1Ft29x80oCkLQr8GucsM6c4Fw,8218
@@ -1577,9 +1578,9 @@ mteb/models/model_implementations/uae_models.py,sha256=_OLyy5veJJunBewWafkN_FUl2
1577
1578
  mteb/models/model_implementations/vdr_models.py,sha256=1yEkK_5w7rEd4O-8DTjQYc6Ip_h51WxkQcI3vQ2puTs,1448
1578
1579
  mteb/models/model_implementations/vi_vn_models.py,sha256=UZ0bC-inqwL52TjWKfXijyeOyZRIycj1bHJs3t-jjrQ,6198
1579
1580
  mteb/models/model_implementations/vista_models.py,sha256=GkQFHIwwjxwM0wDuo-dWJBo4dLExlHtHfXwhcdKA5uQ,10884
1580
- mteb/models/model_implementations/vlm2vec_models.py,sha256=xG5Lp-v4eB08_iPIcKK11iB7-zOHIPk6T4lWU2OoCcI,11776
1581
+ mteb/models/model_implementations/vlm2vec_models.py,sha256=WRj_ESrQFACJC5fTckvZblTsobXnrZZWlX0Qh83N1W8,11755
1581
1582
  mteb/models/model_implementations/voyage_models.py,sha256=5A5RD2A6B20qLDVEpWL0TNMQOf5hnTVXdBugdh5q4d0,20214
1582
- mteb/models/model_implementations/voyage_v.py,sha256=pkDmyLcj3XCzMJI7AJ86YS14S6_GUqfhFg7cf_otMfw,8188
1583
+ mteb/models/model_implementations/voyage_v.py,sha256=eFdSOKka5VoLjViZk5umlgTw_ETjyXv4yhZ9SoCR-p0,8124
1583
1584
  mteb/models/model_implementations/xyz_models.py,sha256=gjwCx3U4AxMcJDTSWVoYV6xeyXLw7lUZI5D6Q7JjWho,1322
1584
1585
  mteb/models/model_implementations/youtu_models.py,sha256=U2PbAg4QnNZfQSORDm-I-uhYZr3XRQvWiOAU9uO8SQc,5964
1585
1586
  mteb/models/model_implementations/yuan_models.py,sha256=7_nwkXwh3tyoz7wo7pCq9ryHPVX0_uE1wJBNQRsKp-o,965
@@ -1587,11 +1588,11 @@ mteb/models/model_implementations/yuan_models_en.py,sha256=xliuxqPPiCPLdEDhs8OsB
1587
1588
  mteb/models/search_encoder_index/__init__.py,sha256=3QFacIuFyEiI7ocsSkb3Lp2S2L7MLkpHCMIJ201fowA,182
1588
1589
  mteb/models/search_encoder_index/search_backend_protocol.py,sha256=TSjlx88stJcMldbAeVqNCf8JsQvE-B5rf5SBRw90isY,1890
1589
1590
  mteb/models/search_encoder_index/search_indexes/__init__.py,sha256=Wm60_oUemUpFsvrCMW111dcPH2L2rt1iZrXMskXmG7o,88
1590
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py,sha256=WMs3QbbYV13fRuT3dakmdVMZLFdc_9ZzSupS3QxlbVQ,5555
1591
+ mteb/models/search_encoder_index/search_indexes/faiss_search_index.py,sha256=6C9e-bN6IzytwCTjNrwosZD7yDwhbZ-V7pR_IlPWQ2g,5671
1591
1592
  mteb/results/__init__.py,sha256=EXQqK4Am5eIYzD52dpcGAFSdqnC38oE6JHN302oidHc,158
1592
- mteb/results/benchmark_results.py,sha256=yyZux1KMecHI9DE9Vya8bxr4IljxgkNoPiAFvrELbko,19846
1593
- mteb/results/model_result.py,sha256=Y6b_xfJlw8EFZq464ZVhyw0Rryv111hvMjnXbEZJpXk,14059
1594
- mteb/results/task_result.py,sha256=1ezwdxY9ibU4uIcaj6IxjSEkrTQn-2eO3e-hzLHgALQ,32339
1593
+ mteb/results/benchmark_results.py,sha256=r6PI1UmvoRFyLzKOIHx25nw17ZpXgv-SxKRHp-4heMg,20195
1594
+ mteb/results/model_result.py,sha256=WokI7iyF3JQxawRTNQ9dJZm-5pD66oJWio0i5G9AB94,15200
1595
+ mteb/results/task_result.py,sha256=mmH_7jAXcOqWBaeS7FV4uJ8wO0Hr14c0QqrI_VuLXr4,32677
