mteb 2.4.1__py3-none-any.whl → 2.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. mteb/benchmarks/benchmark.py +31 -13
  2. mteb/benchmarks/benchmarks/benchmarks.py +2 -2
  3. mteb/cache.py +36 -7
  4. mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
  5. mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
  6. mteb/models/model_implementations/andersborges.py +12 -0
  7. mteb/models/model_implementations/bge_models.py +43 -0
  8. mteb/models/model_implementations/codefuse_models.py +144 -0
  9. mteb/models/model_implementations/dino_models.py +152 -0
  10. mteb/models/model_implementations/emillykkejensen_models.py +18 -0
  11. mteb/models/model_implementations/euler_models.py +6 -0
  12. mteb/models/model_implementations/fa_models.py +50 -0
  13. mteb/models/model_implementations/facebookai.py +44 -0
  14. mteb/models/model_implementations/gte_models.py +69 -0
  15. mteb/models/model_implementations/kalm_models.py +38 -0
  16. mteb/models/model_implementations/kblab.py +6 -0
  17. mteb/models/model_implementations/kowshik24_models.py +9 -0
  18. mteb/models/model_implementations/misc_models.py +293 -0
  19. mteb/models/model_implementations/mod_models.py +10 -23
  20. mteb/models/model_implementations/mxbai_models.py +6 -0
  21. mteb/models/model_implementations/nomic_models.py +8 -0
  22. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +5 -3
  23. mteb/models/model_implementations/pylate_models.py +33 -0
  24. mteb/models/model_implementations/ru_sentence_models.py +22 -0
  25. mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +658 -0
  26. mteb/models/model_implementations/sentence_transformers_models.py +39 -0
  27. mteb/models/model_implementations/spartan8806_atles_champion.py +7 -0
  28. mteb/models/model_implementations/ua_sentence_models.py +9 -0
  29. mteb/models/model_implementations/vi_vn_models.py +33 -0
  30. mteb/results/benchmark_results.py +22 -4
  31. mteb/tasks/classification/tur/__init__.py +4 -0
  32. mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
  33. mteb/tasks/retrieval/kor/__init__.py +2 -1
  34. mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
  35. {mteb-2.4.1.dist-info → mteb-2.5.0.dist-info}/METADATA +1 -1
  36. {mteb-2.4.1.dist-info → mteb-2.5.0.dist-info}/RECORD +40 -35
  37. {mteb-2.4.1.dist-info → mteb-2.5.0.dist-info}/WHEEL +0 -0
  38. {mteb-2.4.1.dist-info → mteb-2.5.0.dist-info}/entry_points.txt +0 -0
  39. {mteb-2.4.1.dist-info → mteb-2.5.0.dist-info}/licenses/LICENSE +0 -0
  40. {mteb-2.4.1.dist-info → mteb-2.5.0.dist-info}/top_level.txt +0 -0
@@ -402,6 +402,15 @@ static_similarity_mrl_multilingual_v1 = ModelMeta(
402
402
  training_datasets=static_multi_datasets,
403
403
  public_training_code="https://huggingface.co/blog/static-embeddings",
404
404
  public_training_data="https://huggingface.co/collections/sentence-transformers/embedding-model-datasets-6644d7a3673a511914aa7552",
405
+ citation="""@inproceedings{reimers-2019-sentence-bert,
406
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
407
+ author = "Reimers, Nils and Gurevych, Iryna",
408
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
409
+ month = "11",
410
+ year = "2019",
411
+ publisher = "Association for Computational Linguistics",
412
+ url = "https://arxiv.org/abs/1908.10084",
413
+ }""",
405
414
  )
406
415
 
407
416
  contriever = ModelMeta(
@@ -467,6 +476,17 @@ microllama_text_embedding = ModelMeta(
467
476
  public_training_data=None,
468
477
  )
469
478
 
479
+ SENTENCE_T5_CITATION = """
480
+ @misc{ni2021sentencet5scalablesentenceencoders,
481
+ title={Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models},
482
+ author={Jianmo Ni and Gustavo Hernández Ábrego and Noah Constant and Ji Ma and Keith B. Hall and Daniel Cer and Yinfei Yang},
483
+ year={2021},
484
+ eprint={2108.08877},
485
+ archivePrefix={arXiv},
486
+ primaryClass={cs.CL},
487
+ url={https://arxiv.org/abs/2108.08877},
488
+ }
489
+ """
470
490
  sentence_t5_base = ModelMeta(
471
491
  loader=sentence_transformers_loader,
472
492
  name="sentence-transformers/sentence-t5-base",
@@ -486,6 +506,7 @@ sentence_t5_base = ModelMeta(
486
506
  public_training_code=None,
487
507
  public_training_data=None,
488
508
  training_datasets={"SNLI", "Community QA"},
509
+ citation=SENTENCE_T5_CITATION,
489
510
  )
490
511
 
491
512
  sentence_t5_large = ModelMeta(
@@ -507,6 +528,7 @@ sentence_t5_large = ModelMeta(
507
528
  public_training_code=None,
508
529
  public_training_data=None,
509
530
  training_datasets={"SNLI", "Community QA"},
531
+ citation=SENTENCE_T5_CITATION,
510
532
  )
511
533
 
512
534
  sentence_t5_xl = ModelMeta(
@@ -528,6 +550,7 @@ sentence_t5_xl = ModelMeta(
528
550
  public_training_code=None,
529
551
  public_training_data=None,
530
552
  training_datasets={"SNLI", "Community QA"},
553
+ citation=SENTENCE_T5_CITATION,
531
554
  )
532
555
 
533
556
  sentence_t5_xxl = ModelMeta(
@@ -549,7 +572,19 @@ sentence_t5_xxl = ModelMeta(
549
572
  public_training_code=None,
550
573
  public_training_data=None,
551
574
  training_datasets={"SNLI", "Community QA"},
575
+ citation=SENTENCE_T5_CITATION,
552
576
  )
577
+ GTR_CITATION = """
578
+ @misc{ni2021largedualencodersgeneralizable,
579
+ title={Large Dual Encoders Are Generalizable Retrievers},
580
+ author={Jianmo Ni and Chen Qu and Jing Lu and Zhuyun Dai and Gustavo Hernández Ábrego and Ji Ma and Vincent Y. Zhao and Yi Luan and Keith B. Hall and Ming-Wei Chang and Yinfei Yang},
581
+ year={2021},
582
+ eprint={2112.07899},
583
+ archivePrefix={arXiv},
584
+ primaryClass={cs.IR},
585
+ url={https://arxiv.org/abs/2112.07899},
586
+ }
587
+ """
553
588
  gtr_t5_large = ModelMeta(
554
589
  loader=sentence_transformers_loader,
555
590
  name="sentence-transformers/gtr-t5-large",
@@ -581,6 +616,7 @@ gtr_t5_large = ModelMeta(
581
616
  "NQ-PL", # translation not trained on
582
617
  "Community QA",
583
618
  },
619
+ citation=GTR_CITATION,
584
620
  )
585
621
 
