mteb 2.4.1__py3-none-any.whl → 2.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/benchmarks/benchmark.py +31 -13
- mteb/benchmarks/benchmarks/benchmarks.py +2 -2
- mteb/cache.py +36 -7
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/models/model_implementations/andersborges.py +12 -0
- mteb/models/model_implementations/bge_models.py +43 -0
- mteb/models/model_implementations/codefuse_models.py +144 -0
- mteb/models/model_implementations/dino_models.py +152 -0
- mteb/models/model_implementations/emillykkejensen_models.py +18 -0
- mteb/models/model_implementations/euler_models.py +6 -0
- mteb/models/model_implementations/fa_models.py +50 -0
- mteb/models/model_implementations/facebookai.py +44 -0
- mteb/models/model_implementations/gte_models.py +69 -0
- mteb/models/model_implementations/kalm_models.py +38 -0
- mteb/models/model_implementations/kblab.py +6 -0
- mteb/models/model_implementations/kowshik24_models.py +9 -0
- mteb/models/model_implementations/misc_models.py +293 -0
- mteb/models/model_implementations/mod_models.py +10 -23
- mteb/models/model_implementations/mxbai_models.py +6 -0
- mteb/models/model_implementations/nomic_models.py +8 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +5 -3
- mteb/models/model_implementations/pylate_models.py +33 -0
- mteb/models/model_implementations/ru_sentence_models.py +22 -0
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +658 -0
- mteb/models/model_implementations/sentence_transformers_models.py +39 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +7 -0
- mteb/models/model_implementations/ua_sentence_models.py +9 -0
- mteb/models/model_implementations/vi_vn_models.py +33 -0
- mteb/results/benchmark_results.py +22 -4
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/retrieval/kor/__init__.py +2 -1
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- {mteb-2.4.1.dist-info → mteb-2.5.0.dist-info}/METADATA +1 -1
- {mteb-2.4.1.dist-info → mteb-2.5.0.dist-info}/RECORD +40 -35
- {mteb-2.4.1.dist-info → mteb-2.5.0.dist-info}/WHEEL +0 -0
- {mteb-2.4.1.dist-info → mteb-2.5.0.dist-info}/entry_points.txt +0 -0
- {mteb-2.4.1.dist-info → mteb-2.5.0.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.4.1.dist-info → mteb-2.5.0.dist-info}/top_level.txt +0 -0
|
@@ -402,6 +402,15 @@ static_similarity_mrl_multilingual_v1 = ModelMeta(
|
|
|
402
402
|
training_datasets=static_multi_datasets,
|
|
403
403
|
public_training_code="https://huggingface.co/blog/static-embeddings",
|
|
404
404
|
public_training_data="https://huggingface.co/collections/sentence-transformers/embedding-model-datasets-6644d7a3673a511914aa7552",
|
|
405
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
406
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
407
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
408
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
409
|
+
month = "11",
|
|
410
|
+
year = "2019",
|
|
411
|
+
publisher = "Association for Computational Linguistics",
|
|
412
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
413
|
+
}""",
|
|
405
414
|
)
|
|
406
415
|
|
|
407
416
|
contriever = ModelMeta(
|
|
@@ -467,6 +476,17 @@ microllama_text_embedding = ModelMeta(
|
|
|
467
476
|
public_training_data=None,
|
|
468
477
|
)
|
|
469
478
|
|
|
479
|
+
SENTENCE_T5_CITATION = """
|
|
480
|
+
@misc{ni2021sentencet5scalablesentenceencoders,
|
|
481
|
+
title={Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models},
|
|
482
|
+
author={Jianmo Ni and Gustavo Hernández Ábrego and Noah Constant and Ji Ma and Keith B. Hall and Daniel Cer and Yinfei Yang},
|
|
483
|
+
year={2021},
|
|
484
|
+
eprint={2108.08877},
|
|
485
|
+
archivePrefix={arXiv},
|
|
486
|
+
primaryClass={cs.CL},
|
|
487
|
+
url={https://arxiv.org/abs/2108.08877},
|
|
488
|
+
}
|
|
489
|
+
"""
|
|
470
490
|
sentence_t5_base = ModelMeta(
|
|
471
491
|
loader=sentence_transformers_loader,
|
|
472
492
|
name="sentence-transformers/sentence-t5-base",
|
|
@@ -486,6 +506,7 @@ sentence_t5_base = ModelMeta(
|
|
|
486
506
|
public_training_code=None,
|
|
487
507
|
public_training_data=None,
|
|
488
508
|
training_datasets={"SNLI", "Community QA"},
|
|
509
|
+
citation=SENTENCE_T5_CITATION,
|
|
489
510
|
)
|
|
490
511
|
|
|
491
512
|
sentence_t5_large = ModelMeta(
|
|
@@ -507,6 +528,7 @@ sentence_t5_large = ModelMeta(
|
|
|
507
528
|
public_training_code=None,
|
|
508
529
|
public_training_data=None,
|
|
509
530
|
training_datasets={"SNLI", "Community QA"},
|
|
531
|
+
citation=SENTENCE_T5_CITATION,
|
|
510
532
|
)
|
|
511
533
|
|
|
512
534
|
sentence_t5_xl = ModelMeta(
|
|
@@ -528,6 +550,7 @@ sentence_t5_xl = ModelMeta(
|
|
|
528
550
|
public_training_code=None,
|
|
529
551
|
public_training_data=None,
|
|
530
552
|
training_datasets={"SNLI", "Community QA"},
|
|
553
|
+
citation=SENTENCE_T5_CITATION,
|
|
531
554
|
)
|
|
532
555
|
|
|
533
556
|
sentence_t5_xxl = ModelMeta(
|
|
@@ -549,7 +572,19 @@ sentence_t5_xxl = ModelMeta(
|
|
|
549
572
|
public_training_code=None,
|
|
550
573
|
public_training_data=None,
|
|
551
574
|
training_datasets={"SNLI", "Community QA"},
|
|
575
|
+
citation=SENTENCE_T5_CITATION,
|
|
552
576
|
)
|
|
577
|
+
GTR_CITATION = """
|
|
578
|
+
@misc{ni2021largedualencodersgeneralizable,
|
|
579
|
+
title={Large Dual Encoders Are Generalizable Retrievers},
|
|
580
|
+
author={Jianmo Ni and Chen Qu and Jing Lu and Zhuyun Dai and Gustavo Hernández Ábrego and Ji Ma and Vincent Y. Zhao and Yi Luan and Keith B. Hall and Ming-Wei Chang and Yinfei Yang},
|
|
581
|
+
year={2021},
|
|
582
|
+
eprint={2112.07899},
|
|
583
|
+
archivePrefix={arXiv},
|
|
584
|
+
primaryClass={cs.IR},
|
|
585
|
+
url={https://arxiv.org/abs/2112.07899},
|
|
586
|
+
}
|
|
587
|
+
"""
|
|
553
588
|
gtr_t5_large = ModelMeta(
|
|
554
589
|
loader=sentence_transformers_loader,
|
|
555
590
|
name="sentence-transformers/gtr-t5-large",
|
|
@@ -581,6 +616,7 @@ gtr_t5_large = ModelMeta(
|
|
|
581
616
|
