mteb 2.4.2__py3-none-any.whl → 2.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -15,6 +15,7 @@ from mteb.abstasks.task_metadata import (
15
15
  TaskDomain,
16
16
  TaskType,
17
17
  )
18
+ from mteb.benchmarks.benchmark import Benchmark
18
19
  from mteb.models import ModelMeta
19
20
  from mteb.models.get_model_meta import get_model_metas
20
21
  from mteb.types import (
@@ -39,10 +40,10 @@ class BenchmarkResults(BaseModel):
39
40
  """
40
41
 
41
42
  model_results: list[ModelResult]
42
- model_config = (
43
- ConfigDict( # to free up the name model_results which is otherwise protected
44
- protected_namespaces=(),
45
- )
43
+ benchmark: Benchmark | None = None
44
+ model_config = ConfigDict(
45
+ protected_namespaces=(), # to free up the name model_results which is otherwise protected
46
+ arbitrary_types_allowed=True, # Benchmark is dataclasses.dataclass
46
47
  )
47
48
 
48
49
  def __repr__(self) -> str:
@@ -362,6 +363,23 @@ class BenchmarkResults(BaseModel):
362
363
  format=format,
363
364
  )
364
365
 
366
+ def get_benchmark_result(self) -> pd.DataFrame:
367
+ """Get aggregated scores for each model in the benchmark.
368
+
369
+ Uses the benchmark's summary table creation method to compute scores.
370
+
371
+ Returns:
372
+ A DataFrame with the aggregated benchmark scores for each model.
373
+ """
374
+ if self.benchmark is None:
375
+ raise ValueError(
376
+ "No benchmark associated with these results (self.benchmark is None). "
377
+ "To get benchmark results, load results with a Benchmark object. "
378
+ "`results = cache.load_results(tasks='MTEB(eng, v2)')`"
379
+ )
380
+
381
+ return self.benchmark._create_summary_table(self)
382
+
365
383
  def __iter__(self) -> Iterator[ModelResult]:
366
384
  return iter(self.model_results)
367
385
 
@@ -1,3 +1,6 @@
1
+ from .turkish_constitutional_court import (
2
+ TurkishConstitutionalCourtViolation,
3
+ )
1
4
  from .turkish_movie_sentiment_classification import (
2
5
  TurkishMovieSentimentClassification,
3
6
  TurkishMovieSentimentClassificationV2,
@@ -8,6 +11,7 @@ from .turkish_product_sentiment_classification import (
8
11
  )
9
12
 
10
13
  __all__ = [
14
+ "TurkishConstitutionalCourtViolation",
11
15
  "TurkishMovieSentimentClassification",
12
16
  "TurkishMovieSentimentClassificationV2",
13
17
  "TurkishProductSentimentClassification",
@@ -0,0 +1,41 @@
1
+ from mteb.abstasks.classification import AbsTaskClassification
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class TurkishConstitutionalCourtViolation(AbsTaskClassification):
6
+ # Normalize column names after load_data renames them.