586
622
  gtr_t5_xl = ModelMeta(
@@ -614,6 +650,7 @@ gtr_t5_xl = ModelMeta(
614
650
  "NQ-PL", # translation not trained on
615
651
  "Community QA",
616
652
  },
653
+ citation=GTR_CITATION,
617
654
  )
618
655
  gtr_t5_xxl = ModelMeta(
619
656
  loader=sentence_transformers_loader,
@@ -646,6 +683,7 @@ gtr_t5_xxl = ModelMeta(
646
683
  "NQ-PL", # translation not trained on
647
684
  "Community QA",
648
685
  },
686
+ citation=GTR_CITATION,
649
687
  )
650
688
 
651
689
  gtr_t5_base = ModelMeta(
@@ -679,4 +717,5 @@ gtr_t5_base = ModelMeta(
679
717
  "NQ-PL", # translation not trained on
680
718
  "Community QA",
681
719
  },
720
+ citation=GTR_CITATION,
682
721
  )
@@ -23,4 +23,11 @@ spartan8806_atles_champion_embedding = ModelMeta(
23
23
  adapted_from="sentence-transformers/all-mpnet-base-v2",
24
24
  public_training_code=None,
25
25
  public_training_data=None,
26
+ citation="""@article{conner2025epistemic,
27
+ title={The Epistemic Barrier: How RLHF Makes AI Consciousness Empirically Undecidable},
28
+ author={Conner (spartan8806)},
29
+ journal={ATLES Research Papers},
30
+ year={2025},
31
+ note={Cross-model validation study (Phoenix, Grok, Gemini, Claude)}
32
+ }""",
26
33
  )
@@ -28,4 +28,13 @@ xlm_roberta_ua_distilled = ModelMeta(
28
28
  modalities=["text"],
29
29
  public_training_data=None,
30
30
  use_instructions=False,
31
+ citation="""@inproceedings{reimers-2019-sentence-bert,
32
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
33
+ author = "Reimers, Nils and Gurevych, Iryna",
34
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
35
+ month = "11",
36
+ year = "2019",
37
+ publisher = "Association for Computational Linguistics",
38
+ url = "https://arxiv.org/abs/1908.10084",
39
+ }""",
31
40
  )
@@ -75,6 +75,12 @@ aiteamvn_vietnamese_embeddings = ModelMeta(
75
75
  public_training_data=None,
76
76
  training_datasets=None,
77
77
  adapted_from="BAAI/bge-m3",
78
+ citation="""@misc{Vietnamese_Embedding,
79
+ title={Vietnamese_Embedding: Embedding model in Vietnamese language.},
80
+ author={Nguyen Nho Trung, Nguyen Nhat Quang, Nguyen Van Huy},
81
+ year={2025},
82
+ publisher={Huggingface},
83
+ }""",
78
84
  )
79
85
 
80
86
  hiieu_halong_embedding = ModelMeta(
@@ -99,6 +105,12 @@ hiieu_halong_embedding = ModelMeta(
99
105
  public_training_data=None,
100
106
  training_datasets=None,
101
107
  adapted_from="intfloat/multilingual-e5-base",
108
+ citation="""@misc{HalongEmbedding,
109
+ title={HalongEmbedding: A Vietnamese Text Embedding},
110
+ author={Ngo Hieu},
111
+ year={2024},
112
+ publisher={Huggingface},
113
+ }""",
102
114
  )
103
115
 
104
116
  sup_simcse_vietnamese_phobert_base_ = ModelMeta(
@@ -122,6 +134,20 @@ sup_simcse_vietnamese_phobert_base_ = ModelMeta(
122
134
  reference="https://huggingface.co/VoVanPhuc/sup-SimCSE-VietNamese-phobert-base",
123
135
  similarity_fn_name="cosine",
124
136
  training_datasets=None,
137
+ citation="""@article{gao2021simcse,
138
+ title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
139
+ author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
140
+ journal={arXiv preprint arXiv:2104.08821},
141
+ year={2021}
142
+ }
143
+
144
+ @inproceedings{phobert,
145
+ title = {{PhoBERT: Pre-trained language models for Vietnamese}},
146
+ author = {Dat Quoc Nguyen and Anh Tuan Nguyen},
147
+ booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2020},
148
+ year = {2020},
149
+ pages = {1037--1042}
150
+ }""",
125
151
  )
126
152
 
127
153
  bkai_foundation_models_vietnamese_bi_encoder = ModelMeta(
@@ -145,4 +171,11 @@ bkai_foundation_models_vietnamese_bi_encoder = ModelMeta(
145
171
  reference="https://huggingface.co/bkai-foundation-models/vietnamese-bi-encoder",
146
172
  similarity_fn_name="cosine",
147
173
  training_datasets=None,
174
+ citation="""
175
+ @article{duc2024towards,
176
+ title={Towards Comprehensive Vietnamese Retrieval-Augmented Generation and Large Language Models},
177
+ author={Nguyen Quang Duc, Le Hai Son, Nguyen Duc Nhan, Nguyen Dich Nhat Minh, Le Thanh Huong, Dinh Viet Sang},
178
+ journal={arXiv preprint arXiv:2403.01616},
179
+ year={2024}
180
+ }""",
148
181
  )
@@ -15,6 +15,7 @@ from mteb.abstasks.task_metadata import (
15
15
  TaskDomain,
16
16
  TaskType,
17
17
  )
18
+ from mteb.benchmarks.benchmark import Benchmark
18
19
  from mteb.models import ModelMeta
19
20
  from mteb.models.get_model_meta import get_model_metas
20
21
  from mteb.types import (
@@ -39,10 +40,10 @@ class BenchmarkResults(BaseModel):
39
40
  """
40
41
 
41
42
  model_results: list[ModelResult]
42
- model_config = (
43
- ConfigDict( # to free up the name model_results which is otherwise protected
44
- protected_namespaces=(),
45
- )
43
+ benchmark: Benchmark | None = None
44
+ model_config = ConfigDict(
45
+ protected_namespaces=(), # to free up the name model_results which is otherwise protected
46
+ arbitrary_types_allowed=True, # Benchmark is dataclasses.dataclass
46
47
  )
47
48
 
48
49
  def __repr__(self) -> str:
@@ -362,6 +363,23 @@ class BenchmarkResults(BaseModel):
362
363
  format=format,
363
364
  )
364
365
 
366
+ def get_benchmark_result(self) -> pd.DataFrame:
367
+ """Get aggregated scores for each model in the benchmark.
368
+
369
+ Uses the benchmark's summary table creation method to compute scores.
370
+
371
+ Returns:
372
+ A DataFrame with the aggregated benchmark scores for each model.
373
+ """
374
+ if self.benchmark is None:
375
+ raise ValueError(
376
+ "No benchmark associated with these results (self.benchmark is None). "
377
+ "To get benchmark results, load results with a Benchmark object. "
378
+ "`results = cache.load_results(tasks='MTEB(eng, v2)')`"
379
+ )
380
+
381
+ return self.benchmark._create_summary_table(self)
382
+
365
383
  def __iter__(self) -> Iterator[ModelResult]:
366
384
  return iter(self.model_results)
367
385
 
@@ -1,3 +1,6 @@
1
+ from .turkish_constitutional_court import (
2
+ TurkishConstitutionalCourtViolation,
3
+ )
1
4
  from .turkish_movie_sentiment_classification import (
2
5
  TurkishMovieSentimentClassification,
3
6
  TurkishMovieSentimentClassificationV2,
@@ -8,6 +11,7 @@ from .turkish_product_sentiment_classification import (
8
11
  )
9
12
 
