mteb 2.4.2__py3-none-any.whl → 2.5.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/abstasks/clustering_legacy.py +2 -0
- mteb/benchmarks/benchmark.py +31 -13
- mteb/benchmarks/benchmarks/benchmarks.py +2 -2
- mteb/cache.py +36 -7
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/models/model_implementations/codefuse_models.py +144 -0
- mteb/models/model_implementations/mod_models.py +3 -1
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +5 -3
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +658 -0
- mteb/results/benchmark_results.py +22 -4
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/retrieval/kor/__init__.py +2 -1
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- {mteb-2.4.2.dist-info → mteb-2.5.1.dist-info}/METADATA +1 -1
- {mteb-2.4.2.dist-info → mteb-2.5.1.dist-info}/RECORD +21 -16
- {mteb-2.4.2.dist-info → mteb-2.5.1.dist-info}/WHEEL +0 -0
- {mteb-2.4.2.dist-info → mteb-2.5.1.dist-info}/entry_points.txt +0 -0
- {mteb-2.4.2.dist-info → mteb-2.5.1.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.4.2.dist-info → mteb-2.5.1.dist-info}/top_level.txt +0 -0
|
@@ -15,6 +15,7 @@ from mteb.abstasks.task_metadata import (
|
|
|
15
15
|
TaskDomain,
|
|
16
16
|
TaskType,
|
|
17
17
|
)
|
|
18
|
+
from mteb.benchmarks.benchmark import Benchmark
|
|
18
19
|
from mteb.models import ModelMeta
|
|
19
20
|
from mteb.models.get_model_meta import get_model_metas
|
|
20
21
|
from mteb.types import (
|
|
@@ -39,10 +40,10 @@ class BenchmarkResults(BaseModel):
|
|
|
39
40
|
"""
|
|
40
41
|
|
|
41
42
|
model_results: list[ModelResult]
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
43
|
+
benchmark: Benchmark | None = None
|
|
44
|
+
model_config = ConfigDict(
|
|
45
|
+
protected_namespaces=(), # to free up the name model_results which is otherwise protected
|
|
46
|
+
arbitrary_types_allowed=True, # Benchmark is dataclasses.dataclass
|
|
46
47
|
)
|
|
47
48
|
|
|
48
49
|
def __repr__(self) -> str:
|
|
@@ -362,6 +363,23 @@ class BenchmarkResults(BaseModel):
|
|
|
362
363
|
format=format,
|
|
363
364
|
)
|
|
364
365
|
|
|
366
|
+
def get_benchmark_result(self) -> pd.DataFrame:
|
|
367
|
+
"""Get aggregated scores for each model in the benchmark.
|
|
368
|
+
|
|
369
|
+
Uses the benchmark's summary table creation method to compute scores.
|
|
370
|
+
|
|
371
|
+
Returns:
|
|
372
|
+
A DataFrame with the aggregated benchmark scores for each model.
|
|
373
|
+
"""
|
|
374
|
+
if self.benchmark is None:
|
|
375
|
+
raise ValueError(
|
|
376
|
+
"No benchmark associated with these results (self.benchmark is None). "
|
|
377
|
+
"To get benchmark results, load results with a Benchmark object. "
|
|
378
|
+
"`results = cache.load_results(tasks='MTEB(eng, v2)')`"
|
|
379
|
+
)
|
|
380
|
+
|
|
381
|
+
return self.benchmark._create_summary_table(self)
|
|
382
|
+
|
|
365
383
|
def __iter__(self) -> Iterator[ModelResult]:
|
|
366
384
|
return iter(self.model_results)
|
|
367
385
|
|
|
@@ -1,3 +1,6 @@
|
|
|
1
|
+
from .turkish_constitutional_court import (
|
|
2
|
+
TurkishConstitutionalCourtViolation,
|
|
3
|
+
)
|
|
1
4
|
from .turkish_movie_sentiment_classification import (
|
|
2
5
|
TurkishMovieSentimentClassification,
|
|
3
6
|
TurkishMovieSentimentClassificationV2,
|
|
@@ -8,6 +11,7 @@ from .turkish_product_sentiment_classification import (
|
|
|
8
11
|
)
|
|
9
12
|
|
|
10
13
|
__all__ = [
|
|
14
|
+
"TurkishConstitutionalCourtViolation",
|
|
11
15
|
"TurkishMovieSentimentClassification",
|
|
12
16
|
"TurkishMovieSentimentClassificationV2",
|
|
13
17
|
"TurkishProductSentimentClassification",
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class TurkishConstitutionalCourtViolation(AbsTaskClassification):