"NQ-PL", # translation not trained on
|
|
582
617
|
"Community QA",
|
|
583
618
|
},
|
|
619
|
+
citation=GTR_CITATION,
|
|
584
620
|
)
|
|
585
621
|
|
|
586
622
|
gtr_t5_xl = ModelMeta(
|
|
@@ -614,6 +650,7 @@ gtr_t5_xl = ModelMeta(
|
|
|
614
650
|
"NQ-PL", # translation not trained on
|
|
615
651
|
"Community QA",
|
|
616
652
|
},
|
|
653
|
+
citation=GTR_CITATION,
|
|
617
654
|
)
|
|
618
655
|
gtr_t5_xxl = ModelMeta(
|
|
619
656
|
loader=sentence_transformers_loader,
|
|
@@ -646,6 +683,7 @@ gtr_t5_xxl = ModelMeta(
|
|
|
646
683
|
"NQ-PL", # translation not trained on
|
|
647
684
|
"Community QA",
|
|
648
685
|
},
|
|
686
|
+
citation=GTR_CITATION,
|
|
649
687
|
)
|
|
650
688
|
|
|
651
689
|
gtr_t5_base = ModelMeta(
|
|
@@ -679,4 +717,5 @@ gtr_t5_base = ModelMeta(
|
|
|
679
717
|
"NQ-PL", # translation not trained on
|
|
680
718
|
"Community QA",
|
|
681
719
|
},
|
|
720
|
+
citation=GTR_CITATION,
|
|
682
721
|
)
|
|
@@ -23,4 +23,11 @@ spartan8806_atles_champion_embedding = ModelMeta(
|
|
|
23
23
|
adapted_from="sentence-transformers/all-mpnet-base-v2",
|
|
24
24
|
public_training_code=None,
|
|
25
25
|
public_training_data=None,
|
|
26
|
+
citation="""@article{conner2025epistemic,
|
|
27
|
+
title={The Epistemic Barrier: How RLHF Makes AI Consciousness Empirically Undecidable},
|
|
28
|
+
author={Conner (spartan8806)},
|
|
29
|
+
journal={ATLES Research Papers},
|
|
30
|
+
year={2025},
|
|
31
|
+
note={Cross-model validation study (Phoenix, Grok, Gemini, Claude)}
|
|
32
|
+
}""",
|
|
26
33
|
)
|
|
@@ -28,4 +28,13 @@ xlm_roberta_ua_distilled = ModelMeta(
|
|
|
28
28
|
modalities=["text"],
|
|
29
29
|
public_training_data=None,
|
|
30
30
|
use_instructions=False,
|
|
31
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
32
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
33
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
34
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
35
|
+
month = "11",
|
|
36
|
+
year = "2019",
|
|
37
|
+
publisher = "Association for Computational Linguistics",
|
|
38
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
39
|
+
}""",
|
|
31
40
|
)
|
|
@@ -75,6 +75,12 @@ aiteamvn_vietnamese_embeddings = ModelMeta(
|
|
|
75
75
|
public_training_data=None,
|
|
76
76
|
training_datasets=None,
|
|
77
77
|
adapted_from="BAAI/bge-m3",
|
|
78
|
+
citation="""@misc{Vietnamese_Embedding,
|
|
79
|
+
title={Vietnamese_Embedding: Embedding model in Vietnamese language.},
|
|
80
|
+
author={Nguyen Nho Trung, Nguyen Nhat Quang, Nguyen Van Huy},
|
|
81
|
+
year={2025},
|
|
82
|
+
publisher={Huggingface},
|
|
83
|
+
}""",
|
|
78
84
|
)
|
|
79
85
|
|
|
80
86
|
hiieu_halong_embedding = ModelMeta(
|
|
@@ -99,6 +105,12 @@ hiieu_halong_embedding = ModelMeta(
|
|
|
99
105
|
public_training_data=None,
|
|
100
106
|
training_datasets=None,
|
|
101
107
|
adapted_from="intfloat/multilingual-e5-base",
|
|
108
|
+
citation="""@misc{HalongEmbedding,
|
|
109
|
+
title={HalongEmbedding: A Vietnamese Text Embedding},
|
|
110
|
+
author={Ngo Hieu},
|
|
111
|
+
year={2024},
|
|
112
|
+
publisher={Huggingface},
|
|
113
|
+
}""",
|
|
102
114
|
)
|
|
103
115
|
|
|
104
116
|
sup_simcse_vietnamese_phobert_base_ = ModelMeta(
|
|
@@ -122,6 +134,20 @@ sup_simcse_vietnamese_phobert_base_ = ModelMeta(
|
|
|
122
134
|
reference="https://huggingface.co/VoVanPhuc/sup-SimCSE-VietNamese-phobert-base",
|
|
123
135
|
similarity_fn_name="cosine",
|
|
124
136
|
training_datasets=None,
|
|
137
|
+
citation="""@article{gao2021simcse,
|
|
138
|
+
title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
|
|
139
|
+
author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
|
|
140
|
+
journal={arXiv preprint arXiv:2104.08821},
|
|
141
|
+
year={2021}
|
|
142
|
+
}
|
|
143
|
+
|
|
144
|
+
@inproceedings{phobert,
|
|
145
|
+
title = {{PhoBERT: Pre-trained language models for Vietnamese}},
|
|
146
|
+
author = {Dat Quoc Nguyen and Anh Tuan Nguyen},
|
|
147
|
+
booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2020},
|
|
148
|
+
year = {2020},
|
|
149
|
+
pages = {1037--1042}
|
|
150
|
+
}""",
|
|
125
151
|
)
|
|
126
152
|
|
|
127
153
|
bkai_foundation_models_vietnamese_bi_encoder = ModelMeta(
|
|
@@ -145,4 +171,11 @@ bkai_foundation_models_vietnamese_bi_encoder = ModelMeta(
|
|
|
145
171
|
reference="https://huggingface.co/bkai-foundation-models/vietnamese-bi-encoder",
|
|
146
172
|
similarity_fn_name="cosine",
|
|
147
173
|
training_datasets=None,
|
|
174
|
+
citation="""
|
|
175
|
+
@article{duc2024towards,
|
|
176
|
+
title={Towards Comprehensive Vietnamese Retrieval-Augmented Generation and Large Language Models},
|
|
177
|
+
author={Nguyen Quang Duc, Le Hai Son, Nguyen Duc Nhan, Nguyen Dich Nhat Minh, Le Thanh Huong, Dinh Viet Sang},
|
|
178
|
+
journal={arXiv preprint arXiv:2403.01616},
|
|
179
|
+
year={2024}
|
|
180
|
+
}""",
|
|
148
181
|
)
|
|
@@ -15,6 +15,7 @@ from mteb.abstasks.task_metadata import (
|
|
|
15
15
|
TaskDomain,
|
|
16
16
|
TaskType,
|
|
17
17
|
)
|
|
18
|
+
from mteb.benchmarks.benchmark import Benchmark
|
|
18
19
|
from mteb.models import ModelMeta
|
|
19
20
|
from mteb.models.get_model_meta import get_model_metas
|
|
20
21
|
from mteb.types import (
|
|
@@ -39,10 +40,10 @@ class BenchmarkResults(BaseModel):
|
|
|
39
40
|
"""
|
|
40
41
|
|
|
41
42
|
model_results: list[ModelResult]
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
43
|
+
benchmark: Benchmark | None = None
|
|
44
|
+
model_config = ConfigDict(
|
|
45
|
+
protected_namespaces=(), # to free up the name model_results which is otherwise protected
|
|
46
|
+
arbitrary_types_allowed=True, # Benchmark is dataclasses.dataclass
|
|
46
47
|
)
|
|
47
48
|
|
|
48
49
|
def __repr__(self) -> str:
|
|
@@ -362,6 +363,23 @@ class BenchmarkResults(BaseModel):
|
|
|
362
363
|
format=format,
|
|
363
364
|
)
|
|
364
365
|
|
|
366
|
+
def get_benchmark_result(self) -> pd.DataFrame:
|
|
367
|
+
"""Get aggregated scores for each model in the benchmark.