10
13
  __all__ = [
14
+ "TurkishConstitutionalCourtViolation",
11
15
  "TurkishMovieSentimentClassification",
12
16
  "TurkishMovieSentimentClassificationV2",
13
17
  "TurkishProductSentimentClassification",
@@ -0,0 +1,41 @@
1
+ from mteb.abstasks.classification import AbsTaskClassification
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class TurkishConstitutionalCourtViolation(AbsTaskClassification):
6
+ # Normalize column names after load_data renames them.
7
+ label_column_name = "label"
8
+ input_column_name = "text"
9
+
10
+ metadata = TaskMetadata(
11
+ name="TurkishConstitutionalCourtViolation",
12
+ description="Binary classification of Turkish constitutional court decisions: Violation vs No violation.",
13
+ reference="https://huggingface.co/datasets/KocLab-Bilkent/turkish-constitutional-court",
14
+ type="Classification",
15
+ category="t2c",
16
+ modalities=["text"],
17
+ eval_splits=["test"],
18
+ eval_langs=["tur-Latn"],
19
+ main_score="f1",
20
+ dataset={
21
+ "path": "denizgulal/turkish-constitutional-court-violation-clean",
22
+ "revision": "333f49b7ddc72fa4a86ec5bd756a28c585311c74",
23
+ },
24
+ date=("2000-01-01", "2023-02-20"), # dataset card last updated Feb 20, 2023
25
+ domains=["Legal", "Non-fiction"],
26
+ task_subtypes=["Political classification"],
27
+ license="cc-by-4.0",
28
+ annotations_creators="human-annotated",
29
+ dialect=[],
30
+ sample_creation="found",
31
+ bibtex_citation=r"""
32
+ @article{mumcuoglu2021natural,
33
+ author = {Mumcuoglu, Emre and Ozturk, Ceyhun E. and Ozaktas, Haldun M. and Koc, Aykut},
34
+ journal = {Information Processing and Management},
35
+ number = {5},
36
+ title = {Natural language processing in law: Prediction of outcomes in the higher courts of Turkey},
37
+ volume = {58},
38
+ year = {2021},
39
+ }
40
+ """,
41
+ )
@@ -1,4 +1,5 @@
1
1
  from .auto_rag_retrieval import AutoRAGRetrieval
2
2
  from .ko_strategy_qa import KoStrategyQA
3
+ from .squad_kor_v1_retrieval import SQuADKorV1Retrieval
3
4
 