1595
1596
  mteb/tasks/__init__.py,sha256=izAxU0ip1F_YUwx0dFCuN35BaktdmePh6vlDiHC0kLo,503
1596
1597
  mteb/tasks/aggregated_tasks/__init__.py,sha256=Ufgbh1AirxCQkojO3AUhUFWM8zQG10cfdVTkj_PeyLI,104
1597
1598
  mteb/tasks/aggregated_tasks/eng/__init__.py,sha256=HgaSyAX8Is5CGE006RgJkLQQVxrx2FmMnm6NHQBDi-4,358
@@ -1666,7 +1667,7 @@ mteb/tasks/classification/dan/__init__.py,sha256=edrG5UqewQ_YfQD3KtCTs9GU5z1jo4w
1666
1667
  mteb/tasks/classification/dan/angry_tweets_classification.py,sha256=GmNu5-ec_6ebMCxKIgDU54ZfaM0xFV_tYE6hYLN8ItM,3154
1667
1668
  mteb/tasks/classification/dan/danish_political_comments_classification.py,sha256=mChj82mWgXluVC7yXXT2LqNZ_v9QHbNEWIFUGlN8LHc,3201
1668
1669
  mteb/tasks/classification/dan/ddisco_cohesion_classification.py,sha256=8ZJUscPwhd0Y71Sd5tTeEWCuFgN2YHlgX2lQOz9bj3g,4010
1669
- mteb/tasks/classification/dan/dk_hate_classification.py,sha256=Kx7mx5HcEkoisV4-Sb0aCgOLaz2FOkGaet0tprDpOkk,4440
1670
+ mteb/tasks/classification/dan/dk_hate_classification.py,sha256=ixPt5LnWwhxKomGbZ7x5bfIuvgdjAtn_8byL2DFnwHQ,4424
1670
1671
  mteb/tasks/classification/dan/lcc_sentiment_classification.py,sha256=wVbHXQN1I-W8YxDz_fT8Q3ZIM_mgNZDx_wm7vsIBols,1733
1671
1672
  mteb/tasks/classification/deu/__init__.py,sha256=_mikrUfmvMBoIkAHqZoayV6o-8QssaX3E4D1TmxNt_8,454
1672
1673
  mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py,sha256=wyig6rTOET2Km1fX4_LP2FTqbGzF2hgmWwV4EXM88kM,3970
@@ -1733,7 +1734,7 @@ mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py,sh
1733
1734
  mteb/tasks/classification/eng/yahoo_answers_topics_classification.py,sha256=nIuo5-VSPdoJLcOyYbIpLatBUOVpeCWUVBIualjeAb0,3565
1734
1735
  mteb/tasks/classification/eng/yelp_review_full_classification.py,sha256=lDtPzcKlhtcT5VPyPHusb29wWExs3RZGF_AXUG24jpE,3824
1735
1736
  mteb/tasks/classification/est/__init__.py,sha256=v2lzg7TFmXiBAp8B4WS3SAahWzkAJ2TCrGBktbI1qhI,186
1736
- mteb/tasks/classification/est/estonian_valence.py,sha256=8JtG2OV4JvvE3Xl3-DZiRFeFfkJjv7cAfI8DxmrrY_4,3728
1737
+ mteb/tasks/classification/est/estonian_valence.py,sha256=SDXoxEVjFTguNKGYImLkz_u_Hkf_UTvYibfKrPbtbSs,3712
1737
1738
  mteb/tasks/classification/fas/__init__.py,sha256=igukIhFBC-lFxj-zbwaNh6ocGNTsGwY13QhM1e_cf6w,2505
1738
1739
  mteb/tasks/classification/fas/fa_mteb_classification.py,sha256=Pa0uVXgIHhyiMf066rqq3n41RufDEX_Mx18JM_HrHjs,35052
1739
1740
  mteb/tasks/classification/fas/persian_food_sentiment_classification.py,sha256=vydyi6mov_eAfCRH6A3Kf6nWJyJxCoyXUEoi7-MC80E,1473
@@ -1811,7 +1812,7 @@ mteb/tasks/classification/multilingual/nusa_paragraph_topic_classification.py,sh
1811
1812
  mteb/tasks/classification/multilingual/nusa_x_senti.py,sha256=qCWZBHdINL8CO3tucc0n3xodpLk4YMApRG5qZJT_Pvw,2259
1812
1813