|
|
6
|
+
# Normalize column names after load_data renames them.
|
|
7
|
+
label_column_name = "label"
|
|
8
|
+
input_column_name = "text"
|
|
9
|
+
|
|
10
|
+
metadata = TaskMetadata(
|
|
11
|
+
name="TurkishConstitutionalCourtViolation",
|
|
12
|
+
description="Binary classification of Turkish constitutional court decisions: Violation vs No violation.",
|
|
13
|
+
reference="https://huggingface.co/datasets/KocLab-Bilkent/turkish-constitutional-court",
|
|
14
|
+
type="Classification",
|
|
15
|
+
category="t2c",
|
|
16
|
+
modalities=["text"],
|
|
17
|
+
eval_splits=["test"],
|
|
18
|
+
eval_langs=["tur-Latn"],
|
|
19
|
+
main_score="f1",
|
|
20
|
+
dataset={
|
|
21
|
+
"path": "denizgulal/turkish-constitutional-court-violation-clean",
|
|
22
|
+
"revision": "333f49b7ddc72fa4a86ec5bd756a28c585311c74",
|
|
23
|
+
},
|
|
24
|
+
date=("2000-01-01", "2023-02-20"), # dataset card last updated Feb 20, 2023
|
|
25
|
+
domains=["Legal", "Non-fiction"],
|
|
26
|
+
task_subtypes=["Political classification"],
|
|
27
|
+
license="cc-by-4.0",
|
|
28
|
+
annotations_creators="human-annotated",
|
|
29
|
+
dialect=[],
|
|
30
|
+
sample_creation="found",
|
|
31
|
+
bibtex_citation=r"""
|
|
32
|
+
@article{mumcuoglu2021natural,
|
|
33
|
+
author = {Mumcuoglu, Emre and Ozturk, Ceyhun E. and Ozaktas, Haldun M. and Koc, Aykut},
|
|
34
|
+
journal = {Information Processing and Management},
|
|
35
|
+
number = {5},
|
|
36
|
+
title = {Natural language processing in law: Prediction of outcomes in the higher courts of Turkey},
|
|
37
|
+
volume = {58},
|
|
38
|
+
year = {2021},
|
|
39
|
+
}
|
|
40
|
+
""",
|
|
41
|
+
)
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
from .auto_rag_retrieval import AutoRAGRetrieval
|
|
2
2
|
from .ko_strategy_qa import KoStrategyQA
|
|
3
|
+
from .squad_kor_v1_retrieval import SQuADKorV1Retrieval
|
|
3
4
|
|
|
4
|
-
__all__ = ["AutoRAGRetrieval", "KoStrategyQA"]
|
|
5
|
+
__all__ = ["AutoRAGRetrieval", "KoStrategyQA", "SQuADKorV1Retrieval"]
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class SQuADKorV1Retrieval(AbsTaskRetrieval):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="SQuADKorV1Retrieval",
|
|
8
|
+
description="Korean translation of SQuAD v1.0 dataset for retrieval task, based on Korean Wikipedia articles.",
|
|
9
|
+
reference="https://huggingface.co/datasets/yjoonjang/squad_kor_v1",
|
|
10
|
+
dataset={
|
|
11
|
+
"path": "yjoonjang/squad_kor_v1",
|
|
12
|
+
"revision": "2b4ee1f3b143a04792da93a3df21933c5fe9eed3",