4
- __all__ = ["AutoRAGRetrieval", "KoStrategyQA"]
5
+ __all__ = ["AutoRAGRetrieval", "KoStrategyQA", "SQuADKorV1Retrieval"]
@@ -0,0 +1,47 @@
1
+ from mteb.abstasks.retrieval import AbsTaskRetrieval
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class SQuADKorV1Retrieval(AbsTaskRetrieval):
6
+ metadata = TaskMetadata(
7
+ name="SQuADKorV1Retrieval",
8
+ description="Korean translation of SQuAD v1.0 dataset for retrieval task, based on Korean Wikipedia articles.",
9
+ reference="https://huggingface.co/datasets/yjoonjang/squad_kor_v1",
10
+ dataset={
11
+ "path": "yjoonjang/squad_kor_v1",
12
+ "revision": "2b4ee1f3b143a04792da93a3df21933c5fe9eed3",
13
+ },
14
+ type="Retrieval",
15
+ category="t2t",
16
+ modalities=["text"],
17
+ eval_splits=["test"],
18
+ eval_langs=["kor-Hang"],
19
+ main_score="ndcg_at_10",
20
+ date=("2018-01-01", "2019-12-31"),
21
+ domains=["Encyclopaedic", "Written"],
22
+ task_subtypes=["Question answering"],
23
+ license="cc-by-sa-4.0",
24
+ annotations_creators="derived",
25
+ dialect=[],
26
+ sample_creation="found",
27
+ bibtex_citation=r"""
28
+ @inproceedings{rajpurkar-etal-2016-squad,
29
+ address = {Austin, Texas},
30
+ author = {Rajpurkar, Pranav and
31
+ Zhang, Jian and
32
+ Lopyrev, Konstantin and
33
+ Liang, Percy},
34
+ booktitle = {Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing},
35
+ doi = {10.18653/v1/D16-1264},
36
+ editor = {Su, Jian and
37
+ Duh, Kevin and
38
+ Carreras, Xavier},
39
+ month = nov,
40
+ pages = {2383--2392},
41
+ publisher = {Association for Computational Linguistics},
42
+ title = {{SQ}u{AD}: 100,000+ Questions for Machine Comprehension of Text},
43
+ url = {https://aclanthology.org/D16-1264},
44
+ year = {2016},
45
+ }
46
+ """,
47
+ )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.4.1
3
+ Version: 2.5.0
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -5,7 +5,7 @@ mteb/_helpful_enum.py,sha256=jh73N1jlcpg7RGz4bj8UpctiMNvqvHpp9wrB7SYEzIU,510
5
5
  mteb/_log_once.py,sha256=-tUKzxGQzf2LZSuQXi97oYFXMta1B6GEYXd7BPqssvY,1095
6
6
  mteb/_requires_package.py,sha256=eHg_TD9BVZRzNCcQQrUP17d8M1DF_vOd_tVx54AmAnM,3017
7
7
  mteb/_set_seed.py,sha256=HPlPRl__Pe6IG-4UgJqTfplcivJ_wA2kaClbXoHQedM,1178
8
- mteb/cache.py,sha256=XiFuhjZ2C-o0LgP1YM8g9As_vigJCUNfTrOb9-EiFlM,20177
8
+ mteb/cache.py,sha256=EogjsGZjoD6wZmVr4R3Lrc25C0x50Oie_i29K_4iHwo,21236
9
9
  mteb/deprecated_evaluator.py,sha256=9cJIahJHNZphoqo6KZfp30LLhIdyiR3SSLcut4FR_Ek,26778
10
10
  mteb/evaluate.py,sha256=IcaNu3VQwoeH7F1m8_7qJ6_lffHPujRcjKOBo4A7JBI,18631
11
11
  mteb/filter_tasks.py,sha256=5XE1OYmgDDoJYnXwFf4ma_PIT_Lekzs420sQF_kpCiY,7240
@@ -57,10 +57,10 @@ mteb/abstasks/text/reranking.py,sha256=rfRGRBeSjZLgkh8pneMgRm-vd9NHr5jSFH92YfOHf
57
57
  mteb/abstasks/text/summarization.py,sha256=KYEb8gh4JjpSsrvGUmQ2VlrVdzzVxIWcitXOJUaHhO4,6954
58
58
  mteb/benchmarks/__init__.py,sha256=MQEVeli-zLaJ7Xg0z7RhXQwsdmm7Ht_W2Ln0rZo1Szc,225
59
59
  mteb/benchmarks/_create_table.py,sha256=b2RqGqi0ZonKbHecEcZiF4pkfE96smFRIzxOI82ETA8,22304
60
- mteb/benchmarks/benchmark.py,sha256=UEllUtZQ0L10SNnxRyKbiv4wLCMcNF2nUPhBDKY3nz8,5097
60
+ mteb/benchmarks/benchmark.py,sha256=E6hydDE9rkm4egsj52aDjQ0w4BQ1TBBP9gOAvw_Uh48,5583
61
61
  mteb/benchmarks/get_benchmark.py,sha256=-n_O-gitRKZi48gJKNgGuI36hsP7yLVSiwulnMHN7Gw,3935
62
62
  mteb/benchmarks/benchmarks/__init__.py,sha256=73NYNv98q-tRCqf2YHabvElz_a8g_mF75HTup0J-E5E,2220
63
- mteb/benchmarks/benchmarks/benchmarks.py,sha256=KuXEjB7-3S4b7sChJGmzt2z5iviujRxfqZx5kKNeQAc,97968
63
+ mteb/benchmarks/benchmarks/benchmarks.py,sha256=_8zds06sQj41JzR6BHGWk33DZE2VGvabhBoyty5oAHk,97949
64
64
  mteb/benchmarks/benchmarks/rteb_benchmarks.py,sha256=QnCSrTTaBfcRlAQp2Nu81tgv1idMXqiM16Fp2zKJ5Ys,10607
65
65
  mteb/cli/__init__.py,sha256=v-csUr3eUZElIvrGB6QGtaIdndDfNWEe9oZchsGsJpg,64
66
66
  mteb/cli/_display_tasks.py,sha256=7A06dT9sSoTz6shyMvskPxuc5eHY_H7PGPlROzMP0yw,2196
@@ -514,6 +514,7 @@ mteb/descriptive_stats/Classification/ToxicConversationsVNClassification.json,sh
514
514
  mteb/descriptive_stats/Classification/TswanaNewsClassification.json,sha256=ve0LsVS9DKfqeXE3vwQD5yCtZE5EA209-g2BpJ-5Kn0,2703
515
515
  mteb/descriptive_stats/Classification/TswanaNewsClassification.v2.json,sha256=ve0LsVS9DKfqeXE3vwQD5yCtZE5EA209-g2BpJ-5Kn0,2703
516
516
  mteb/descriptive_stats/Classification/TurkicClassification.json,sha256=Vc4ZRF1j0eyasJLMIW-0vN4HhVtfDxU1nzS-y8P0FWU,19509
517
+ mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json,sha256=EMEEd5F1RdDTYBRBD-oyYXtf87K_yufblqIFFm051U8,1508
517
518
  mteb/descriptive_stats/Classification/TurkishMovieSentimentClassification.json,sha256=e0SE-SCDiioi8zkEIjKGAzHHpWoZJ41HT0igJRkK6Vs,1507
518
519
  mteb/descriptive_stats/Classification/TurkishMovieSentimentClassification.v2.json,sha256=IhXQYsjSXHdpAdnJMLfM5etS7VeKeorQofv6aNFePU0,1509
519
520
  mteb/descriptive_stats/Classification/TurkishProductSentimentClassification.json,sha256=cgpSg-LW1fPVVPuOkOl-d3cDXr5T5JVIwEnXjW3EKEc,1499
@@ -1311,6 +1312,7 @@ mteb/descriptive_stats/Retrieval/SCIDOCS.json,sha256=Xa2HtyeuWVV9xJOT1YwhrM32Rub
1311
1312
  mteb/descriptive_stats/Retrieval/SIQA.json,sha256=Z8lTLsbrSCdGiYFOQ_yrb3bXxlkHOZ1uYZCGorvBDHQ,991
1312
1313
  mteb/descriptive_stats/Retrieval/SKQuadRetrieval.json,sha256=VQXzc7XquS3pxJXlP0qovigYdleNgHBzwJIuHkCSXpM,1005