  mteb/tasks/classification/multilingual/ru_nlu_intent_classification.py,sha256=ZBouGeVgnSWnZKFl6GtCd0yl5A0WTzAwYlKg405b1i0,1643
1813
1814
  mteb/tasks/classification/multilingual/ru_sci_bench_classification.py,sha256=K2tEYv6hsZwZjNj1RAECrO01F1G61HCtzwtC_v1XjV8,7736
1814
- mteb/tasks/classification/multilingual/scala_classification.py,sha256=tKwtKart9bUi9gVV-O4h4R9z0I8kayGmWWpf424eWAw,2548
1815
+ mteb/tasks/classification/multilingual/scala_classification.py,sha256=6cl5wZYdPiZV1gUvZW-SWyaZqzIEBQ1KxyXwBoJwWz8,2532
1815
1816
  mteb/tasks/classification/multilingual/scandi_sent_classification.py,sha256=yNZ-Jb97GOsKtQ5GskT4F_opOATyQ3HqKL2pHAv_n5E,1812
1816
1817
  mteb/tasks/classification/multilingual/sib200_classification.py,sha256=RcpPAUmEviNasGTR3csd5SBHSDTAFU4v15xRRTuPs_A,8063
1817
1818
  mteb/tasks/classification/multilingual/south_african_lang_classification.py,sha256=uAhxQMWQaQIoeO6pOVGViUJdma5Z56t967W9cbZYq7E,1790
@@ -2007,7 +2008,7 @@ mteb/tasks/image_text_pair_classification/eng/aro_flickr_order.py,sha256=UipHMZ9
2007
2008
  mteb/tasks/image_text_pair_classification/eng/aro_visual_attribution.py,sha256=BnJCUW28PMHL_6bBnr0Tj09NJyUXNvHTUSre4DtrqQQ,1595
2008
2009
  mteb/tasks/image_text_pair_classification/eng/aro_visual_relation.py,sha256=V9iYtUPjk9cehL9SKneH7rgs15RaIA3U9ZLPZhkVCy0,1586
2009
2010
  mteb/tasks/image_text_pair_classification/eng/image_co_de.py,sha256=2lQJc8bxJUx1nLyLmQZjJNcldXk3m1rXdv8V1nQQlFA,4072
2010
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py,sha256=oExEiod3Gq7ylBvJmd1L-PQgo8sHcAxsSwa-C1CJpk4,2004
2011
+ mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py,sha256=i4gewqbknogst2p1TNQXTo_qfIeTxk0DWS-9bNOFI7M,1988
2011
2012
  mteb/tasks/image_text_pair_classification/eng/winoground.py,sha256=zdE8xTTC16NeiyxIC8vR2eH1Mv-YMP8Fd9fAeaYlIVI,1864
2012
2013
  mteb/tasks/instruction_reranking/__init__.py,sha256=BqfiIJ3WTB31ZeTGG-_WG-sf93PmqQB7gJbg8ESbQhg,47
2013
2014
  mteb/tasks/instruction_reranking/eng/__init__.py,sha256=FeTyCOipqqYpLXorPGAeXjuKX96AcX4PVLU_ZIQv4bI,330
@@ -2163,7 +2164,7 @@ mteb/tasks/retrieval/code/code1_retrieval.py,sha256=bFQjQtKw0Lpn5Yj_uRFbRYUKnd61
2163
2164
  mteb/tasks/retrieval/code/code_edit_search_retrieval.py,sha256=pSbrwXByeL9JaUzEMYsRl-upVMrQPlWXe1QCw1FqLcM,2877
2164
2165
  mteb/tasks/retrieval/code/code_feedback_mt_retrieval.py,sha256=CiJ8pYt3gmYR0mnk8KqdaO1jXgQbpU4aKvOe4d7lpu4,1489
2165
2166
  mteb/tasks/retrieval/code/code_feedback_st_retrieval.py,sha256=eNV1DKxmKJzhIlBVP4u1JsxPRV_SrfKG4Uy6csbXZjM,1477
2166
- mteb/tasks/retrieval/code/code_rag.py,sha256=Cx1GzhUwdcRwZJDCx3nsavHrqDh5IWuU5ZVIV7pIX9A,9577
2167
+ mteb/tasks/retrieval/code/code_rag.py,sha256=QeYOO6xk8fzrzIGBkBdRQDLsbjhL04QWArMqxxGcDLg,9385
2167
2168
  mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py,sha256=81y-W4l7I8mzQJ-bvCM7rfIGykI9VdO_2MFNJIvTJDk,3816