|
|
13
|
+
},
|
|
14
|
+
type="Retrieval",
|
|
15
|
+
category="t2t",
|
|
16
|
+
modalities=["text"],
|
|
17
|
+
eval_splits=["test"],
|
|
18
|
+
eval_langs=["kor-Hang"],
|
|
19
|
+
main_score="ndcg_at_10",
|
|
20
|
+
date=("2018-01-01", "2019-12-31"),
|
|
21
|
+
domains=["Encyclopaedic", "Written"],
|
|
22
|
+
task_subtypes=["Question answering"],
|
|
23
|
+
license="cc-by-sa-4.0",
|
|
24
|
+
annotations_creators="derived",
|
|
25
|
+
dialect=[],
|
|
26
|
+
sample_creation="found",
|
|
27
|
+
bibtex_citation=r"""
|
|
28
|
+
@inproceedings{rajpurkar-etal-2016-squad,
|
|
29
|
+
address = {Austin, Texas},
|
|
30
|
+
author = {Rajpurkar, Pranav and
|
|
31
|
+
Zhang, Jian and
|
|
32
|
+
Lopyrev, Konstantin and
|
|
33
|
+
Liang, Percy},
|
|
34
|
+
booktitle = {Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing},
|
|
35
|
+
doi = {10.18653/v1/D16-1264},
|
|
36
|
+
editor = {Su, Jian and
|
|
37
|
+
Duh, Kevin and
|
|
38
|
+
Carreras, Xavier},
|
|
39
|
+
month = nov,
|
|
40
|
+
pages = {2383--2392},
|
|
41
|
+
publisher = {Association for Computational Linguistics},
|
|
42
|
+
title = {{SQ}u{AD}: 100,000+ Questions for Machine Comprehension of Text},
|
|
43
|
+
url = {https://aclanthology.org/D16-1264},
|
|
44
|
+
year = {2016},
|
|
45
|
+
}
|
|
46
|
+
""",
|
|
47
|
+
)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.
|
|
3
|
+
Version: 2.5.1
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -5,7 +5,7 @@ mteb/_helpful_enum.py,sha256=jh73N1jlcpg7RGz4bj8UpctiMNvqvHpp9wrB7SYEzIU,510
|
|
|
5
5
|
mteb/_log_once.py,sha256=-tUKzxGQzf2LZSuQXi97oYFXMta1B6GEYXd7BPqssvY,1095
|
|
6
6
|
mteb/_requires_package.py,sha256=eHg_TD9BVZRzNCcQQrUP17d8M1DF_vOd_tVx54AmAnM,3017
|
|
7
7
|
mteb/_set_seed.py,sha256=HPlPRl__Pe6IG-4UgJqTfplcivJ_wA2kaClbXoHQedM,1178
|
|
8
|
-
mteb/cache.py,sha256=
|
|
8
|
+
mteb/cache.py,sha256=EogjsGZjoD6wZmVr4R3Lrc25C0x50Oie_i29K_4iHwo,21236
|
|
9
9
|
mteb/deprecated_evaluator.py,sha256=9cJIahJHNZphoqo6KZfp30LLhIdyiR3SSLcut4FR_Ek,26778
|
|
10
10
|
mteb/evaluate.py,sha256=IcaNu3VQwoeH7F1m8_7qJ6_lffHPujRcjKOBo4A7JBI,18631
|
|
11
11
|
mteb/filter_tasks.py,sha256=5XE1OYmgDDoJYnXwFf4ma_PIT_Lekzs420sQF_kpCiY,7240
|
|
@@ -36,7 +36,7 @@ mteb/abstasks/aggregate_task_metadata.py,sha256=vzt1z2wDl0sXD7ErZFwKojYwmFUBPAnG
|
|
|
36
36
|
mteb/abstasks/aggregated_task.py,sha256=puY6-EAqbL5ehKvFHTMriIdy3rAuqqYHF3ezog1eYxw,6671
|
|
37
37
|
mteb/abstasks/classification.py,sha256=k_wrM1rq2XcVEK97RpU_uEcqhiWWbV7sm3B0dtvP5yY,13376