1313
1314
  mteb/descriptive_stats/Retrieval/SNLRetrieval.json,sha256=3IHnPHydwVU_68lP5EM6OpHBM5CRuUQFPeny2bIVOEg,990
1315
+ mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json,sha256=-TLf6e9WKfnK_52TsTXCBRqd7xRgzD7sllWq91dhNhc,984
1314
1316
  mteb/descriptive_stats/Retrieval/SadeemQuestionRetrieval.json,sha256=xvMLI0XiyWb7IKHUxFzyOUsRLj7oLFaG8R2cszLkwkw,995
1315
1317
  mteb/descriptive_stats/Retrieval/SciFact-Fa.json,sha256=BZHK8KUj5ShBzfomQxUbH8GBVpWYpepwdNaOZ1DHUE0,988
1316
1318
  mteb/descriptive_stats/Retrieval/SciFact-Fa.v2.json,sha256=1U8zTDU24TBaZ2cVX6puKT_oQx_vdLBeVz6MRswOrJE,976
@@ -1459,12 +1461,12 @@ mteb/models/cache_wrappers/cache_backends/numpy_cache.py,sha256=GyTVC5DLph3EeRnD
1459
1461
  mteb/models/model_implementations/__init__.py,sha256=BZDdde6ajKv-yroy9mqE2YS3Hw1KBdKoxBPg8aPTZEs,1164
1460
1462
  mteb/models/model_implementations/align_models.py,sha256=DUdVWxETiwC2IrXI90zQwlvHMjeI7JJCNOmFVd2RNws,4518
1461
1463
  mteb/models/model_implementations/amazon_models.py,sha256=pdRU2QGAB5ccQnAfbRSzHE1G3ZUdjvsAgeJwkB_olDQ,694
1462
- mteb/models/model_implementations/andersborges.py,sha256=QUFpASdcCy-IMz2O2C3OAOhMWA2ksNHM4GFWlkELIT4,1879
1464
+ mteb/models/model_implementations/andersborges.py,sha256=1FVmRpdfnuQ7_vzO7WITk2MASMmlcFuXgUONO78IFLs,2361
1463
1465
  mteb/models/model_implementations/ara_models.py,sha256=zS0t9rI21wwEwTlrlX94GqkmPKLnb8ktUaAOY-ZLmw0,1421
1464
1466
  mteb/models/model_implementations/arctic_models.py,sha256=eaMRaN9WdpVq1W6cbtNcJMdrJUTXrTSYUjTJufCdZRY,10350
1465
1467
  mteb/models/model_implementations/b1ade_models.py,sha256=aEKmXWVX8iJ_OotAYPOMxsOHTDEOJYdSwkR6iJsZ-ms,1609
1466
1468
  mteb/models/model_implementations/bedrock_models.py,sha256=RWN25Es4Nb6eIMiZlFHWNAnftKMVBumM2kozpO7Kh50,8709
1467
- mteb/models/model_implementations/bge_models.py,sha256=LL_JnXsjGPnzzxby05Z0Jm3v6-v76nCB-yI36H9fKwo,22386
1469
+ mteb/models/model_implementations/bge_models.py,sha256=9x0cA1Kih9zScHreboFh2MVPnD_jhCxSp1rh5PV9_lk,24086
1468
1470
  mteb/models/model_implementations/bica_model.py,sha256=vNO6FiqOhAwUky-_Suq3ZpeJ8GVIsd6-uIU6-Y-wFy8,1227
1469
1471
  mteb/models/model_implementations/blip2_models.py,sha256=hBdilqIIFkILmGoSl6GjT5gpFVxArp3xL3JEcWfJ1KU,7635
1470
1472
  mteb/models/model_implementations/blip_models.py,sha256=n_XRcymbYL2Rx8AFl96OpGQcWvfzrvFQxKvFl4swzA4,11516
@@ -1474,7 +1476,7 @@ mteb/models/model_implementations/cadet_models.py,sha256=bDula_VroXOWgSw-tquvNVG
1474
1476
  mteb/models/model_implementations/cde_models.py,sha256=3nNU3nq3VZZcImFqH1VPj57-QJNMU6Ei2C_HCaicuUs,9012
1475
1477
  mteb/models/model_implementations/clip_models.py,sha256=zrfgNmZszu0JMtMNdCMzEohixsrnQ7xFhCqgsiucH_Q,6107
1476
1478
  mteb/models/model_implementations/clips_models.py,sha256=QwwoU4Zu_zwUgUg7Hn2lzpXK-GjXIST0qF_2oRxHm2Y,3410
1477
- mteb/models/model_implementations/codefuse_models.py,sha256=19Y-d_qetVU64quzEvuUJ_K8DHo1JEEKEGqjRR48dFg,9113
1479
+ mteb/models/model_implementations/codefuse_models.py,sha256=t_Dw_pRjh6gW1l2xLmBjd3oGcU_csy6DW3IdWsYuvGg,13975
1478
1480
  mteb/models/model_implementations/codesage_models.py,sha256=D4CdISGyv5f2GMYq4_efgm5qNq80SWAX5R2u5mjEiXM,2998
1479
1481
  mteb/models/model_implementations/cohere_models.py,sha256=OWFClVAN4phjBoxfGGDyGDmzMu-t2VrjCGFyAIWmz4w,13832
1480
1482
  mteb/models/model_implementations/cohere_v.py,sha256=K6VEw1NkyM2PuMd18kHE6aqPrcByYSwEmAKjvLods_w,15760
@@ -1482,23 +1484,23 @@ mteb/models/model_implementations/colpali_models.py,sha256=l-0A3J5rt1bhhTKFPQ3Ti
1482
1484
  mteb/models/model_implementations/colqwen_models.py,sha256=wxR3sqyzObuXMlm1QLoFopJK3ZpQTzd3ZB5IrkzPfZk,15553
1483
1485
  mteb/models/model_implementations/colsmol_models.py,sha256=O2M7Ksydh94M_Iax4KytHb-wOL18N0BIYLKSsLF8BFs,2967
1484
1486
  mteb/models/model_implementations/conan_models.py,sha256=G-s7xo9VtNX-f7lWKtYVGHHiMMN0Xp44PlNIp7E0LAo,6502
1485
- mteb/models/model_implementations/dino_models.py,sha256=QFgaFHR5YKrylqJGSljXCBn2W7qHhmF6KdXkvHrQNEI,16380
1487
+ mteb/models/model_implementations/dino_models.py,sha256=SFGXFZsI0ziCehNVfDn0CmQ5Uc_QDqP6jw8-jgIqDYU,25018
1486
1488
  mteb/models/model_implementations/e5_instruct.py,sha256=9R4GoSFicgqNDCh3HhTN_8L1qhzuEKvatjHYn3T9zlU,7676
1487
1489
  mteb/models/model_implementations/e5_models.py,sha256=ZLRgzx2uEBc_yWY6DwcJFUNKG6RHpWSEVp1_jaEURhs,9373
1488
1490
  mteb/models/model_implementations/e5_v.py,sha256=_9W7I0ryIzx_H9eCkzwdm8iHdGX1LIjKGXkhSh_zNv8,6690
1489
1491
  mteb/models/model_implementations/eagerworks_models.py,sha256=NOQkCUqn9jLSpf9p6KyaIHnJxYV1MNlr2z7hO2AcRSc,5744
1490
- mteb/models/model_implementations/emillykkejensen_models.py,sha256=QdhGqCm_1-AURkrniZj2S1MjwwIVOPMzLvpgfJq-3EQ,2779
1492
+ mteb/models/model_implementations/emillykkejensen_models.py,sha256=qNrKLu7NDFCRW1YTAoS-aHjjfx6UIHATlydepitaCog,3665
1491
1493
  mteb/models/model_implementations/en_code_retriever.py,sha256=leZ-0M6LrunocY3XQBYZU1uevDRopeyR5ujIhwqBbd8,1043
1492
- mteb/models/model_implementations/euler_models.py,sha256=fZoXYeDjSRN2Qj1Pf-ROi8xok03PjhYi4FLEZKjMPkk,905
1494
+ mteb/models/model_implementations/euler_models.py,sha256=EfxegMwatdeQ4Qhq5aGRnZTSu2AVc0g51ikSu9sPNXs,1106
1493
1495
  mteb/models/model_implementations/evaclip_models.py,sha256=cPMGYLDIq4s8zJxb4vPXqJ-rqwPaq7KOh2QZSO6cDas,8000