|
|
368
|
+
|
|
369
|
+
Uses the benchmark's summary table creation method to compute scores.
|
|
370
|
+
|
|
371
|
+
Returns:
|
|
372
|
+
A DataFrame with the aggregated benchmark scores for each model.
|
|
373
|
+
"""
|
|
374
|
+
if self.benchmark is None:
|
|
375
|
+
raise ValueError(
|
|
376
|
+
"No benchmark associated with these results (self.benchmark is None). "
|
|
377
|
+
"To get benchmark results, load results with a Benchmark object. "
|
|
378
|
+
"`results = cache.load_results(tasks='MTEB(eng, v2)')`"
|
|
379
|
+
)
|
|
380
|
+
|
|
381
|
+
return self.benchmark._create_summary_table(self)
|
|
382
|
+
|
|
365
383
|
def __iter__(self) -> Iterator[ModelResult]:
|
|
366
384
|
return iter(self.model_results)
|
|
367
385
|
|
|
@@ -1,3 +1,6 @@
|
|
|
1
|
+
from .turkish_constitutional_court import (
|
|
2
|
+
TurkishConstitutionalCourtViolation,
|
|
3
|
+
)
|
|
1
4
|
from .turkish_movie_sentiment_classification import (
|
|
2
5
|
TurkishMovieSentimentClassification,
|
|
3
6
|
TurkishMovieSentimentClassificationV2,
|
|
@@ -8,6 +11,7 @@ from .turkish_product_sentiment_classification import (
|
|
|
8
11
|
)
|
|
9
12
|
|
|
10
13
|
__all__ = [
|
|
14
|
+
"TurkishConstitutionalCourtViolation",
|
|
11
15
|
"TurkishMovieSentimentClassification",
|
|
12
16
|
"TurkishMovieSentimentClassificationV2",
|
|
13
17
|
"TurkishProductSentimentClassification",
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class TurkishConstitutionalCourtViolation(AbsTaskClassification):
|
|
6
|
+
# Normalize column names after load_data renames them.
|
|
7
|
+
label_column_name = "label"
|
|
8
|
+
input_column_name = "text"
|
|
9
|
+
|
|
10
|
+
metadata = TaskMetadata(
|
|
11
|
+
name="TurkishConstitutionalCourtViolation",
|
|
12
|
+
description="Binary classification of Turkish constitutional court decisions: Violation vs No violation.",
|
|
13
|
+
reference="https://huggingface.co/datasets/KocLab-Bilkent/turkish-constitutional-court",
|
|
14
|
+
type="Classification",
|
|
15
|
+
category="t2c",
|
|
16
|
+
modalities=["text"],
|
|
17
|
+
eval_splits=["test"],
|
|
18
|
+
eval_langs=["tur-Latn"],
|
|
19
|
+
main_score="f1",
|
|
20
|
+
dataset={
|
|
21
|
+
"path": "denizgulal/turkish-constitutional-court-violation-clean",
|
|
22
|
+
"revision": "333f49b7ddc72fa4a86ec5bd756a28c585311c74",
|
|
23
|
+
},
|
|
24
|
+
date=("2000-01-01", "2023-02-20"), # dataset card last updated Feb 20, 2023
|
|
25
|
+
domains=["Legal", "Non-fiction"],
|
|
26
|
+
task_subtypes=["Political classification"],
|
|
27
|
+
license="cc-by-4.0",
|
|
28
|
+
annotations_creators="human-annotated",
|
|
29
|
+
dialect=[],
|
|
30
|
+
sample_creation="found",
|
|
31
|
+
bibtex_citation=r"""
|
|
32
|
+
@article{mumcuoglu2021natural,
|
|
33
|
+
author = {Mumcuoglu, Emre and Ozturk, Ceyhun E. and Ozaktas, Haldun M. and Koc, Aykut},
|
|
34
|
+
journal = {Information Processing and Management},
|
|
35
|
+
number = {5},
|
|
36
|
+
title = {Natural language processing in law: Prediction of outcomes in the higher courts of Turkey},
|
|
37
|
+
volume = {58},
|
|
38
|
+
year = {2021},
|
|
39
|
+
}
|
|
40
|
+
""",
|
|
41
|
+
)
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
from .auto_rag_retrieval import AutoRAGRetrieval
|
|
2
2
|
from .ko_strategy_qa import KoStrategyQA
|
|
3
|
+
from .squad_kor_v1_retrieval import SQuADKorV1Retrieval
|
|
3
4
|
|
|
4
|
-
__all__ = ["AutoRAGRetrieval", "KoStrategyQA"]
|
|
5
|
+
__all__ = ["AutoRAGRetrieval", "KoStrategyQA", "SQuADKorV1Retrieval"]
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class SQuADKorV1Retrieval(AbsTaskRetrieval):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="SQuADKorV1Retrieval",
|
|
8
|
+
description="Korean translation of SQuAD v1.0 dataset for retrieval task, based on Korean Wikipedia articles.",
|
|
9
|
+
reference="https://huggingface.co/datasets/yjoonjang/squad_kor_v1",
|
|
10
|
+
dataset={
|
|
11
|
+
"path": "yjoonjang/squad_kor_v1",
|
|
12
|
+
"revision": "2b4ee1f3b143a04792da93a3df21933c5fe9eed3",
|
|
13
|
+
},
|
|
14
|
+
type="Retrieval",
|
|
15
|
+
category="t2t",
|
|
16
|
+
modalities=["text"],
|
|
17
|
+
eval_splits=["test"],
|
|
18
|
+
eval_langs=["kor-Hang"],
|
|
19
|
+
main_score="ndcg_at_10",
|
|
20
|
+
date=("2018-01-01", "2019-12-31"),
|
|
21
|
+
domains=["Encyclopaedic", "Written"],
|
|
22
|
+
task_subtypes=["Question answering"],
|
|
23
|
+
license="cc-by-sa-4.0",
|
|
24
|
+
annotations_creators="derived",
|
|
25
|
+
dialect=[],
|
|
26
|
+
sample_creation="found",
|
|
27
|
+
bibtex_citation=r"""
|
|
28
|
+
@inproceedings{rajpurkar-etal-2016-squad,
|
|
29
|
+
address = {Austin, Texas},
|
|
30
|
+
author = {Rajpurkar, Pranav and
|
|
31
|
+
Zhang, Jian and
|
|
32
|
+
Lopyrev, Konstantin and
|
|
33
|
+
Liang, Percy},
|
|
34
|
+
booktitle = {Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing},
|
|
35
|
+
doi = {10.18653/v1/D16-1264},
|
|
36
|
+
editor = {Su, Jian and
|
|
37
|
+
Duh, Kevin and
|
|
38
|
+
Carreras, Xavier},
|
|
39
|
+
month = nov,
|
|
40
|
+
pages = {2383--2392},
|
|
41
|
+
publisher = {Association for Computational Linguistics},
|
|
42
|
+
title = {{SQ}u{AD}: 100,000+ Questions for Machine Comprehension of Text},
|
|
43
|
+
url = {https://aclanthology.org/D16-1264},
|
|
44
|
+
year = {2016},
|
|
45
|
+
}
|
|
46
|
+
""",
|
|
47
|
+
)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.