2168
2169
  mteb/tasks/retrieval/code/code_search_net_retrieval.py,sha256=BECmHuIQXeDjjUBKmvjYji395Ep-RnF0fCgpGXDZTus,1504
2169
2170
  mteb/tasks/retrieval/code/code_trans_ocean_contest_retrieval.py,sha256=pkFKpaKuBbGYU-tezvSz_BMESUKY5Pp17CmSj4e0_K8,1497
@@ -2179,9 +2180,9 @@ mteb/tasks/retrieval/code/stack_overflow_qa_retrieval.py,sha256=NjD7b7234xrlA2xK
2179
2180
  mteb/tasks/retrieval/code/synthetic_text2_sql_retrieval.py,sha256=TQikfAT_n65OzJEWmlxaj4mncce3hdzFpuB9ZIsBktQ,1640
2180
2181
  mteb/tasks/retrieval/code/wiki_sql_retrieval.py,sha256=OOypL5bkQ1xX7D6SlDPcfu1KIDlKPTlMKkR2gnax2b4,3310
2181
2182
  mteb/tasks/retrieval/dan/__init__.py,sha256=gHkyCxzEZ-Nyv5HBLsQ0VPs1y0JjoxNX5q5kOhPiCT4,280
2182
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py,sha256=W7LN0Tn42fFss1quMHq2W39NrZm1tGmmdONtRGDSr34,5622
2183
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py,sha256=-8OT4d2YtNB_Jis0wOnJU44zPopFKX3nUPeC6olHaTo,3774
2184
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py,sha256=y2pZXmHmXlz-R6KJtGaLXxyTsUOcvYaBcBC3zKA83Lw,3407
2183
+ mteb/tasks/retrieval/dan/dan_fever_retrieval.py,sha256=pCUxdj5tBJeEZzhS-8fJT6cZnVftqxuFb-WA5rnTJQg,5606
2184
+ mteb/tasks/retrieval/dan/tv2_nordretrieval.py,sha256=clcUDbqDMW4eqlb5PiFheNs4N13J4UaGbN8C2X1HP5U,3742
2185
+ mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py,sha256=Rw7jeFTd4X62ExmgQt3GgXDGzXIG7aLzLtyhGo3KhEo,3375
2185
2186
  mteb/tasks/retrieval/deu/__init__.py,sha256=xgC4Nt2DCgcoCAkiErKSCQENs18DJtHFbocSMWS_278,719
2186
2187
  mteb/tasks/retrieval/deu/ger_da_lir_retrieval.py,sha256=ZQFzZLguoOmrZ_pZVk4w5N7vzhiUYcg8sTvs62S4EaY,1371
2187
2188
  mteb/tasks/retrieval/deu/ger_da_lir_small_retrieval.py,sha256=zb5SGbztP3xQI9tt-3MEFsxEvxXzVlpo-ahx1cFd-WU,1572
@@ -2441,8 +2442,8 @@ mteb/tasks/retrieval/nld/touche2020_nl_retrieval.py,sha256=nPLZxNvhTDWkIJU6i2EPY
2441
2442
  mteb/tasks/retrieval/nld/treccovidnl_retrieval.py,sha256=d9rL10YNTUBVubdFxIVxqEhkf8tx9Iuxsp1BZ-Ctoyk,1671
2442
2443
  mteb/tasks/retrieval/nld/vabb_retrieval.py,sha256=FoudYkcY4IY0PNHCvx87bjoUnJJolWVwNhq6xH9HE84,1834
2443
2444
  mteb/tasks/retrieval/nob/__init__.py,sha256=6PYJtnMhN5OtRwXWLAMu5V-3JnZnbHrLxMOk8Ir-b9w,126
2444
- mteb/tasks/retrieval/nob/norquad.py,sha256=sqQLt3ajBrui2TnwvuPny5tU-aijiRUHA1kzXmF7cN8,3779
2445
- mteb/tasks/retrieval/nob/snl_retrieval.py,sha256=VXouYjek_U8jCdpuvIzQ00YRIq0gJM_5lorgVFzlI6g,3143
2445
+ mteb/tasks/retrieval/nob/norquad.py,sha256=Vh1r_SNctD8PIPkAIVqjomNlB51eWn2_Sk8i6v7LyfQ,3747
2446
+ mteb/tasks/retrieval/nob/snl_retrieval.py,sha256=ROVkl6-tKJ670s8U1Q2EEAerkLR1zqo4yhA07y_Levg,3111
2446
2447
  mteb/tasks/retrieval/pol/__init__.py,sha256=Ha3wf63NJliq1z6cqxLE8uSZH8RlscnNV-5Sq9tqwCM,2017
2447
2448