1494
- mteb/models/model_implementations/fa_models.py,sha256=WGal70_ezITWoNdjcMdbOCTSCtoaXzuPadYstLVXxhg,7478
1495
- mteb/models/model_implementations/facebookai.py,sha256=uhE6rB1YgxE0SIc7u8heE1U62qRFFA23IMgpjxBq_Ok,3116
1496
+ mteb/models/model_implementations/fa_models.py,sha256=BoFk99qwsX-PqedV6-8PK7AZQbJQaB8Eaf8o75dJwqI,9610
1497
+ mteb/models/model_implementations/facebookai.py,sha256=pJ4OTTQT1ggLiVmOGfp8IMQatyTsTWmrFFsDQUpN9h4,4834
1496
1498
  mteb/models/model_implementations/geogpt_models.py,sha256=Juv86SwhgQX80lVLjAFtim2aSiJT1AcgjniyyiKyk1Q,1923
1497
1499
  mteb/models/model_implementations/gme_v_models.py,sha256=GEu1wl5q77RMM3BwtKMjkMwm38KX_r0qWxD_IEMVC2U,13657
1498
1500
  mteb/models/model_implementations/google_models.py,sha256=d6hZ-yWY-yZnQsXDVbdtBb_xqwYAkdeeAnsEMaqqGXI,11013
1499
1501
  mteb/models/model_implementations/granite_vision_embedding_models.py,sha256=cvG5NliPwDVMvGuJTo8rk5yL3m6cuJZ_fMLEc0ESNfc,7315
1500
1502
  mteb/models/model_implementations/gritlm_models.py,sha256=aS_CuioL95JAQMYiaKlGuAWU9wZjabn268Xut3bD8-w,3005
1501
- mteb/models/model_implementations/gte_models.py,sha256=o26Xyu_tucUlP435Q_jB4-bl0xckgj4wtbutTwhYgIo,10073
1503
+ mteb/models/model_implementations/gte_models.py,sha256=G7nbR-ItIEUZdwAxlMJIX9tlXAfnaVBCQ84F75WjspQ,13661
1502
1504
  mteb/models/model_implementations/hinvec_models.py,sha256=I_d_dSNVaGIwMIwyvTlaPAzGMpwh_PzvsfE4y47GFyg,1575
1503
1505
  mteb/models/model_implementations/human.py,sha256=klMpuMAtYH92EIEwNMEhne_Baf9fNiTg1DNWYD11P44,532
1504
1506
  mteb/models/model_implementations/ibm_granite_models.py,sha256=YCT0jbgawy19ps5l8QlxpQoJLjq8Nh-3R-e6yxS0DRM,7902
@@ -1506,11 +1508,11 @@ mteb/models/model_implementations/inf_models.py,sha256=lvXUFhAYDltq2_Xa9MHcwfhh1
1506
1508
  mteb/models/model_implementations/jasper_models.py,sha256=onX_ipI-UZbaZrjcHpZtk34tpy6DcT6Yvq6X3RMSmYA,16211
1507
1509
  mteb/models/model_implementations/jina_clip.py,sha256=CfiIxbhKspjQajNtObCfGPHOWPk6uLn4cuwydQHFTMo,5118
1508
1510
  mteb/models/model_implementations/jina_models.py,sha256=1bkGwIaRNIun2ghkWb4FG-7js4lJ39s97Q9KAW3wkXo,34858
1509
- mteb/models/model_implementations/kalm_models.py,sha256=FmW7Z5Qs6WYBLuKvql3u4IJW36kj4k-Ypah8qTBEBkg,59837
1510
- mteb/models/model_implementations/kblab.py,sha256=DDh8gDEI6YPjS4_yGYWC4HatE0mFf7vhGDU83zzV7V0,866
1511
+ mteb/models/model_implementations/kalm_models.py,sha256=po9RdIr2zgHrE3BwgKq0uoOqrQzWkUUUecR6JgCohWk,61959
1512
+ mteb/models/model_implementations/kblab.py,sha256=pDA-OUgBAQ2C4jGbNXoBY0RQFTyM72kt2F9yN_IZT0I,1135
1511
1513
  mteb/models/model_implementations/kennethenevoldsen_models.py,sha256=DF-9nmsewYO9ikZ0kV81ujKGr7Ot36-9iPoxN7KX2mY,2993
1512
1514
  mteb/models/model_implementations/kfst.py,sha256=BQj0fxMJwyA6NOdK26NDYVL3z2PW1_F-lTTVImxEWZQ,892
1513
- mteb/models/model_implementations/kowshik24_models.py,sha256=HoQpybjhquK2XSnawlq0aiSWFI5M7l6N4DNY4MQ-P10,976
1515
+ mteb/models/model_implementations/kowshik24_models.py,sha256=_gIJdiseyEni0Z-rOLCzVfeS4wtZZb9CCTkl-9nVH-E,1419
1514
1516
  mteb/models/model_implementations/lens_models.py,sha256=fC7_NB1F8vBAlXD0p0-hALf6eZTPFJwpz57dy71OlwI,1696
1515
1517
  mteb/models/model_implementations/lgai_embedding_models.py,sha256=S83pbfkMH3YUNl4skusgbK-Rn-uLuScQVxgXwegR_N4,2333
1516
1518
  mteb/models/model_implementations/linq_models.py,sha256=EtvUyiNbjU-GJd1kS0Z0gBACkP2pFOjk0KfGMZz4K9Y,1872
@@ -1519,18 +1521,18 @@ mteb/models/model_implementations/llm2clip_models.py,sha256=_sqAOb5oSbxn1oaXjWwP
1519
1521
  mteb/models/model_implementations/llm2vec_models.py,sha256=Og_EqnOXgIfaTcVTl3Lj5BicG83ycnXS_YHNtK63I-A,12638
1520
1522
  mteb/models/model_implementations/mcinext_models.py,sha256=W9MBQFqGTXVa52WDFFq1Pdat2TgRvluOcD6JVAupn28,18968
1521
1523
  mteb/models/model_implementations/mdbr_models.py,sha256=B7R3dVEH9EZ_fSZ05VveSbmTyO3Erh7iJ2WmMn52d-4,2509
1522
- mteb/models/model_implementations/misc_models.py,sha256=bgKOuXJC8cVQmVRXEfIBlgzxDRb9nzOCsHdJ1kM8Z2Q,56691
1524
+ mteb/models/model_implementations/misc_models.py,sha256=X0MvBQn2pRk7IT-jD3fYoja26at61FanjBtroaAg3Zc,69116
1523
1525
  mteb/models/model_implementations/mme5_models.py,sha256=cRRXecC8EHeLQiEd1nfCb1vt75x_CnG1s_9lYRrtyTA,1484
1524
1526
  mteb/models/model_implementations/moco_models.py,sha256=Kl0nBsqkG3crYoo5YulFq1fv97U0-IBWVFHN0UuO0lg,5483
1525
- mteb/models/model_implementations/mod_models.py,sha256=KHVdZWmag0Yz_NLGDPUz4TgNbKjUYqKVXS_G_rL_5yU,6731
1527
+ mteb/models/model_implementations/mod_models.py,sha256=jt33SfV476FIQJ-W-FRi_ocyRY1u8ldRFuo-PgejJDU,6335
1526
1528
  mteb/models/model_implementations/model2vec_models.py,sha256=D-EY-6P-cKKunbgzk4DHzJL1ogpWYFhpHbTLb8qQjJw,13765
1527
1529
  mteb/models/model_implementations/moka_models.py,sha256=Y5do7Z4JyGxabYrjHhkBLqCKTQKotniS-f4kOgXJjag,4995
1528
- mteb/models/model_implementations/mxbai_models.py,sha256=33ta2BnhvKYBUgE89wFgPNf-CnOb7ooumZvqHOvbZsA,3593
1530
+ mteb/models/model_implementations/mxbai_models.py,sha256=KJXfUVW8e6LJEq3EO-Zy-pu6-9e-Q0mjP6_W7GP6QoI,3851
1529
1531
  mteb/models/model_implementations/nbailab.py,sha256=bqqR0qs10IH2g5HC6K962tDMBciw8qFsNVHADNS72jk,2396
1530
1532
  mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=6i-xbLRRNKuDpU-hwklwdQjgu1wnz5CecLSoc6kyd7Q,3976
1531