|
|
3
|
+
Version: 2.5.0
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -5,7 +5,7 @@ mteb/_helpful_enum.py,sha256=jh73N1jlcpg7RGz4bj8UpctiMNvqvHpp9wrB7SYEzIU,510
|
|
|
5
5
|
mteb/_log_once.py,sha256=-tUKzxGQzf2LZSuQXi97oYFXMta1B6GEYXd7BPqssvY,1095
|
|
6
6
|
mteb/_requires_package.py,sha256=eHg_TD9BVZRzNCcQQrUP17d8M1DF_vOd_tVx54AmAnM,3017
|
|
7
7
|
mteb/_set_seed.py,sha256=HPlPRl__Pe6IG-4UgJqTfplcivJ_wA2kaClbXoHQedM,1178
|
|
8
|
-
mteb/cache.py,sha256=
|
|
8
|
+
mteb/cache.py,sha256=EogjsGZjoD6wZmVr4R3Lrc25C0x50Oie_i29K_4iHwo,21236
|
|
9
9
|
mteb/deprecated_evaluator.py,sha256=9cJIahJHNZphoqo6KZfp30LLhIdyiR3SSLcut4FR_Ek,26778
|
|
10
10
|
mteb/evaluate.py,sha256=IcaNu3VQwoeH7F1m8_7qJ6_lffHPujRcjKOBo4A7JBI,18631
|
|
11
11
|
mteb/filter_tasks.py,sha256=5XE1OYmgDDoJYnXwFf4ma_PIT_Lekzs420sQF_kpCiY,7240
|
|
@@ -57,10 +57,10 @@ mteb/abstasks/text/reranking.py,sha256=rfRGRBeSjZLgkh8pneMgRm-vd9NHr5jSFH92YfOHf
|
|
|
57
57
|
mteb/abstasks/text/summarization.py,sha256=KYEb8gh4JjpSsrvGUmQ2VlrVdzzVxIWcitXOJUaHhO4,6954
|
|
58
58
|
mteb/benchmarks/__init__.py,sha256=MQEVeli-zLaJ7Xg0z7RhXQwsdmm7Ht_W2Ln0rZo1Szc,225
|
|
59
59
|
mteb/benchmarks/_create_table.py,sha256=b2RqGqi0ZonKbHecEcZiF4pkfE96smFRIzxOI82ETA8,22304
|
|
60
|
-
mteb/benchmarks/benchmark.py,sha256=
|
|
60
|
+
mteb/benchmarks/benchmark.py,sha256=E6hydDE9rkm4egsj52aDjQ0w4BQ1TBBP9gOAvw_Uh48,5583
|
|
61
61
|
mteb/benchmarks/get_benchmark.py,sha256=-n_O-gitRKZi48gJKNgGuI36hsP7yLVSiwulnMHN7Gw,3935
|
|
62
62
|
mteb/benchmarks/benchmarks/__init__.py,sha256=73NYNv98q-tRCqf2YHabvElz_a8g_mF75HTup0J-E5E,2220
|
|
63
|
-
mteb/benchmarks/benchmarks/benchmarks.py,sha256=
|
|
63
|
+
mteb/benchmarks/benchmarks/benchmarks.py,sha256=_8zds06sQj41JzR6BHGWk33DZE2VGvabhBoyty5oAHk,97949
|
|
64
64
|
mteb/benchmarks/benchmarks/rteb_benchmarks.py,sha256=QnCSrTTaBfcRlAQp2Nu81tgv1idMXqiM16Fp2zKJ5Ys,10607
|
|
65
65
|
mteb/cli/__init__.py,sha256=v-csUr3eUZElIvrGB6QGtaIdndDfNWEe9oZchsGsJpg,64
|
|
66
66
|
mteb/cli/_display_tasks.py,sha256=7A06dT9sSoTz6shyMvskPxuc5eHY_H7PGPlROzMP0yw,2196
|
|
@@ -514,6 +514,7 @@ mteb/descriptive_stats/Classification/ToxicConversationsVNClassification.json,sh
|
|
|
514
514
|
mteb/descriptive_stats/Classification/TswanaNewsClassification.json,sha256=ve0LsVS9DKfqeXE3vwQD5yCtZE5EA209-g2BpJ-5Kn0,2703
|
|
515
515
|
mteb/descriptive_stats/Classification/TswanaNewsClassification.v2.json,sha256=ve0LsVS9DKfqeXE3vwQD5yCtZE5EA209-g2BpJ-5Kn0,2703
|
|
516
516
|
mteb/descriptive_stats/Classification/TurkicClassification.json,sha256=Vc4ZRF1j0eyasJLMIW-0vN4HhVtfDxU1nzS-y8P0FWU,19509
|
|
517
|
+
mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json,sha256=EMEEd5F1RdDTYBRBD-oyYXtf87K_yufblqIFFm051U8,1508
|
|
517
518
|
mteb/descriptive_stats/Classification/TurkishMovieSentimentClassification.json,sha256=e0SE-SCDiioi8zkEIjKGAzHHpWoZJ41HT0igJRkK6Vs,1507
|
|
518
519
|
mteb/descriptive_stats/Classification/TurkishMovieSentimentClassification.v2.json,sha256=IhXQYsjSXHdpAdnJMLfM5etS7VeKeorQofv6aNFePU0,1509
|
|
519
520
|
mteb/descriptive_stats/Classification/TurkishProductSentimentClassification.json,sha256=cgpSg-LW1fPVVPuOkOl-d3cDXr5T5JVIwEnXjW3EKEc,1499
|
|
@@ -1311,6 +1312,7 @@ mteb/descriptive_stats/Retrieval/SCIDOCS.json,sha256=Xa2HtyeuWVV9xJOT1YwhrM32Rub
|
|
|
1311
1312
|
mteb/descriptive_stats/Retrieval/SIQA.json,sha256=Z8lTLsbrSCdGiYFOQ_yrb3bXxlkHOZ1uYZCGorvBDHQ,991
|
|
1312
1313
|
mteb/descriptive_stats/Retrieval/SKQuadRetrieval.json,sha256=VQXzc7XquS3pxJXlP0qovigYdleNgHBzwJIuHkCSXpM,1005
|
|
1313
1314
|
mteb/descriptive_stats/Retrieval/SNLRetrieval.json,sha256=3IHnPHydwVU_68lP5EM6OpHBM5CRuUQFPeny2bIVOEg,990
|
|
1315
|
+
mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json,sha256=-TLf6e9WKfnK_52TsTXCBRqd7xRgzD7sllWq91dhNhc,984
|
|
1314
1316
|
mteb/descriptive_stats/Retrieval/SadeemQuestionRetrieval.json,sha256=xvMLI0XiyWb7IKHUxFzyOUsRLj7oLFaG8R2cszLkwkw,995
|
|
1315
1317
|
mteb/descriptive_stats/Retrieval/SciFact-Fa.json,sha256=BZHK8KUj5ShBzfomQxUbH8GBVpWYpepwdNaOZ1DHUE0,988
|
|
1316
1318
|
mteb/descriptive_stats/Retrieval/SciFact-Fa.v2.json,sha256=1U8zTDU24TBaZ2cVX6puKT_oQx_vdLBeVz6MRswOrJE,976
|
|
@@ -1459,12 +1461,12 @@ mteb/models/cache_wrappers/cache_backends/numpy_cache.py,sha256=GyTVC5DLph3EeRnD
|
|
|
1459
1461
|
mteb/models/model_implementations/__init__.py,sha256=BZDdde6ajKv-yroy9mqE2YS3Hw1KBdKoxBPg8aPTZEs,1164
|
|
1460
1462
|
mteb/models/model_implementations/align_models.py,sha256=DUdVWxETiwC2IrXI90zQwlvHMjeI7JJCNOmFVd2RNws,4518
|
|
1461
1463
|
mteb/models/model_implementations/amazon_models.py,sha256=pdRU2QGAB5ccQnAfbRSzHE1G3ZUdjvsAgeJwkB_olDQ,694
|
|
1462
|
-
mteb/models/model_implementations/andersborges.py,sha256=
|
|
1464
|
+
mteb/models/model_implementations/andersborges.py,sha256=1FVmRpdfnuQ7_vzO7WITk2MASMmlcFuXgUONO78IFLs,2361