7
+ label_column_name = "label"
8
+ input_column_name = "text"
9
+
10
+ metadata = TaskMetadata(
11
+ name="TurkishConstitutionalCourtViolation",
12
+ description="Binary classification of Turkish constitutional court decisions: Violation vs No violation.",
13
+ reference="https://huggingface.co/datasets/KocLab-Bilkent/turkish-constitutional-court",
14
+ type="Classification",
15
+ category="t2c",
16
+ modalities=["text"],
17
+ eval_splits=["test"],
18
+ eval_langs=["tur-Latn"],
19
+ main_score="f1",
20
+ dataset={
21
+ "path": "denizgulal/turkish-constitutional-court-violation-clean",
22
+ "revision": "333f49b7ddc72fa4a86ec5bd756a28c585311c74",
23
+ },
24
+ date=("2000-01-01", "2023-02-20"), # dataset card last updated Feb 20, 2023
25
+ domains=["Legal", "Non-fiction"],
26
+ task_subtypes=["Political classification"],
27
+ license="cc-by-4.0",
28
+ annotations_creators="human-annotated",
29
+ dialect=[],
30
+ sample_creation="found",
31
+ bibtex_citation=r"""
32
+ @article{mumcuoglu2021natural,
33
+ author = {Mumcuoglu, Emre and Ozturk, Ceyhun E. and Ozaktas, Haldun M. and Koc, Aykut},
34
+ journal = {Information Processing and Management},
35
+ number = {5},
36
+ title = {Natural language processing in law: Prediction of outcomes in the higher courts of Turkey},
37
+ volume = {58},
38
+ year = {2021},
39
+ }
40
+ """,
41
+ )
@@ -1,4 +1,5 @@
1
1
  from .auto_rag_retrieval import AutoRAGRetrieval
2
2
  from .ko_strategy_qa import KoStrategyQA
3
+ from .squad_kor_v1_retrieval import SQuADKorV1Retrieval
3
4
 
4
- __all__ = ["AutoRAGRetrieval", "KoStrategyQA"]
5
+ __all__ = ["AutoRAGRetrieval", "KoStrategyQA", "SQuADKorV1Retrieval"]
@@ -0,0 +1,47 @@
1
+ from mteb.abstasks.retrieval import AbsTaskRetrieval
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class SQuADKorV1Retrieval(AbsTaskRetrieval):
6
+ metadata = TaskMetadata(
7
+ name="SQuADKorV1Retrieval",
8
+ description="Korean translation of SQuAD v1.0 dataset for retrieval task, based on Korean Wikipedia articles.",
9
+ reference="https://huggingface.co/datasets/yjoonjang/squad_kor_v1",
10
+ dataset={
11
+ "path": "yjoonjang/squad_kor_v1",
12
+ "revision": "2b4ee1f3b143a04792da93a3df21933c5fe9eed3",
13
+ },
14
+ type="Retrieval",
15
+ category="t2t",
16
+ modalities=["text"],
17
+ eval_splits=["test"],
18
+ eval_langs=["kor-Hang"],
19
+ main_score="ndcg_at_10",
20
+ date=("2018-01-01", "2019-12-31"),
21
+ domains=["Encyclopaedic", "Written"],
22
+ task_subtypes=["Question answering"],
23
+ license="cc-by-sa-4.0",
24
+ annotations_creators="derived",
25
+ dialect=[],
26
+ sample_creation="found",
27
+ bibtex_citation=r"""
28
+ @inproceedings{rajpurkar-etal-2016-squad,
29