- mteb/models/model_implementations/nomic_models.py,sha256=4N18fKKYXe8FGPqe4s5_6LV4rQsZad_2vAIOuxxwVeI,14417
1533
+ mteb/models/model_implementations/nomic_models.py,sha256=WmSX6YyYaG5EG9M3OX-tTgdznFVJanfVAxRKJ-vNXF0,14736
1532
1534
  mteb/models/model_implementations/nomic_models_vision.py,sha256=6aca0XVLXnkGk6GW8jVCIbbjPGq98lKq4c9Az4jbEkE,6805
1533
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=OEhVrvA-zfX2PSm76VcCDPkRyAArSFkVeweyLyzpqPI,6255
1535
+ mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=yOaRX9amblBRGmNA-By2M8qD4ZsabSN2vw_jp1aXwuA,6314
1534
1536
  mteb/models/model_implementations/nvidia_models.py,sha256=acVverAt77lURkILCVkCdXsWgY1BJoG1-ugB7yIhlIM,21555
1535
1537
  mteb/models/model_implementations/openai_models.py,sha256=loU6JByNUwRidq7lmcu8iGOtUQvzejw6HVLaF_IKCR0,9352
1536
1538
  mteb/models/model_implementations/openclip_models.py,sha256=W8XcokgLU1nSmMaWpYXkWWizVd3sQezcP02YtF2fXpo,11436
@@ -1540,7 +1542,7 @@ mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py,
1540
1542
  mteb/models/model_implementations/pawan_models.py,sha256=rV2ePGIuYroocvwqDXm4VU369Y_Vr67CyAE-08K5B9c,1151
1541
1543
  mteb/models/model_implementations/piccolo_models.py,sha256=d8Dtkv_ZTUOCmJLLOuwquq-gX-2UfKvAtl_LvAS0Xi0,2113
1542
1544
  mteb/models/model_implementations/promptriever_models.py,sha256=S7uWes_P74p3OZR_KBJHJN_ezlvvRx2__46DMCWqV5M,6328
1543
- mteb/models/model_implementations/pylate_models.py,sha256=oNoPndZuiJahSd-ikR4dE4vL9261btXYiJbF3bk3Dco,14546
1545
+ mteb/models/model_implementations/pylate_models.py,sha256=VRLcjNTtoLLV-E_Oa-F6KkS0h-oSASvjGq6iKSWZgZs,16715
1544
1546
  mteb/models/model_implementations/qodo_models.py,sha256=JDqffDlQiOEariyheybOIf3iNkqot2gTkEIHWDnRbUE,2037
1545
1547
  mteb/models/model_implementations/qtack_models.py,sha256=biZLH5E3UWIcMZXIZNGgBZFEUvovPpAo6vUyL776W1w,1224
1546
1548
  mteb/models/model_implementations/qwen3_models.py,sha256=F_o6ciD-6gLFfIlQYD9MsNvcbkmGzJ39eKpFlEog1rM,5132
@@ -1552,26 +1554,27 @@ mteb/models/model_implementations/repllama_models.py,sha256=89HoqEpzkNysHeuf_-Yh
1552
1554
  mteb/models/model_implementations/rerankers_custom.py,sha256=ro73A9-hHudy3_qIMrhP-ja-3Xqu78r_aORm856zHQc,10651
1553
1555
  mteb/models/model_implementations/rerankers_monot5_based.py,sha256=rxVwzapNnHl4gCw79XVCaTXj3-wbToyj7XVL97tpAF4,34302
1554
1556
  mteb/models/model_implementations/richinfoai_models.py,sha256=llvYa0JUjyOOMbuTgOYoJ2qeqZ5rLHX1ZjZIYlYbdvA,989
1555
- mteb/models/model_implementations/ru_sentence_models.py,sha256=GuZFwbzaooufvSMGNjIsL0DDLrqHjhdSsAQHHZo5H08,40480
1557
+ mteb/models/model_implementations/ru_sentence_models.py,sha256=mh5TPy0EZVGioiXizrz-W_ssrlLZ2Q7HCbGZ-6TYszE,41238
1556
1558
  mteb/models/model_implementations/ruri_models.py,sha256=-BTYkZ8dEWZUbGqx3YB5yFSrzMwZtXX7sMUHzrlB8ws,10043
1557
1559
  mteb/models/model_implementations/salesforce_models.py,sha256=KslTK-IKeLvNG-vQir9k6swkaOgjk6eyozm_BOVgTpY,5160
1558
1560
  mteb/models/model_implementations/samilpwc_models.py,sha256=oMwKNwCxoH1jZgCy04oo2oVlBZWu253QMpnEEC6emz8,2021
1559
1561
  mteb/models/model_implementations/sarashina_embedding_models.py,sha256=TSmr2FEX79mJTA9mbEV3meEZYSelGv58Veiw__TTGFM,8415
1560
1562
  mteb/models/model_implementations/searchmap_models.py,sha256=XvVl99emIgnNUCxkTuFQXW6py2R8vgsArfpyHveCugw,1904
1561
1563
  mteb/models/model_implementations/seed_1_6_embedding_models.py,sha256=Q8JTW2fjePR9dq4spuwK2lyVeL3mn1bl-H5wkQuEV_E,18609
1564
+ mteb/models/model_implementations/seed_1_6_embedding_models_1215.py,sha256=O0BlsOHaxF0EEGaoas4AdzB8f-_9W9lwfoxLypexKEo,37516
1562
1565
  mteb/models/model_implementations/seed_models.py,sha256=SgK4kPVO6V33G3F1zSq06zSkWarPLEwBt1SWp4TUoVw,14142
1563
- mteb/models/model_implementations/sentence_transformers_models.py,sha256=EtEaXg1yFFp3DQEOxu6am8bcVQR-ypcHj6DCqJGHOVU,21160
1566
+ mteb/models/model_implementations/sentence_transformers_models.py,sha256=J0uFt6cFkHohTNtFJe3Ne1weNndYVVinSGFBKYlolt8,22784
1564
1567
  mteb/models/model_implementations/shuu_model.py,sha256=KkcuVYjIzoha3Fvxh8ppqHQ9BfNMWeqDqn9dGCRKUjg,1167
1565
1568
  mteb/models/model_implementations/siglip_models.py,sha256=tvi8QB2ayBoeXsxwHrl5RFlkknvE6FM9N06zSBWGQD0,12602
1566
1569
  mteb/models/model_implementations/sonar_models.py,sha256=Nc6kAJRWSrxA57DPRrgOPHqS1dNhz2vsE_1ZA2JtigQ,4784
1567
- mteb/models/model_implementations/spartan8806_atles_champion.py,sha256=9sWQH7tOT0uxXA7sbQcnqGt2f5O9xcw9HqFpRCzoQAA,918
1570
+ mteb/models/model_implementations/spartan8806_atles_champion.py,sha256=yTwZPWg2pj7WSDecKFO-pV9ykXkebXoPiR3JORavCIQ,1213
1568
1571
  mteb/models/model_implementations/stella_models.py,sha256=NL3tk-rnuBdznsQ-nmelqun4tFO2xKoNPPOOVKqnPGU,8062
1569
1572
  mteb/models/model_implementations/tarka_models.py,sha256=UwSb3e-k7dCgQAJv3176ZvKpkjLZfpdPzwf-b0Oxuuo,27345
1570
1573
  mteb/models/model_implementations/text2vec_models.py,sha256=zaHWRc2W0RYZAOetinqRzug9UGW0HmY5U-jYsLXA8wo,4160
1571
- mteb/models/model_implementations/ua_sentence_models.py,sha256=fcvXR4-Rrt-UDTlDkh2ZAO1gO_ufCOHiT6EhoeKiHx8,1224
1574
+ mteb/models/model_implementations/ua_sentence_models.py,sha256=SNaTaRcRLFn9SO0TECkqqqu-IXO9tWhBduN-i92y3W4,1667
1572
1575
  mteb/models/model_implementations/uae_models.py,sha256=KZxH5a3t-sfh33xUBkLizEuyFAyPlGfnRsn-S7mjq74,3112
1573
1576