|
|
1463
1465
|
mteb/models/model_implementations/ara_models.py,sha256=zS0t9rI21wwEwTlrlX94GqkmPKLnb8ktUaAOY-ZLmw0,1421
|
|
1464
1466
|
mteb/models/model_implementations/arctic_models.py,sha256=eaMRaN9WdpVq1W6cbtNcJMdrJUTXrTSYUjTJufCdZRY,10350
|
|
1465
1467
|
mteb/models/model_implementations/b1ade_models.py,sha256=aEKmXWVX8iJ_OotAYPOMxsOHTDEOJYdSwkR6iJsZ-ms,1609
|
|
1466
1468
|
mteb/models/model_implementations/bedrock_models.py,sha256=RWN25Es4Nb6eIMiZlFHWNAnftKMVBumM2kozpO7Kh50,8709
|
|
1467
|
-
mteb/models/model_implementations/bge_models.py,sha256=
|
|
1469
|
+
mteb/models/model_implementations/bge_models.py,sha256=9x0cA1Kih9zScHreboFh2MVPnD_jhCxSp1rh5PV9_lk,24086
|
|
1468
1470
|
mteb/models/model_implementations/bica_model.py,sha256=vNO6FiqOhAwUky-_Suq3ZpeJ8GVIsd6-uIU6-Y-wFy8,1227
|
|
1469
1471
|
mteb/models/model_implementations/blip2_models.py,sha256=hBdilqIIFkILmGoSl6GjT5gpFVxArp3xL3JEcWfJ1KU,7635
|
|
1470
1472
|
mteb/models/model_implementations/blip_models.py,sha256=n_XRcymbYL2Rx8AFl96OpGQcWvfzrvFQxKvFl4swzA4,11516
|
|
@@ -1474,7 +1476,7 @@ mteb/models/model_implementations/cadet_models.py,sha256=bDula_VroXOWgSw-tquvNVG
|
|
|
1474
1476
|
mteb/models/model_implementations/cde_models.py,sha256=3nNU3nq3VZZcImFqH1VPj57-QJNMU6Ei2C_HCaicuUs,9012
|
|
1475
1477
|
mteb/models/model_implementations/clip_models.py,sha256=zrfgNmZszu0JMtMNdCMzEohixsrnQ7xFhCqgsiucH_Q,6107
|
|
1476
1478
|
mteb/models/model_implementations/clips_models.py,sha256=QwwoU4Zu_zwUgUg7Hn2lzpXK-GjXIST0qF_2oRxHm2Y,3410
|
|
1477
|
-
mteb/models/model_implementations/codefuse_models.py,sha256=
|
|
1479
|
+
mteb/models/model_implementations/codefuse_models.py,sha256=t_Dw_pRjh6gW1l2xLmBjd3oGcU_csy6DW3IdWsYuvGg,13975
|
|
1478
1480
|
mteb/models/model_implementations/codesage_models.py,sha256=D4CdISGyv5f2GMYq4_efgm5qNq80SWAX5R2u5mjEiXM,2998
|
|
1479
1481
|
mteb/models/model_implementations/cohere_models.py,sha256=OWFClVAN4phjBoxfGGDyGDmzMu-t2VrjCGFyAIWmz4w,13832
|
|
1480
1482
|
mteb/models/model_implementations/cohere_v.py,sha256=K6VEw1NkyM2PuMd18kHE6aqPrcByYSwEmAKjvLods_w,15760
|
|
@@ -1482,23 +1484,23 @@ mteb/models/model_implementations/colpali_models.py,sha256=l-0A3J5rt1bhhTKFPQ3Ti
|
|
|
1482
1484
|
mteb/models/model_implementations/colqwen_models.py,sha256=wxR3sqyzObuXMlm1QLoFopJK3ZpQTzd3ZB5IrkzPfZk,15553
|
|
1483
1485
|
mteb/models/model_implementations/colsmol_models.py,sha256=O2M7Ksydh94M_Iax4KytHb-wOL18N0BIYLKSsLF8BFs,2967
|
|
1484
1486
|
mteb/models/model_implementations/conan_models.py,sha256=G-s7xo9VtNX-f7lWKtYVGHHiMMN0Xp44PlNIp7E0LAo,6502
|
|
1485
|
-
mteb/models/model_implementations/dino_models.py,sha256=
|
|
1487
|
+
mteb/models/model_implementations/dino_models.py,sha256=SFGXFZsI0ziCehNVfDn0CmQ5Uc_QDqP6jw8-jgIqDYU,25018
|
|
1486
1488
|
mteb/models/model_implementations/e5_instruct.py,sha256=9R4GoSFicgqNDCh3HhTN_8L1qhzuEKvatjHYn3T9zlU,7676
|
|
1487
1489
|
mteb/models/model_implementations/e5_models.py,sha256=ZLRgzx2uEBc_yWY6DwcJFUNKG6RHpWSEVp1_jaEURhs,9373
|
|
1488
1490
|
mteb/models/model_implementations/e5_v.py,sha256=_9W7I0ryIzx_H9eCkzwdm8iHdGX1LIjKGXkhSh_zNv8,6690
|
|
1489
1491
|
mteb/models/model_implementations/eagerworks_models.py,sha256=NOQkCUqn9jLSpf9p6KyaIHnJxYV1MNlr2z7hO2AcRSc,5744
|
|
1490
|
-
mteb/models/model_implementations/emillykkejensen_models.py,sha256=
|
|
1492
|
+
mteb/models/model_implementations/emillykkejensen_models.py,sha256=qNrKLu7NDFCRW1YTAoS-aHjjfx6UIHATlydepitaCog,3665
|
|
1491
1493
|
mteb/models/model_implementations/en_code_retriever.py,sha256=leZ-0M6LrunocY3XQBYZU1uevDRopeyR5ujIhwqBbd8,1043
|
|
1492
|
-
mteb/models/model_implementations/euler_models.py,sha256=
|
|
1494
|
+
mteb/models/model_implementations/euler_models.py,sha256=EfxegMwatdeQ4Qhq5aGRnZTSu2AVc0g51ikSu9sPNXs,1106
|
|
1493
1495
|
mteb/models/model_implementations/evaclip_models.py,sha256=cPMGYLDIq4s8zJxb4vPXqJ-rqwPaq7KOh2QZSO6cDas,8000
|
|
1494
|
-
mteb/models/model_implementations/fa_models.py,sha256=
|
|
1495
|
-
mteb/models/model_implementations/facebookai.py,sha256=
|
|
1496
|
+
mteb/models/model_implementations/fa_models.py,sha256=BoFk99qwsX-PqedV6-8PK7AZQbJQaB8Eaf8o75dJwqI,9610
|
|
1497
|
+
mteb/models/model_implementations/facebookai.py,sha256=pJ4OTTQT1ggLiVmOGfp8IMQatyTsTWmrFFsDQUpN9h4,4834
|
|
1496
1498
|
mteb/models/model_implementations/geogpt_models.py,sha256=Juv86SwhgQX80lVLjAFtim2aSiJT1AcgjniyyiKyk1Q,1923
|
|
1497
1499
|
mteb/models/model_implementations/gme_v_models.py,sha256=GEu1wl5q77RMM3BwtKMjkMwm38KX_r0qWxD_IEMVC2U,13657
|
|
1498
1500
|
mteb/models/model_implementations/google_models.py,sha256=d6hZ-yWY-yZnQsXDVbdtBb_xqwYAkdeeAnsEMaqqGXI,11013
|
|
1499
1501
|
mteb/models/model_implementations/granite_vision_embedding_models.py,sha256=cvG5NliPwDVMvGuJTo8rk5yL3m6cuJZ_fMLEc0ESNfc,7315