+ address = {Austin, Texas},
30
+ author = {Rajpurkar, Pranav and
31
+ Zhang, Jian and
32
+ Lopyrev, Konstantin and
33
+ Liang, Percy},
34
+ booktitle = {Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing},
35
+ doi = {10.18653/v1/D16-1264},
36
+ editor = {Su, Jian and
37
+ Duh, Kevin and
38
+ Carreras, Xavier},
39
+ month = nov,
40
+ pages = {2383--2392},
41
+ publisher = {Association for Computational Linguistics},
42
+ title = {{SQ}u{AD}: 100,000+ Questions for Machine Comprehension of Text},
43
+ url = {https://aclanthology.org/D16-1264},
44
+ year = {2016},
45
+ }
46
+ """,
47
+ )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.4.2
3
+ Version: 2.5.0
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -5,7 +5,7 @@ mteb/_helpful_enum.py,sha256=jh73N1jlcpg7RGz4bj8UpctiMNvqvHpp9wrB7SYEzIU,510
5
5
  mteb/_log_once.py,sha256=-tUKzxGQzf2LZSuQXi97oYFXMta1B6GEYXd7BPqssvY,1095
6
6
  mteb/_requires_package.py,sha256=eHg_TD9BVZRzNCcQQrUP17d8M1DF_vOd_tVx54AmAnM,3017
7
7
  mteb/_set_seed.py,sha256=HPlPRl__Pe6IG-4UgJqTfplcivJ_wA2kaClbXoHQedM,1178
8
- mteb/cache.py,sha256=XiFuhjZ2C-o0LgP1YM8g9As_vigJCUNfTrOb9-EiFlM,20177
8
+ mteb/cache.py,sha256=EogjsGZjoD6wZmVr4R3Lrc25C0x50Oie_i29K_4iHwo,21236
9
9
  mteb/deprecated_evaluator.py,sha256=9cJIahJHNZphoqo6KZfp30LLhIdyiR3SSLcut4FR_Ek,26778
10
10
  mteb/evaluate.py,sha256=IcaNu3VQwoeH7F1m8_7qJ6_lffHPujRcjKOBo4A7JBI,18631
11
11
  mteb/filter_tasks.py,sha256=5XE1OYmgDDoJYnXwFf4ma_PIT_Lekzs420sQF_kpCiY,7240
@@ -57,10 +57,10 @@ mteb/abstasks/text/reranking.py,sha256=rfRGRBeSjZLgkh8pneMgRm-vd9NHr5jSFH92YfOHf
57
57
  mteb/abstasks/text/summarization.py,sha256=KYEb8gh4JjpSsrvGUmQ2VlrVdzzVxIWcitXOJUaHhO4,6954
58
58
  mteb/benchmarks/__init__.py,sha256=MQEVeli-zLaJ7Xg0z7RhXQwsdmm7Ht_W2Ln0rZo1Szc,225
59
59
  mteb/benchmarks/_create_table.py,sha256=b2RqGqi0ZonKbHecEcZiF4pkfE96smFRIzxOI82ETA8,22304
60
- mteb/benchmarks/benchmark.py,sha256=UEllUtZQ0L10SNnxRyKbiv4wLCMcNF2nUPhBDKY3nz8,5097
60
+ mteb/benchmarks/benchmark.py,sha256=E6hydDE9rkm4egsj52aDjQ0w4BQ1TBBP9gOAvw_Uh48,5583
61
61
  mteb/benchmarks/get_benchmark.py,sha256=-n_O-gitRKZi48gJKNgGuI36hsP7yLVSiwulnMHN7Gw,3935
62
62
  mteb/benchmarks/benchmarks/__init__.py,sha256=73NYNv98q-tRCqf2YHabvElz_a8g_mF75HTup0J-E5E,2220
63
- mteb/benchmarks/benchmarks/benchmarks.py,sha256=KuXEjB7-3S4b7sChJGmzt2z5iviujRxfqZx5kKNeQAc,97968
63
+ mteb/benchmarks/benchmarks/benchmarks.py,sha256=_8zds06sQj41JzR6BHGWk33DZE2VGvabhBoyty5oAHk,97949
64
64
  mteb/benchmarks/benchmarks/rteb_benchmarks.py,sha256=QnCSrTTaBfcRlAQp2Nu81tgv1idMXqiM16Fp2zKJ5Ys,10607
65
65
  mteb/cli/__init__.py,sha256=v-csUr3eUZElIvrGB6QGtaIdndDfNWEe9oZchsGsJpg,64
66
66
  mteb/cli/_display_tasks.py,sha256=7A06dT9sSoTz6shyMvskPxuc5eHY_H7PGPlROzMP0yw,2196