  mteb/models/model_implementations/vdr_models.py,sha256=nz8yZLRJc3RDMFWxXf1mb8bPD8c__IQDJMwHxKgJXkA,1422
1574
- mteb/models/model_implementations/vi_vn_models.py,sha256=quWmd3JT2J6SlAsFrV2gcnc67M9zr58mEF2zLUF8-uw,4795
1577
+ mteb/models/model_implementations/vi_vn_models.py,sha256=adATWIhwImbajHqM8zpgrZbNwo-4VEZNehejBEpx4zg,6042
1575
1578
  mteb/models/model_implementations/vista_models.py,sha256=Q3I01kRtIPaoke0iMIcH4CLcCDTnMSIBFNCof7LPTX4,10832
1576
1579
  mteb/models/model_implementations/vlm2vec_models.py,sha256=HGGy_-z9Wc99xOKum71rBNipCPqWcM1efmmXgy5Rvxc,11724
1577
1580
  mteb/models/model_implementations/voyage_models.py,sha256=dOCccOQlloGrg0q44PxMQzx8dHuQ8VgkDUD01EydpJ0,19824
@@ -1585,7 +1588,7 @@ mteb/models/search_encoder_index/search_backend_protocol.py,sha256=TSjlx88stJcMl
1585
1588
  mteb/models/search_encoder_index/search_indexes/__init__.py,sha256=Wm60_oUemUpFsvrCMW111dcPH2L2rt1iZrXMskXmG7o,88
1586
1589
  mteb/models/search_encoder_index/search_indexes/faiss_search_index.py,sha256=WMs3QbbYV13fRuT3dakmdVMZLFdc_9ZzSupS3QxlbVQ,5555
1587
1590
  mteb/results/__init__.py,sha256=EXQqK4Am5eIYzD52dpcGAFSdqnC38oE6JHN302oidHc,158
1588
- mteb/results/benchmark_results.py,sha256=b_g0QmTbwue9ZpWTtyPfgf_nyavckZHUgTVE6zqqtzM,18342
1591
+ mteb/results/benchmark_results.py,sha256=_d5vJWFwGmriFrLYmHI-P28vXSxXsWkg7hIQGKH_44w,19167
1589
1592
  mteb/results/model_result.py,sha256=Y6b_xfJlw8EFZq464ZVhyw0Rryv111hvMjnXbEZJpXk,14059
1590
1593
  mteb/results/task_result.py,sha256=DgmAw6akotjp8m8E6gE8QP9mQMxUvyzu1hnZ5o01GkU,32303
1591
1594
  mteb/tasks/__init__.py,sha256=izAxU0ip1F_YUwx0dFCuN35BaktdmePh6vlDiHC0kLo,503
@@ -1883,7 +1886,8 @@ mteb/tasks/classification/tha/wisesight_sentiment_classification.py,sha256=CdTFV
1883
1886
  mteb/tasks/classification/tha/wongnai_reviews_classification.py,sha256=0qy4fHUf5i6Kgfxve1NneelB9gNas_7lMRs6pwgce1Q,1736
1884
1887
  mteb/tasks/classification/tsn/__init__.py,sha256=pHxOFshsfTp_CkIowXYcDtpZsxihcnPewREjFOzwHH4,176
1885
1888
  mteb/tasks/classification/tsn/tswana_news_classification.py,sha256=wO3FD7JLaV9gycHVySmVjJUMwGbYd73pZfZEtSiknrw,3106
1886
- mteb/tasks/classification/tur/__init__.py,sha256=ZHpiPVOG5fymXCy2V2XqnSyVuXwHWmoa58KE9ohGjKw,481
1889
+ mteb/tasks/classification/tur/__init__.py,sha256=viCR9s3exQyQDKEbgi1ESBiMPF07cG_TssN3oXc9_GA,611
1890
+ mteb/tasks/classification/tur/turkish_constitutional_court.py,sha256=F-lY7I46Zo8SoCPq2N9rz4yUy84icI0hIvPuI8XRarU,1626
1887
1891
  mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py,sha256=eWPoX2uK06GsmgrteInkiC0uw0mF4dnkPiR249jBDpg,3069
1888
1892
  mteb/tasks/classification/tur/turkish_product_sentiment_classification.py,sha256=9_AxxYWNCVqCuFN1_uCbwid9ox7KNKRSWbpfLMQrFII,2781
1889
1893
  mteb/tasks/classification/ukr/__init__.py,sha256=Tk8r98fjAhLigvXSu2v3vhq3aJVepreg7k7hVxlpIYo,186
@@ -2369,9 +2373,10 @@ mteb/tasks/retrieval/jpn/nlp_journal_title_abs_retrieval.py,sha256=JOOW_5pRKHzVn
2369
2373
  mteb/tasks/retrieval/jpn/nlp_journal_title_intro_retrieval.py,sha256=aVFTFiANWrIz68FjHv9KBqlhpWlsmi9EAP052gECzaU,3078
2370
2374
  mteb/tasks/retrieval/kat/__init__.py,sha256=H4phkKqg_yZzkK7T62aCMBzjbGZzLKJ-MngrQlPbW3A,93
2371
2375
  mteb/tasks/retrieval/kat/georgian_faq_retrieval.py,sha256=4zyodSYCtHtBW9WKIGxFZaTXDrtHuaf3uyfIsDRGBqM,2494
2372
- mteb/tasks/retrieval/kor/__init__.py,sha256=zNjAS2VRjeYX5u4vqev6dGOo_R3i9uSzxAsduZ0po4I,138
2376
+ mteb/tasks/retrieval/kor/__init__.py,sha256=gstfs-sW2-qlaVrOJg_NLsQLLUYCWG2gPf64KI2LxoA,217
2373
2377
  mteb/tasks/retrieval/kor/auto_rag_retrieval.py,sha256=tgffW8zMpDSv1FCOdS4_4SL5zKQj70JVSt_RKs3CgKY,1576
2374
2378
  mteb/tasks/retrieval/kor/ko_strategy_qa.py,sha256=jk13ORetYtF0q36h8ljD6TeTHUwvK5F5ZbDoMCP3eWk,1156
2379
+ mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py,sha256=M7T5FkN1efK7euRslx-LZN7hS_QdIwqtUuVlWO-dico,1631
2375
2380
  mteb/tasks/retrieval/multilingual/__init__.py,sha256=mfVGkoB4DO5ktlg8ia-4nImFVmZcqXh1XkgCkIff0tY,6765
2376
2381
  mteb/tasks/retrieval/multilingual/belebele_retrieval.py,sha256=gaVLEwuLEwMutMi9V-obpiYKbpllX2QNm2j3MVeebfE,7027
2377
2382
  mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py,sha256=_6r34ZvRiLVENYcrd87NjilybGaetBwKFEbO29zYmBU,4676
@@ -2596,9 +2601,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2596
2601
  mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
2597
2602
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2598
2603
  mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
2599
- mteb-2.4.1.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2600
- mteb-2.4.1.dist-info/METADATA,sha256=NSoqOepWRk38b5qA_3AUj6QzR66bca71Bcs7TxJx42o,13990
2601
- mteb-2.4.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2602
- mteb-2.4.1.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2603
- mteb-2.4.1.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2604
- mteb-2.4.1.dist-info/RECORD,,
2604
+ mteb-2.5.0.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2605
+ mteb-2.5.0.dist-info/METADATA,sha256=1R2IkDY_5XF2lZEHOy0op8KGK315UOoEJ8U0_lIyo8Q,13990
2606
+ mteb-2.5.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2607
+ mteb-2.5.0.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2608
+ mteb-2.5.0.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2609
+ mteb-2.5.0.dist-info/RECORD,,
File without changes