|
|
38
38
|
mteb/abstasks/clustering.py,sha256=4KcaU8_sNLmLvMhwDpNmcY2nD3BNyx_LcM-ddSv-wtY,14410
|
|
39
|
-
mteb/abstasks/clustering_legacy.py,sha256=
|
|
39
|
+
mteb/abstasks/clustering_legacy.py,sha256=byE9kp-MLN_Zu72m3asEb1QTHlxWF-Qts7tMk0OKZHA,8796
|
|
40
40
|
mteb/abstasks/dataset_card_template.md,sha256=aD6l8qc3_jxwoIGJNYLzse-jpRa8hu92AxpnUtNgges,5122
|
|
41
41
|
mteb/abstasks/multilabel_classification.py,sha256=rpIwI3jV2YKtmXlFS2_Ytg4yYjdjPy0q5OU4MsRJFqo,9211
|
|
42
42
|
mteb/abstasks/pair_classification.py,sha256=ToOBFDiokZOz9ea-klMLj_37slbVFR3lSuihP81x9Lc,13263
|
|
@@ -57,10 +57,10 @@ mteb/abstasks/text/reranking.py,sha256=rfRGRBeSjZLgkh8pneMgRm-vd9NHr5jSFH92YfOHf
|
|
|
57
57
|
mteb/abstasks/text/summarization.py,sha256=KYEb8gh4JjpSsrvGUmQ2VlrVdzzVxIWcitXOJUaHhO4,6954
|
|
58
58
|
mteb/benchmarks/__init__.py,sha256=MQEVeli-zLaJ7Xg0z7RhXQwsdmm7Ht_W2Ln0rZo1Szc,225
|
|
59
59
|
mteb/benchmarks/_create_table.py,sha256=b2RqGqi0ZonKbHecEcZiF4pkfE96smFRIzxOI82ETA8,22304
|
|
60
|
-
mteb/benchmarks/benchmark.py,sha256=
|
|
60
|
+
mteb/benchmarks/benchmark.py,sha256=E6hydDE9rkm4egsj52aDjQ0w4BQ1TBBP9gOAvw_Uh48,5583
|
|
61
61
|
mteb/benchmarks/get_benchmark.py,sha256=-n_O-gitRKZi48gJKNgGuI36hsP7yLVSiwulnMHN7Gw,3935
|
|
62
62
|
mteb/benchmarks/benchmarks/__init__.py,sha256=73NYNv98q-tRCqf2YHabvElz_a8g_mF75HTup0J-E5E,2220
|
|
63
|
-
mteb/benchmarks/benchmarks/benchmarks.py,sha256=
|
|
63
|
+
mteb/benchmarks/benchmarks/benchmarks.py,sha256=_8zds06sQj41JzR6BHGWk33DZE2VGvabhBoyty5oAHk,97949
|
|
64
64
|
mteb/benchmarks/benchmarks/rteb_benchmarks.py,sha256=QnCSrTTaBfcRlAQp2Nu81tgv1idMXqiM16Fp2zKJ5Ys,10607
|
|
65
65
|
mteb/cli/__init__.py,sha256=v-csUr3eUZElIvrGB6QGtaIdndDfNWEe9oZchsGsJpg,64
|
|
66
66
|
mteb/cli/_display_tasks.py,sha256=7A06dT9sSoTz6shyMvskPxuc5eHY_H7PGPlROzMP0yw,2196
|
|
@@ -514,6 +514,7 @@ mteb/descriptive_stats/Classification/ToxicConversationsVNClassification.json,sh
|
|
|
514
514
|
mteb/descriptive_stats/Classification/TswanaNewsClassification.json,sha256=ve0LsVS9DKfqeXE3vwQD5yCtZE5EA209-g2BpJ-5Kn0,2703
|
|
515
515
|
mteb/descriptive_stats/Classification/TswanaNewsClassification.v2.json,sha256=ve0LsVS9DKfqeXE3vwQD5yCtZE5EA209-g2BpJ-5Kn0,2703
|
|
516
516
|
mteb/descriptive_stats/Classification/TurkicClassification.json,sha256=Vc4ZRF1j0eyasJLMIW-0vN4HhVtfDxU1nzS-y8P0FWU,19509
|
|
517
|
+
mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json,sha256=EMEEd5F1RdDTYBRBD-oyYXtf87K_yufblqIFFm051U8,1508
|
|
517
518
|