@@ -514,6 +514,7 @@ mteb/descriptive_stats/Classification/ToxicConversationsVNClassification.json,sh
514
514
  mteb/descriptive_stats/Classification/TswanaNewsClassification.json,sha256=ve0LsVS9DKfqeXE3vwQD5yCtZE5EA209-g2BpJ-5Kn0,2703
515
515
  mteb/descriptive_stats/Classification/TswanaNewsClassification.v2.json,sha256=ve0LsVS9DKfqeXE3vwQD5yCtZE5EA209-g2BpJ-5Kn0,2703
516
516
  mteb/descriptive_stats/Classification/TurkicClassification.json,sha256=Vc4ZRF1j0eyasJLMIW-0vN4HhVtfDxU1nzS-y8P0FWU,19509
517
+ mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json,sha256=EMEEd5F1RdDTYBRBD-oyYXtf87K_yufblqIFFm051U8,1508
517
518
  mteb/descriptive_stats/Classification/TurkishMovieSentimentClassification.json,sha256=e0SE-SCDiioi8zkEIjKGAzHHpWoZJ41HT0igJRkK6Vs,1507
518
519
  mteb/descriptive_stats/Classification/TurkishMovieSentimentClassification.v2.json,sha256=IhXQYsjSXHdpAdnJMLfM5etS7VeKeorQofv6aNFePU0,1509
519
520
  mteb/descriptive_stats/Classification/TurkishProductSentimentClassification.json,sha256=cgpSg-LW1fPVVPuOkOl-d3cDXr5T5JVIwEnXjW3EKEc,1499
@@ -1311,6 +1312,7 @@ mteb/descriptive_stats/Retrieval/SCIDOCS.json,sha256=Xa2HtyeuWVV9xJOT1YwhrM32Rub
1311
1312
  mteb/descriptive_stats/Retrieval/SIQA.json,sha256=Z8lTLsbrSCdGiYFOQ_yrb3bXxlkHOZ1uYZCGorvBDHQ,991
1312
1313
  mteb/descriptive_stats/Retrieval/SKQuadRetrieval.json,sha256=VQXzc7XquS3pxJXlP0qovigYdleNgHBzwJIuHkCSXpM,1005
1313
1314
  mteb/descriptive_stats/Retrieval/SNLRetrieval.json,sha256=3IHnPHydwVU_68lP5EM6OpHBM5CRuUQFPeny2bIVOEg,990
1315
+ mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json,sha256=-TLf6e9WKfnK_52TsTXCBRqd7xRgzD7sllWq91dhNhc,984
1314
1316
  mteb/descriptive_stats/Retrieval/SadeemQuestionRetrieval.json,sha256=xvMLI0XiyWb7IKHUxFzyOUsRLj7oLFaG8R2cszLkwkw,995
1315
1317
  mteb/descriptive_stats/Retrieval/SciFact-Fa.json,sha256=BZHK8KUj5ShBzfomQxUbH8GBVpWYpepwdNaOZ1DHUE0,988
1316
1318
  mteb/descriptive_stats/Retrieval/SciFact-Fa.v2.json,sha256=1U8zTDU24TBaZ2cVX6puKT_oQx_vdLBeVz6MRswOrJE,976
@@ -1474,7 +1476,7 @@ mteb/models/model_implementations/cadet_models.py,sha256=bDula_VroXOWgSw-tquvNVG
1474
1476
  mteb/models/model_implementations/cde_models.py,sha256=3nNU3nq3VZZcImFqH1VPj57-QJNMU6Ei2C_HCaicuUs,9012
1475
1477
  mteb/models/model_implementations/clip_models.py,sha256=zrfgNmZszu0JMtMNdCMzEohixsrnQ7xFhCqgsiucH_Q,6107
1476
1478
  mteb/models/model_implementations/clips_models.py,sha256=QwwoU4Zu_zwUgUg7Hn2lzpXK-GjXIST0qF_2oRxHm2Y,3410
1477
- mteb/models/model_implementations/codefuse_models.py,sha256=19Y-d_qetVU64quzEvuUJ_K8DHo1JEEKEGqjRR48dFg,9113
1479
+ mteb/models/model_implementations/codefuse_models.py,sha256=t_Dw_pRjh6gW1l2xLmBjd3oGcU_csy6DW3IdWsYuvGg,13975