  mteb/tasks/retrieval/pol/argu_ana_pl_retrieval.py,sha256=ztNXnRDCp5nKCd2BhR6Fg2tgzMsx4jqIxRaNYvbU-Y8,1252
2448
2449
  mteb/tasks/retrieval/pol/cqadupstack_pl_retrieval.py,sha256=mwBibm87FjrDgrmozkPZTVzgQiquOJ4s1a7X-j2eZk0,16558
@@ -2471,7 +2472,7 @@ mteb/tasks/retrieval/swe/__init__.py,sha256=hJ-WHS2rIU8W5VvMNPtNOtCMaG2HyNConMWI
2471
2472
  mteb/tasks/retrieval/swe/swe_faq_retrieval.py,sha256=s-o7IM_l7giuK4bJMdYkq2CtE0QQrkMVq5wMtbSJXpY,1599
2472
2473
  mteb/tasks/retrieval/swe/swedn_retrieval.py,sha256=RFcpp0u-EKIwSRXR37tJ0_haY6Jvlfj8DWCgrD-0tnU,1512
2473
2474
  mteb/tasks/retrieval/tur/__init__.py,sha256=tAKhhsTK6meiZwRMIvbx7_ye90JAAW3dlS8iI0r_vg8,84
2474
- mteb/tasks/retrieval/tur/tur_hist_quad.py,sha256=d03Ccol3NbSjqvDcqqLGLe0KELuOIloilpt7MMEWnO8,3685
2475
+ mteb/tasks/retrieval/tur/tur_hist_quad.py,sha256=s7S5RrdwPx-0aatUwbgFbuLtj8927yQUHp1SEODfAl0,3669
2475
2476
  mteb/tasks/retrieval/vie/__init__.py,sha256=j69iltc-is1oqx0oIV1RVjjM46LLH-JJQzKnxm4cYvc,2142
2476
2477
  mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py,sha256=wmE6syUs0sLs7xgIOxXQuiQzpxrskdsTc5sK46v1YEQ,1754
2477
2478
  mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py,sha256=4GMO5qSYbP0pFtf1yklMZNqFgh8qi1Xo2IXQDl9t14s,1849
@@ -2599,12 +2600,12 @@ mteb/tasks/zeroshot_classification/eng/templates/__init__.py,sha256=da1PTClDMl-I
2599
2600
  mteb/types/__init__.py,sha256=7_q6_84RvMuHeZK51GbLc5gbpTb3C1WmnqDHm6bnCzw,1104
2600
2601
  mteb/types/_encoder_io.py,sha256=Q7llxv3FfiExFKiQGHtATvbSk4_DwdJolLMPTnAPrrI,5536
2601
2602
  mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2602
- mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
2603
+ mteb/types/_result.py,sha256=UKNokV9pu3G74MGebocU512aU_fFU9I9nPKnrG9Q0iE,1035
2603
2604
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2604
- mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
2605
- mteb-2.5.2.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2606
- mteb-2.5.2.dist-info/METADATA,sha256=mhU8GVGbs-LZnxe-2EI1D_Y6Nq5Q83Tm8OxX1DnX3us,13990
2607
- mteb-2.5.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2608
- mteb-2.5.2.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2609
- mteb-2.5.2.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2610
- mteb-2.5.2.dist-info/RECORD,,
2605
+ mteb/types/statistics.py,sha256=GwkBPmAr18Onu-vHtzHs0PFrhCozdOMiT13HwnWL4ZM,3961
2606
+ mteb-2.5.4.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2607
+ mteb-2.5.4.dist-info/METADATA,sha256=72f7JHdvmwTqqUzMk8lT8m27KdorIiypPdxO6tRQROg,13990
2608
+ mteb-2.5.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2609
+ mteb-2.5.4.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2610
+ mteb-2.5.4.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2611
+ mteb-2.5.4.dist-info/RECORD,,
File without changes