mteb/descriptive_stats/Classification/TurkishMovieSentimentClassification.json,sha256=e0SE-SCDiioi8zkEIjKGAzHHpWoZJ41HT0igJRkK6Vs,1507
|
|
518
519
|
mteb/descriptive_stats/Classification/TurkishMovieSentimentClassification.v2.json,sha256=IhXQYsjSXHdpAdnJMLfM5etS7VeKeorQofv6aNFePU0,1509
|
|
519
520
|
mteb/descriptive_stats/Classification/TurkishProductSentimentClassification.json,sha256=cgpSg-LW1fPVVPuOkOl-d3cDXr5T5JVIwEnXjW3EKEc,1499
|
|
@@ -1311,6 +1312,7 @@ mteb/descriptive_stats/Retrieval/SCIDOCS.json,sha256=Xa2HtyeuWVV9xJOT1YwhrM32Rub
|
|
|
1311
1312
|
mteb/descriptive_stats/Retrieval/SIQA.json,sha256=Z8lTLsbrSCdGiYFOQ_yrb3bXxlkHOZ1uYZCGorvBDHQ,991
|
|
1312
1313
|
mteb/descriptive_stats/Retrieval/SKQuadRetrieval.json,sha256=VQXzc7XquS3pxJXlP0qovigYdleNgHBzwJIuHkCSXpM,1005
|
|
1313
1314
|
mteb/descriptive_stats/Retrieval/SNLRetrieval.json,sha256=3IHnPHydwVU_68lP5EM6OpHBM5CRuUQFPeny2bIVOEg,990
|
|
1315
|
+
mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json,sha256=-TLf6e9WKfnK_52TsTXCBRqd7xRgzD7sllWq91dhNhc,984
|
|
1314
1316
|
mteb/descriptive_stats/Retrieval/SadeemQuestionRetrieval.json,sha256=xvMLI0XiyWb7IKHUxFzyOUsRLj7oLFaG8R2cszLkwkw,995
|
|
1315
1317
|
mteb/descriptive_stats/Retrieval/SciFact-Fa.json,sha256=BZHK8KUj5ShBzfomQxUbH8GBVpWYpepwdNaOZ1DHUE0,988
|
|
1316
1318
|
mteb/descriptive_stats/Retrieval/SciFact-Fa.v2.json,sha256=1U8zTDU24TBaZ2cVX6puKT_oQx_vdLBeVz6MRswOrJE,976
|
|
@@ -1474,7 +1476,7 @@ mteb/models/model_implementations/cadet_models.py,sha256=bDula_VroXOWgSw-tquvNVG
|
|
|
1474
1476
|
mteb/models/model_implementations/cde_models.py,sha256=3nNU3nq3VZZcImFqH1VPj57-QJNMU6Ei2C_HCaicuUs,9012
|
|
1475
1477
|
mteb/models/model_implementations/clip_models.py,sha256=zrfgNmZszu0JMtMNdCMzEohixsrnQ7xFhCqgsiucH_Q,6107
|
|
1476
1478
|
mteb/models/model_implementations/clips_models.py,sha256=QwwoU4Zu_zwUgUg7Hn2lzpXK-GjXIST0qF_2oRxHm2Y,3410
|
|
1477
|
-
mteb/models/model_implementations/codefuse_models.py,sha256=
|
|
1479
|
+
mteb/models/model_implementations/codefuse_models.py,sha256=t_Dw_pRjh6gW1l2xLmBjd3oGcU_csy6DW3IdWsYuvGg,13975
|
|
1478
1480
|
mteb/models/model_implementations/codesage_models.py,sha256=D4CdISGyv5f2GMYq4_efgm5qNq80SWAX5R2u5mjEiXM,2998
|
|
1479
1481
|
mteb/models/model_implementations/cohere_models.py,sha256=OWFClVAN4phjBoxfGGDyGDmzMu-t2VrjCGFyAIWmz4w,13832
|
|
1480
1482
|
mteb/models/model_implementations/cohere_v.py,sha256=K6VEw1NkyM2PuMd18kHE6aqPrcByYSwEmAKjvLods_w,15760
|
|