1478
1480
  mteb/models/model_implementations/codesage_models.py,sha256=D4CdISGyv5f2GMYq4_efgm5qNq80SWAX5R2u5mjEiXM,2998
1479
1481
  mteb/models/model_implementations/cohere_models.py,sha256=OWFClVAN4phjBoxfGGDyGDmzMu-t2VrjCGFyAIWmz4w,13832
1480
1482
  mteb/models/model_implementations/cohere_v.py,sha256=K6VEw1NkyM2PuMd18kHE6aqPrcByYSwEmAKjvLods_w,15760
@@ -1522,7 +1524,7 @@ mteb/models/model_implementations/mdbr_models.py,sha256=B7R3dVEH9EZ_fSZ05VveSbmT
1522
1524
  mteb/models/model_implementations/misc_models.py,sha256=X0MvBQn2pRk7IT-jD3fYoja26at61FanjBtroaAg3Zc,69116
1523
1525
  mteb/models/model_implementations/mme5_models.py,sha256=cRRXecC8EHeLQiEd1nfCb1vt75x_CnG1s_9lYRrtyTA,1484
1524
1526
  mteb/models/model_implementations/moco_models.py,sha256=Kl0nBsqkG3crYoo5YulFq1fv97U0-IBWVFHN0UuO0lg,5483
1525
- mteb/models/model_implementations/mod_models.py,sha256=vCTnzJE9O1ZTaSRNGxn5jWIlpLeRev7L-4E_FVz6_3Q,6226
1527
+ mteb/models/model_implementations/mod_models.py,sha256=jt33SfV476FIQJ-W-FRi_ocyRY1u8ldRFuo-PgejJDU,6335
1526
1528
  mteb/models/model_implementations/model2vec_models.py,sha256=D-EY-6P-cKKunbgzk4DHzJL1ogpWYFhpHbTLb8qQjJw,13765
1527
1529
  mteb/models/model_implementations/moka_models.py,sha256=Y5do7Z4JyGxabYrjHhkBLqCKTQKotniS-f4kOgXJjag,4995
1528
1530
  mteb/models/model_implementations/mxbai_models.py,sha256=KJXfUVW8e6LJEq3EO-Zy-pu6-9e-Q0mjP6_W7GP6QoI,3851
@@ -1530,7 +1532,7 @@ mteb/models/model_implementations/nbailab.py,sha256=bqqR0qs10IH2g5HC6K962tDMBciw
1530
1532
  mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=6i-xbLRRNKuDpU-hwklwdQjgu1wnz5CecLSoc6kyd7Q,3976
1531
1533
  mteb/models/model_implementations/nomic_models.py,sha256=WmSX6YyYaG5EG9M3OX-tTgdznFVJanfVAxRKJ-vNXF0,14736
1532
1534
  mteb/models/model_implementations/nomic_models_vision.py,sha256=6aca0XVLXnkGk6GW8jVCIbbjPGq98lKq4c9Az4jbEkE,6805
1533
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=OEhVrvA-zfX2PSm76VcCDPkRyAArSFkVeweyLyzpqPI,6255
1535
+ mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=yOaRX9amblBRGmNA-By2M8qD4ZsabSN2vw_jp1aXwuA,6314
1534
1536
  mteb/models/model_implementations/nvidia_models.py,sha256=acVverAt77lURkILCVkCdXsWgY1BJoG1-ugB7yIhlIM,21555
1535
1537
  mteb/models/model_implementations/openai_models.py,sha256=loU6JByNUwRidq7lmcu8iGOtUQvzejw6HVLaF_IKCR0,9352
1536
1538
  mteb/models/model_implementations/openclip_models.py,sha256=W8XcokgLU1nSmMaWpYXkWWizVd3sQezcP02YtF2fXpo,11436
@@ -1559,6 +1561,7 @@ mteb/models/model_implementations/samilpwc_models.py,sha256=oMwKNwCxoH1jZgCy04oo
1559
1561
  mteb/models/model_implementations/sarashina_embedding_models.py,sha256=TSmr2FEX79mJTA9mbEV3meEZYSelGv58Veiw__TTGFM,8415