|
|
1500
1502
|
mteb/models/model_implementations/gritlm_models.py,sha256=aS_CuioL95JAQMYiaKlGuAWU9wZjabn268Xut3bD8-w,3005
|
|
1501
|
-
mteb/models/model_implementations/gte_models.py,sha256=
|
|
1503
|
+
mteb/models/model_implementations/gte_models.py,sha256=G7nbR-ItIEUZdwAxlMJIX9tlXAfnaVBCQ84F75WjspQ,13661
|
|
1502
1504
|
mteb/models/model_implementations/hinvec_models.py,sha256=I_d_dSNVaGIwMIwyvTlaPAzGMpwh_PzvsfE4y47GFyg,1575
|
|
1503
1505
|
mteb/models/model_implementations/human.py,sha256=klMpuMAtYH92EIEwNMEhne_Baf9fNiTg1DNWYD11P44,532
|
|
1504
1506
|
mteb/models/model_implementations/ibm_granite_models.py,sha256=YCT0jbgawy19ps5l8QlxpQoJLjq8Nh-3R-e6yxS0DRM,7902
|
|
@@ -1506,11 +1508,11 @@ mteb/models/model_implementations/inf_models.py,sha256=lvXUFhAYDltq2_Xa9MHcwfhh1
|
|
|
1506
1508
|
mteb/models/model_implementations/jasper_models.py,sha256=onX_ipI-UZbaZrjcHpZtk34tpy6DcT6Yvq6X3RMSmYA,16211
|
|
1507
1509
|
mteb/models/model_implementations/jina_clip.py,sha256=CfiIxbhKspjQajNtObCfGPHOWPk6uLn4cuwydQHFTMo,5118
|
|
1508
1510
|
mteb/models/model_implementations/jina_models.py,sha256=1bkGwIaRNIun2ghkWb4FG-7js4lJ39s97Q9KAW3wkXo,34858
|
|
1509
|
-
mteb/models/model_implementations/kalm_models.py,sha256=
|
|
1510
|
-
mteb/models/model_implementations/kblab.py,sha256=
|
|
1511
|
+
mteb/models/model_implementations/kalm_models.py,sha256=po9RdIr2zgHrE3BwgKq0uoOqrQzWkUUUecR6JgCohWk,61959
|
|
1512
|
+
mteb/models/model_implementations/kblab.py,sha256=pDA-OUgBAQ2C4jGbNXoBY0RQFTyM72kt2F9yN_IZT0I,1135
|
|
1511
1513
|
mteb/models/model_implementations/kennethenevoldsen_models.py,sha256=DF-9nmsewYO9ikZ0kV81ujKGr7Ot36-9iPoxN7KX2mY,2993
|
|
1512
1514
|
mteb/models/model_implementations/kfst.py,sha256=BQj0fxMJwyA6NOdK26NDYVL3z2PW1_F-lTTVImxEWZQ,892
|
|
1513
|
-
mteb/models/model_implementations/kowshik24_models.py,sha256=
|
|
1515
|
+
mteb/models/model_implementations/kowshik24_models.py,sha256=_gIJdiseyEni0Z-rOLCzVfeS4wtZZb9CCTkl-9nVH-E,1419
|
|
1514
1516
|
mteb/models/model_implementations/lens_models.py,sha256=fC7_NB1F8vBAlXD0p0-hALf6eZTPFJwpz57dy71OlwI,1696
|
|
1515
1517
|
mteb/models/model_implementations/lgai_embedding_models.py,sha256=S83pbfkMH3YUNl4skusgbK-Rn-uLuScQVxgXwegR_N4,2333
|
|
1516
1518
|
mteb/models/model_implementations/linq_models.py,sha256=EtvUyiNbjU-GJd1kS0Z0gBACkP2pFOjk0KfGMZz4K9Y,1872
|
|
@@ -1519,18 +1521,18 @@ mteb/models/model_implementations/llm2clip_models.py,sha256=_sqAOb5oSbxn1oaXjWwP
|
|
|
1519
1521
|
mteb/models/model_implementations/llm2vec_models.py,sha256=Og_EqnOXgIfaTcVTl3Lj5BicG83ycnXS_YHNtK63I-A,12638
|
|
1520
1522
|
mteb/models/model_implementations/mcinext_models.py,sha256=W9MBQFqGTXVa52WDFFq1Pdat2TgRvluOcD6JVAupn28,18968
|
|
1521
1523
|
mteb/models/model_implementations/mdbr_models.py,sha256=B7R3dVEH9EZ_fSZ05VveSbmTyO3Erh7iJ2WmMn52d-4,2509
|
|
1522
|
-
mteb/models/model_implementations/misc_models.py,sha256=
|
|
1524
|
+
mteb/models/model_implementations/misc_models.py,sha256=X0MvBQn2pRk7IT-jD3fYoja26at61FanjBtroaAg3Zc,69116
|
|
1523
1525
|
mteb/models/model_implementations/mme5_models.py,sha256=cRRXecC8EHeLQiEd1nfCb1vt75x_CnG1s_9lYRrtyTA,1484
|
|
1524
1526
|
mteb/models/model_implementations/moco_models.py,sha256=Kl0nBsqkG3crYoo5YulFq1fv97U0-IBWVFHN0UuO0lg,5483
|
|
1525
|
-
mteb/models/model_implementations/mod_models.py,sha256=
|
|
1527
|
+
mteb/models/model_implementations/mod_models.py,sha256=jt33SfV476FIQJ-W-FRi_ocyRY1u8ldRFuo-PgejJDU,6335
|
|
1526
1528
|
mteb/models/model_implementations/model2vec_models.py,sha256=D-EY-6P-cKKunbgzk4DHzJL1ogpWYFhpHbTLb8qQjJw,13765
|
|
1527
1529
|
mteb/models/model_implementations/moka_models.py,sha256=Y5do7Z4JyGxabYrjHhkBLqCKTQKotniS-f4kOgXJjag,4995
|
|
1528
|
-
mteb/models/model_implementations/mxbai_models.py,sha256=
|
|
1530
|
+
mteb/models/model_implementations/mxbai_models.py,sha256=KJXfUVW8e6LJEq3EO-Zy-pu6-9e-Q0mjP6_W7GP6QoI,3851
|
|
1529
1531
|
mteb/models/model_implementations/nbailab.py,sha256=bqqR0qs10IH2g5HC6K962tDMBciw8qFsNVHADNS72jk,2396
|
|
1530
1532
|
mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=6i-xbLRRNKuDpU-hwklwdQjgu1wnz5CecLSoc6kyd7Q,3976
|
|
1531
|
-
mteb/models/model_implementations/nomic_models.py,sha256=
|
|
1533
|
+
mteb/models/model_implementations/nomic_models.py,sha256=WmSX6YyYaG5EG9M3OX-tTgdznFVJanfVAxRKJ-vNXF0,14736
|
|
1532
1534
|
mteb/models/model_implementations/nomic_models_vision.py,sha256=6aca0XVLXnkGk6GW8jVCIbbjPGq98lKq4c9Az4jbEkE,6805
|
|
1533
|
-
mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=
|
|
1535
|
+
mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=yOaRX9amblBRGmNA-By2M8qD4ZsabSN2vw_jp1aXwuA,6314
|
|
1534
1536
|
mteb/models/model_implementations/nvidia_models.py,sha256=acVverAt77lURkILCVkCdXsWgY1BJoG1-ugB7yIhlIM,21555
|
|
1535
1537
|