@@ -1522,7 +1524,7 @@ mteb/models/model_implementations/mdbr_models.py,sha256=B7R3dVEH9EZ_fSZ05VveSbmT
|
|
|
1522
1524
|
mteb/models/model_implementations/misc_models.py,sha256=X0MvBQn2pRk7IT-jD3fYoja26at61FanjBtroaAg3Zc,69116
|
|
1523
1525
|
mteb/models/model_implementations/mme5_models.py,sha256=cRRXecC8EHeLQiEd1nfCb1vt75x_CnG1s_9lYRrtyTA,1484
|
|
1524
1526
|
mteb/models/model_implementations/moco_models.py,sha256=Kl0nBsqkG3crYoo5YulFq1fv97U0-IBWVFHN0UuO0lg,5483
|
|
1525
|
-
mteb/models/model_implementations/mod_models.py,sha256=
|
|
1527
|
+
mteb/models/model_implementations/mod_models.py,sha256=jt33SfV476FIQJ-W-FRi_ocyRY1u8ldRFuo-PgejJDU,6335
|
|
1526
1528
|
mteb/models/model_implementations/model2vec_models.py,sha256=D-EY-6P-cKKunbgzk4DHzJL1ogpWYFhpHbTLb8qQjJw,13765
|
|
1527
1529
|
mteb/models/model_implementations/moka_models.py,sha256=Y5do7Z4JyGxabYrjHhkBLqCKTQKotniS-f4kOgXJjag,4995
|
|
1528
1530
|
mteb/models/model_implementations/mxbai_models.py,sha256=KJXfUVW8e6LJEq3EO-Zy-pu6-9e-Q0mjP6_W7GP6QoI,3851
|
|
@@ -1530,7 +1532,7 @@ mteb/models/model_implementations/nbailab.py,sha256=bqqR0qs10IH2g5HC6K962tDMBciw
|
|
|
1530
1532
|
mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=6i-xbLRRNKuDpU-hwklwdQjgu1wnz5CecLSoc6kyd7Q,3976
|
|
1531
1533
|
mteb/models/model_implementations/nomic_models.py,sha256=WmSX6YyYaG5EG9M3OX-tTgdznFVJanfVAxRKJ-vNXF0,14736
|
|
1532
1534
|
mteb/models/model_implementations/nomic_models_vision.py,sha256=6aca0XVLXnkGk6GW8jVCIbbjPGq98lKq4c9Az4jbEkE,6805
|
|
1533
|
-
mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=
|
|
1535
|
+
mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=yOaRX9amblBRGmNA-By2M8qD4ZsabSN2vw_jp1aXwuA,6314
|
|
1534
1536
|
mteb/models/model_implementations/nvidia_models.py,sha256=acVverAt77lURkILCVkCdXsWgY1BJoG1-ugB7yIhlIM,21555
|
|
1535
1537
|
mteb/models/model_implementations/openai_models.py,sha256=loU6JByNUwRidq7lmcu8iGOtUQvzejw6HVLaF_IKCR0,9352
|
|
1536
1538
|
mteb/models/model_implementations/openclip_models.py,sha256=W8XcokgLU1nSmMaWpYXkWWizVd3sQezcP02YtF2fXpo,11436
|
|
@@ -1559,6 +1561,7 @@ mteb/models/model_implementations/samilpwc_models.py,sha256=oMwKNwCxoH1jZgCy04oo
|
|
|
1559
1561
|
mteb/models/model_implementations/sarashina_embedding_models.py,sha256=TSmr2FEX79mJTA9mbEV3meEZYSelGv58Veiw__TTGFM,8415
|
|
1560
1562
|
mteb/models/model_implementations/searchmap_models.py,sha256=XvVl99emIgnNUCxkTuFQXW6py2R8vgsArfpyHveCugw,1904
|
|
1561
1563
|
mteb/models/model_implementations/seed_1_6_embedding_models.py,sha256=Q8JTW2fjePR9dq4spuwK2lyVeL3mn1bl-H5wkQuEV_E,18609