1560
1562
  mteb/models/model_implementations/searchmap_models.py,sha256=XvVl99emIgnNUCxkTuFQXW6py2R8vgsArfpyHveCugw,1904
1561
1563
  mteb/models/model_implementations/seed_1_6_embedding_models.py,sha256=Q8JTW2fjePR9dq4spuwK2lyVeL3mn1bl-H5wkQuEV_E,18609
1564
+ mteb/models/model_implementations/seed_1_6_embedding_models_1215.py,sha256=O0BlsOHaxF0EEGaoas4AdzB8f-_9W9lwfoxLypexKEo,37516
1562
1565
  mteb/models/model_implementations/seed_models.py,sha256=SgK4kPVO6V33G3F1zSq06zSkWarPLEwBt1SWp4TUoVw,14142
1563
1566
  mteb/models/model_implementations/sentence_transformers_models.py,sha256=J0uFt6cFkHohTNtFJe3Ne1weNndYVVinSGFBKYlolt8,22784
1564
1567
  mteb/models/model_implementations/shuu_model.py,sha256=KkcuVYjIzoha3Fvxh8ppqHQ9BfNMWeqDqn9dGCRKUjg,1167
@@ -1585,7 +1588,7 @@ mteb/models/search_encoder_index/search_backend_protocol.py,sha256=TSjlx88stJcMl
1585
1588
  mteb/models/search_encoder_index/search_indexes/__init__.py,sha256=Wm60_oUemUpFsvrCMW111dcPH2L2rt1iZrXMskXmG7o,88
1586
1589
  mteb/models/search_encoder_index/search_indexes/faiss_search_index.py,sha256=WMs3QbbYV13fRuT3dakmdVMZLFdc_9ZzSupS3QxlbVQ,5555
1587
1590
  mteb/results/__init__.py,sha256=EXQqK4Am5eIYzD52dpcGAFSdqnC38oE6JHN302oidHc,158
1588
- mteb/results/benchmark_results.py,sha256=b_g0QmTbwue9ZpWTtyPfgf_nyavckZHUgTVE6zqqtzM,18342
1591
+ mteb/results/benchmark_results.py,sha256=_d5vJWFwGmriFrLYmHI-P28vXSxXsWkg7hIQGKH_44w,19167
1589
1592
  mteb/results/model_result.py,sha256=Y6b_xfJlw8EFZq464ZVhyw0Rryv111hvMjnXbEZJpXk,14059
1590
1593
  mteb/results/task_result.py,sha256=DgmAw6akotjp8m8E6gE8QP9mQMxUvyzu1hnZ5o01GkU,32303
1591
1594
  mteb/tasks/__init__.py,sha256=izAxU0ip1F_YUwx0dFCuN35BaktdmePh6vlDiHC0kLo,503
@@ -1883,7 +1886,8 @@ mteb/tasks/classification/tha/wisesight_sentiment_classification.py,sha256=CdTFV
1883
1886
  mteb/tasks/classification/tha/wongnai_reviews_classification.py,sha256=0qy4fHUf5i6Kgfxve1NneelB9gNas_7lMRs6pwgce1Q,1736
1884
1887
  mteb/tasks/classification/tsn/__init__.py,sha256=pHxOFshsfTp_CkIowXYcDtpZsxihcnPewREjFOzwHH4,176
1885
1888
  mteb/tasks/classification/tsn/tswana_news_classification.py,sha256=wO3FD7JLaV9gycHVySmVjJUMwGbYd73pZfZEtSiknrw,3106
1886
- mteb/tasks/classification/tur/__init__.py,sha256=ZHpiPVOG5fymXCy2V2XqnSyVuXwHWmoa58KE9ohGjKw,481
1889
+ mteb/tasks/classification/tur/__init__.py,sha256=viCR9s3exQyQDKEbgi1ESBiMPF07cG_TssN3oXc9_GA,611
1890
+ mteb/tasks/classification/tur/turkish_constitutional_court.py,sha256=F-lY7I46Zo8SoCPq2N9rz4yUy84icI0hIvPuI8XRarU,1626
1887
1891
  mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py,sha256=eWPoX2uK06GsmgrteInkiC0uw0mF4dnkPiR249jBDpg,3069
1888
1892