mteb/models/model_implementations/openai_models.py,sha256=loU6JByNUwRidq7lmcu8iGOtUQvzejw6HVLaF_IKCR0,9352
|
|
1536
1538
|
mteb/models/model_implementations/openclip_models.py,sha256=W8XcokgLU1nSmMaWpYXkWWizVd3sQezcP02YtF2fXpo,11436
|
|
@@ -1540,7 +1542,7 @@ mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py,
|
|
|
1540
1542
|
mteb/models/model_implementations/pawan_models.py,sha256=rV2ePGIuYroocvwqDXm4VU369Y_Vr67CyAE-08K5B9c,1151
|
|
1541
1543
|
mteb/models/model_implementations/piccolo_models.py,sha256=d8Dtkv_ZTUOCmJLLOuwquq-gX-2UfKvAtl_LvAS0Xi0,2113
|
|
1542
1544
|
mteb/models/model_implementations/promptriever_models.py,sha256=S7uWes_P74p3OZR_KBJHJN_ezlvvRx2__46DMCWqV5M,6328
|
|
1543
|
-
mteb/models/model_implementations/pylate_models.py,sha256=
|
|
1545
|
+
mteb/models/model_implementations/pylate_models.py,sha256=VRLcjNTtoLLV-E_Oa-F6KkS0h-oSASvjGq6iKSWZgZs,16715
|
|
1544
1546
|
mteb/models/model_implementations/qodo_models.py,sha256=JDqffDlQiOEariyheybOIf3iNkqot2gTkEIHWDnRbUE,2037
|
|
1545
1547
|
mteb/models/model_implementations/qtack_models.py,sha256=biZLH5E3UWIcMZXIZNGgBZFEUvovPpAo6vUyL776W1w,1224
|
|
1546
1548
|
mteb/models/model_implementations/qwen3_models.py,sha256=F_o6ciD-6gLFfIlQYD9MsNvcbkmGzJ39eKpFlEog1rM,5132
|
|
@@ -1552,26 +1554,27 @@ mteb/models/model_implementations/repllama_models.py,sha256=89HoqEpzkNysHeuf_-Yh
|
|
|
1552
1554
|
mteb/models/model_implementations/rerankers_custom.py,sha256=ro73A9-hHudy3_qIMrhP-ja-3Xqu78r_aORm856zHQc,10651
|
|
1553
1555
|
mteb/models/model_implementations/rerankers_monot5_based.py,sha256=rxVwzapNnHl4gCw79XVCaTXj3-wbToyj7XVL97tpAF4,34302
|
|
1554
1556
|
mteb/models/model_implementations/richinfoai_models.py,sha256=llvYa0JUjyOOMbuTgOYoJ2qeqZ5rLHX1ZjZIYlYbdvA,989
|
|
1555
|
-
mteb/models/model_implementations/ru_sentence_models.py,sha256=
|
|
1557
|
+
mteb/models/model_implementations/ru_sentence_models.py,sha256=mh5TPy0EZVGioiXizrz-W_ssrlLZ2Q7HCbGZ-6TYszE,41238
|
|
1556
1558
|
mteb/models/model_implementations/ruri_models.py,sha256=-BTYkZ8dEWZUbGqx3YB5yFSrzMwZtXX7sMUHzrlB8ws,10043
|
|
1557
1559
|
mteb/models/model_implementations/salesforce_models.py,sha256=KslTK-IKeLvNG-vQir9k6swkaOgjk6eyozm_BOVgTpY,5160
|
|
1558
1560
|
mteb/models/model_implementations/samilpwc_models.py,sha256=oMwKNwCxoH1jZgCy04oo2oVlBZWu253QMpnEEC6emz8,2021
|
|
1559
1561
|
mteb/models/model_implementations/sarashina_embedding_models.py,sha256=TSmr2FEX79mJTA9mbEV3meEZYSelGv58Veiw__TTGFM,8415
|
|
1560
1562
|
mteb/models/model_implementations/searchmap_models.py,sha256=XvVl99emIgnNUCxkTuFQXW6py2R8vgsArfpyHveCugw,1904
|
|
1561
1563
|
mteb/models/model_implementations/seed_1_6_embedding_models.py,sha256=Q8JTW2fjePR9dq4spuwK2lyVeL3mn1bl-H5wkQuEV_E,18609
|
|
1564
|
+
mteb/models/model_implementations/seed_1_6_embedding_models_1215.py,sha256=O0BlsOHaxF0EEGaoas4AdzB8f-_9W9lwfoxLypexKEo,37516
|
|
1562
1565
|
mteb/models/model_implementations/seed_models.py,sha256=SgK4kPVO6V33G3F1zSq06zSkWarPLEwBt1SWp4TUoVw,14142
|
|
1563
|
-
mteb/models/model_implementations/sentence_transformers_models.py,sha256=
|
|
1566
|
+
mteb/models/model_implementations/sentence_transformers_models.py,sha256=J0uFt6cFkHohTNtFJe3Ne1weNndYVVinSGFBKYlolt8,22784
|
|
1564
1567
|
mteb/models/model_implementations/shuu_model.py,sha256=KkcuVYjIzoha3Fvxh8ppqHQ9BfNMWeqDqn9dGCRKUjg,1167
|
|
1565
1568
|
mteb/models/model_implementations/siglip_models.py,sha256=tvi8QB2ayBoeXsxwHrl5RFlkknvE6FM9N06zSBWGQD0,12602
|
|
1566
1569
|
mteb/models/model_implementations/sonar_models.py,sha256=Nc6kAJRWSrxA57DPRrgOPHqS1dNhz2vsE_1ZA2JtigQ,4784
|
|
1567
|
-
mteb/models/model_implementations/spartan8806_atles_champion.py,sha256=
|
|
1570
|
+
mteb/models/model_implementations/spartan8806_atles_champion.py,sha256=yTwZPWg2pj7WSDecKFO-pV9ykXkebXoPiR3JORavCIQ,1213
|
|
1568
1571
|
mteb/models/model_implementations/stella_models.py,sha256=NL3tk-rnuBdznsQ-nmelqun4tFO2xKoNPPOOVKqnPGU,8062
|
|
1569
1572
|
mteb/models/model_implementations/tarka_models.py,sha256=UwSb3e-k7dCgQAJv3176ZvKpkjLZfpdPzwf-b0Oxuuo,27345
|
|
1570
1573
|
mteb/models/model_implementations/text2vec_models.py,sha256=zaHWRc2W0RYZAOetinqRzug9UGW0HmY5U-jYsLXA8wo,4160
|
|
1571
|
-
mteb/models/model_implementations/ua_sentence_models.py,sha256=
|
|
1574
|
+
mteb/models/model_implementations/ua_sentence_models.py,sha256=SNaTaRcRLFn9SO0TECkqqqu-IXO9tWhBduN-i92y3W4,1667
|
|
1572
1575
|
mteb/models/model_implementations/uae_models.py,sha256=KZxH5a3t-sfh33xUBkLizEuyFAyPlGfnRsn-S7mjq74,3112
|
|
1573
1576
|
mteb/models/model_implementations/vdr_models.py,sha256=nz8yZLRJc3RDMFWxXf1mb8bPD8c__IQDJMwHxKgJXkA,1422
|
|
1574
|
-
mteb/models/model_implementations/vi_vn_models.py,sha256=
|
|
1577
|
+
mteb/models/model_implementations/vi_vn_models.py,sha256=adATWIhwImbajHqM8zpgrZbNwo-4VEZNehejBEpx4zg,6042