|
|
1564
|
+
mteb/models/model_implementations/seed_1_6_embedding_models_1215.py,sha256=O0BlsOHaxF0EEGaoas4AdzB8f-_9W9lwfoxLypexKEo,37516
|
|
1562
1565
|
mteb/models/model_implementations/seed_models.py,sha256=SgK4kPVO6V33G3F1zSq06zSkWarPLEwBt1SWp4TUoVw,14142
|
|
1563
1566
|
mteb/models/model_implementations/sentence_transformers_models.py,sha256=J0uFt6cFkHohTNtFJe3Ne1weNndYVVinSGFBKYlolt8,22784
|
|
1564
1567
|
mteb/models/model_implementations/shuu_model.py,sha256=KkcuVYjIzoha3Fvxh8ppqHQ9BfNMWeqDqn9dGCRKUjg,1167
|
|
@@ -1585,7 +1588,7 @@ mteb/models/search_encoder_index/search_backend_protocol.py,sha256=TSjlx88stJcMl
|
|
|
1585
1588
|
mteb/models/search_encoder_index/search_indexes/__init__.py,sha256=Wm60_oUemUpFsvrCMW111dcPH2L2rt1iZrXMskXmG7o,88
|
|
1586
1589
|
mteb/models/search_encoder_index/search_indexes/faiss_search_index.py,sha256=WMs3QbbYV13fRuT3dakmdVMZLFdc_9ZzSupS3QxlbVQ,5555
|
|
1587
1590
|
mteb/results/__init__.py,sha256=EXQqK4Am5eIYzD52dpcGAFSdqnC38oE6JHN302oidHc,158
|
|
1588
|
-
mteb/results/benchmark_results.py,sha256=
|
|
1591
|
+
mteb/results/benchmark_results.py,sha256=_d5vJWFwGmriFrLYmHI-P28vXSxXsWkg7hIQGKH_44w,19167
|
|
1589
1592
|
mteb/results/model_result.py,sha256=Y6b_xfJlw8EFZq464ZVhyw0Rryv111hvMjnXbEZJpXk,14059
|
|
1590
1593
|
mteb/results/task_result.py,sha256=DgmAw6akotjp8m8E6gE8QP9mQMxUvyzu1hnZ5o01GkU,32303
|
|
1591
1594
|
mteb/tasks/__init__.py,sha256=izAxU0ip1F_YUwx0dFCuN35BaktdmePh6vlDiHC0kLo,503
|
|
@@ -1883,7 +1886,8 @@ mteb/tasks/classification/tha/wisesight_sentiment_classification.py,sha256=CdTFV
|
|
|
1883
1886
|
mteb/tasks/classification/tha/wongnai_reviews_classification.py,sha256=0qy4fHUf5i6Kgfxve1NneelB9gNas_7lMRs6pwgce1Q,1736
|
|
1884
1887
|
mteb/tasks/classification/tsn/__init__.py,sha256=pHxOFshsfTp_CkIowXYcDtpZsxihcnPewREjFOzwHH4,176
|
|
1885
1888
|
mteb/tasks/classification/tsn/tswana_news_classification.py,sha256=wO3FD7JLaV9gycHVySmVjJUMwGbYd73pZfZEtSiknrw,3106
|
|
1886
|
-
mteb/tasks/classification/tur/__init__.py,sha256=
|
|
1889
|
+
mteb/tasks/classification/tur/__init__.py,sha256=viCR9s3exQyQDKEbgi1ESBiMPF07cG_TssN3oXc9_GA,611
|
|
1890
|
+
mteb/tasks/classification/tur/turkish_constitutional_court.py,sha256=F-lY7I46Zo8SoCPq2N9rz4yUy84icI0hIvPuI8XRarU,1626
|
|
1887
1891
|
mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py,sha256=eWPoX2uK06GsmgrteInkiC0uw0mF4dnkPiR249jBDpg,3069
|
|
1888
1892
|