  mteb/tasks/classification/tur/turkish_product_sentiment_classification.py,sha256=9_AxxYWNCVqCuFN1_uCbwid9ox7KNKRSWbpfLMQrFII,2781
1889
1893
  mteb/tasks/classification/ukr/__init__.py,sha256=Tk8r98fjAhLigvXSu2v3vhq3aJVepreg7k7hVxlpIYo,186
@@ -2369,9 +2373,10 @@ mteb/tasks/retrieval/jpn/nlp_journal_title_abs_retrieval.py,sha256=JOOW_5pRKHzVn
2369
2373
  mteb/tasks/retrieval/jpn/nlp_journal_title_intro_retrieval.py,sha256=aVFTFiANWrIz68FjHv9KBqlhpWlsmi9EAP052gECzaU,3078
2370
2374
  mteb/tasks/retrieval/kat/__init__.py,sha256=H4phkKqg_yZzkK7T62aCMBzjbGZzLKJ-MngrQlPbW3A,93
2371
2375
  mteb/tasks/retrieval/kat/georgian_faq_retrieval.py,sha256=4zyodSYCtHtBW9WKIGxFZaTXDrtHuaf3uyfIsDRGBqM,2494
2372
- mteb/tasks/retrieval/kor/__init__.py,sha256=zNjAS2VRjeYX5u4vqev6dGOo_R3i9uSzxAsduZ0po4I,138
2376
+ mteb/tasks/retrieval/kor/__init__.py,sha256=gstfs-sW2-qlaVrOJg_NLsQLLUYCWG2gPf64KI2LxoA,217
2373
2377
  mteb/tasks/retrieval/kor/auto_rag_retrieval.py,sha256=tgffW8zMpDSv1FCOdS4_4SL5zKQj70JVSt_RKs3CgKY,1576
2374
2378
  mteb/tasks/retrieval/kor/ko_strategy_qa.py,sha256=jk13ORetYtF0q36h8ljD6TeTHUwvK5F5ZbDoMCP3eWk,1156
2379
+ mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py,sha256=M7T5FkN1efK7euRslx-LZN7hS_QdIwqtUuVlWO-dico,1631
2375
2380
  mteb/tasks/retrieval/multilingual/__init__.py,sha256=mfVGkoB4DO5ktlg8ia-4nImFVmZcqXh1XkgCkIff0tY,6765
2376
2381
  mteb/tasks/retrieval/multilingual/belebele_retrieval.py,sha256=gaVLEwuLEwMutMi9V-obpiYKbpllX2QNm2j3MVeebfE,7027
2377
2382
  mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py,sha256=_6r34ZvRiLVENYcrd87NjilybGaetBwKFEbO29zYmBU,4676
@@ -2596,9 +2601,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2596
2601
  mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
2597
2602
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2598
2603
  mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
2599
- mteb-2.4.2.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2600
- mteb-2.4.2.dist-info/METADATA,sha256=T97AMDRmjR29KLQHND4FxM_JMQE15o5sH3WgYV3QtrI,13990
2601
- mteb-2.4.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2602
- mteb-2.4.2.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2603
- mteb-2.4.2.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2604
- mteb-2.4.2.dist-info/RECORD,,
2604
+ mteb-2.5.0.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2605
+ mteb-2.5.0.dist-info/METADATA,sha256=1R2IkDY_5XF2lZEHOy0op8KGK315UOoEJ8U0_lIyo8Q,13990
2606
+ mteb-2.5.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2607
+ mteb-2.5.0.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2608
+ mteb-2.5.0.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2609
+ mteb-2.5.0.dist-info/RECORD,,
File without changes