|
|
1575
1578
|
mteb/models/model_implementations/vista_models.py,sha256=Q3I01kRtIPaoke0iMIcH4CLcCDTnMSIBFNCof7LPTX4,10832
|
|
1576
1579
|
mteb/models/model_implementations/vlm2vec_models.py,sha256=HGGy_-z9Wc99xOKum71rBNipCPqWcM1efmmXgy5Rvxc,11724
|
|
1577
1580
|
mteb/models/model_implementations/voyage_models.py,sha256=dOCccOQlloGrg0q44PxMQzx8dHuQ8VgkDUD01EydpJ0,19824
|
|
@@ -1585,7 +1588,7 @@ mteb/models/search_encoder_index/search_backend_protocol.py,sha256=TSjlx88stJcMl
|
|
|
1585
1588
|
mteb/models/search_encoder_index/search_indexes/__init__.py,sha256=Wm60_oUemUpFsvrCMW111dcPH2L2rt1iZrXMskXmG7o,88
|
|
1586
1589
|
mteb/models/search_encoder_index/search_indexes/faiss_search_index.py,sha256=WMs3QbbYV13fRuT3dakmdVMZLFdc_9ZzSupS3QxlbVQ,5555
|
|
1587
1590
|
mteb/results/__init__.py,sha256=EXQqK4Am5eIYzD52dpcGAFSdqnC38oE6JHN302oidHc,158
|
|
1588
|
-
mteb/results/benchmark_results.py,sha256=
|
|
1591
|
+
mteb/results/benchmark_results.py,sha256=_d5vJWFwGmriFrLYmHI-P28vXSxXsWkg7hIQGKH_44w,19167
|
|
1589
1592
|
mteb/results/model_result.py,sha256=Y6b_xfJlw8EFZq464ZVhyw0Rryv111hvMjnXbEZJpXk,14059
|
|
1590
1593
|
mteb/results/task_result.py,sha256=DgmAw6akotjp8m8E6gE8QP9mQMxUvyzu1hnZ5o01GkU,32303
|
|
1591
1594
|
mteb/tasks/__init__.py,sha256=izAxU0ip1F_YUwx0dFCuN35BaktdmePh6vlDiHC0kLo,503
|
|
@@ -1883,7 +1886,8 @@ mteb/tasks/classification/tha/wisesight_sentiment_classification.py,sha256=CdTFV
|
|
|
1883
1886
|
mteb/tasks/classification/tha/wongnai_reviews_classification.py,sha256=0qy4fHUf5i6Kgfxve1NneelB9gNas_7lMRs6pwgce1Q,1736
|
|
1884
1887
|
mteb/tasks/classification/tsn/__init__.py,sha256=pHxOFshsfTp_CkIowXYcDtpZsxihcnPewREjFOzwHH4,176
|
|
1885
1888
|
mteb/tasks/classification/tsn/tswana_news_classification.py,sha256=wO3FD7JLaV9gycHVySmVjJUMwGbYd73pZfZEtSiknrw,3106
|
|
1886
|
-
mteb/tasks/classification/tur/__init__.py,sha256=
|
|
1889
|
+
mteb/tasks/classification/tur/__init__.py,sha256=viCR9s3exQyQDKEbgi1ESBiMPF07cG_TssN3oXc9_GA,611
|
|
1890
|
+
mteb/tasks/classification/tur/turkish_constitutional_court.py,sha256=F-lY7I46Zo8SoCPq2N9rz4yUy84icI0hIvPuI8XRarU,1626
|
|
1887
1891
|
mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py,sha256=eWPoX2uK06GsmgrteInkiC0uw0mF4dnkPiR249jBDpg,3069
|
|
1888
1892
|
mteb/tasks/classification/tur/turkish_product_sentiment_classification.py,sha256=9_AxxYWNCVqCuFN1_uCbwid9ox7KNKRSWbpfLMQrFII,2781
|
|
1889
1893
|
mteb/tasks/classification/ukr/__init__.py,sha256=Tk8r98fjAhLigvXSu2v3vhq3aJVepreg7k7hVxlpIYo,186
|
|
@@ -2369,9 +2373,10 @@ mteb/tasks/retrieval/jpn/nlp_journal_title_abs_retrieval.py,sha256=JOOW_5pRKHzVn
|
|
|
2369
2373
|
mteb/tasks/retrieval/jpn/nlp_journal_title_intro_retrieval.py,sha256=aVFTFiANWrIz68FjHv9KBqlhpWlsmi9EAP052gECzaU,3078
|
|
2370
2374
|
mteb/tasks/retrieval/kat/__init__.py,sha256=H4phkKqg_yZzkK7T62aCMBzjbGZzLKJ-MngrQlPbW3A,93
|
|
2371
2375
|
mteb/tasks/retrieval/kat/georgian_faq_retrieval.py,sha256=4zyodSYCtHtBW9WKIGxFZaTXDrtHuaf3uyfIsDRGBqM,2494
|
|
2372
|
-
mteb/tasks/retrieval/kor/__init__.py,sha256=
|
|
2376
|
+
mteb/tasks/retrieval/kor/__init__.py,sha256=gstfs-sW2-qlaVrOJg_NLsQLLUYCWG2gPf64KI2LxoA,217
|
|
2373
2377
|
mteb/tasks/retrieval/kor/auto_rag_retrieval.py,sha256=tgffW8zMpDSv1FCOdS4_4SL5zKQj70JVSt_RKs3CgKY,1576
|
|
2374
2378
|
mteb/tasks/retrieval/kor/ko_strategy_qa.py,sha256=jk13ORetYtF0q36h8ljD6TeTHUwvK5F5ZbDoMCP3eWk,1156
|
|
2379
|
+
mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py,sha256=M7T5FkN1efK7euRslx-LZN7hS_QdIwqtUuVlWO-dico,1631
|
|
2375
2380
|
mteb/tasks/retrieval/multilingual/__init__.py,sha256=mfVGkoB4DO5ktlg8ia-4nImFVmZcqXh1XkgCkIff0tY,6765
|
|
2376
2381
|
mteb/tasks/retrieval/multilingual/belebele_retrieval.py,sha256=gaVLEwuLEwMutMi9V-obpiYKbpllX2QNm2j3MVeebfE,7027
|
|
2377
2382
|
mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py,sha256=_6r34ZvRiLVENYcrd87NjilybGaetBwKFEbO29zYmBU,4676
|
|
@@ -2596,9 +2601,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
|
|
|
2596
2601
|
mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
|
|
2597
2602
|
mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
|
|
2598
2603
|
mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
|
|
2599
|
-
mteb-2.
|
|
2600
|
-
mteb-2.
|
|
2601
|
-
mteb-2.
|
|
2602
|
-
mteb-2.
|
|
2603
|
-
mteb-2.
|
|
2604
|
-
mteb-2.
|
|
2604
|
+
mteb-2.5.0.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
2605
|
+
mteb-2.5.0.dist-info/METADATA,sha256=1R2IkDY_5XF2lZEHOy0op8KGK315UOoEJ8U0_lIyo8Q,13990
|
|
2606
|
+
mteb-2.5.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
2607
|
+
mteb-2.5.0.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
|
|
2608
|
+
mteb-2.5.0.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
|
|
2609
|
+
mteb-2.5.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|