mteb/tasks/classification/tur/turkish_product_sentiment_classification.py,sha256=9_AxxYWNCVqCuFN1_uCbwid9ox7KNKRSWbpfLMQrFII,2781
|
|
1889
1893
|
mteb/tasks/classification/ukr/__init__.py,sha256=Tk8r98fjAhLigvXSu2v3vhq3aJVepreg7k7hVxlpIYo,186
|
|
@@ -2369,9 +2373,10 @@ mteb/tasks/retrieval/jpn/nlp_journal_title_abs_retrieval.py,sha256=JOOW_5pRKHzVn
|
|
|
2369
2373
|
mteb/tasks/retrieval/jpn/nlp_journal_title_intro_retrieval.py,sha256=aVFTFiANWrIz68FjHv9KBqlhpWlsmi9EAP052gECzaU,3078
|
|
2370
2374
|
mteb/tasks/retrieval/kat/__init__.py,sha256=H4phkKqg_yZzkK7T62aCMBzjbGZzLKJ-MngrQlPbW3A,93
|
|
2371
2375
|
mteb/tasks/retrieval/kat/georgian_faq_retrieval.py,sha256=4zyodSYCtHtBW9WKIGxFZaTXDrtHuaf3uyfIsDRGBqM,2494
|
|
2372
|
-
mteb/tasks/retrieval/kor/__init__.py,sha256=
|
|
2376
|
+
mteb/tasks/retrieval/kor/__init__.py,sha256=gstfs-sW2-qlaVrOJg_NLsQLLUYCWG2gPf64KI2LxoA,217
|
|
2373
2377
|
mteb/tasks/retrieval/kor/auto_rag_retrieval.py,sha256=tgffW8zMpDSv1FCOdS4_4SL5zKQj70JVSt_RKs3CgKY,1576
|
|
2374
2378
|
mteb/tasks/retrieval/kor/ko_strategy_qa.py,sha256=jk13ORetYtF0q36h8ljD6TeTHUwvK5F5ZbDoMCP3eWk,1156
|
|
2379
|
+
mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py,sha256=M7T5FkN1efK7euRslx-LZN7hS_QdIwqtUuVlWO-dico,1631
|
|
2375
2380
|
mteb/tasks/retrieval/multilingual/__init__.py,sha256=mfVGkoB4DO5ktlg8ia-4nImFVmZcqXh1XkgCkIff0tY,6765
|
|
2376
2381
|
mteb/tasks/retrieval/multilingual/belebele_retrieval.py,sha256=gaVLEwuLEwMutMi9V-obpiYKbpllX2QNm2j3MVeebfE,7027
|
|
2377
2382
|
mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py,sha256=_6r34ZvRiLVENYcrd87NjilybGaetBwKFEbO29zYmBU,4676
|
|
@@ -2596,9 +2601,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
|
|
|
2596
2601
|
mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
|
|
2597
2602
|
mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
|
|
2598
2603
|
mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
|
|
2599
|
-
mteb-2.
|
|
2600
|
-
mteb-2.
|
|
2601
|
-
mteb-2.
|
|
2602
|
-
mteb-2.
|
|
2603
|
-
mteb-2.
|
|
2604
|
-
mteb-2.
|
|
2604
|
+
mteb-2.5.1.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
2605
|
+
mteb-2.5.1.dist-info/METADATA,sha256=zL9cLsZstap4AfRmVVd1RjRoLj_--FLMtYNTxWa8tSc,13990
|
|
2606
|
+
mteb-2.5.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
2607
|
+
mteb-2.5.1.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
|
|
2608
|
+
mteb-2.5.1.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
|
|
2609
|
+
mteb-2.5.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|