mteb 2.3.8__py3-none-any.whl → 2.3.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/models/model_implementations/e5_models.py +3 -101
- mteb/models/model_implementations/facebookai.py +147 -0
- mteb/models/model_implementations/kblab.py +24 -0
- mteb/models/model_implementations/kfst.py +24 -0
- {mteb-2.3.8.dist-info → mteb-2.3.9.dist-info}/METADATA +1 -1
- {mteb-2.3.8.dist-info → mteb-2.3.9.dist-info}/RECORD +10 -7
- {mteb-2.3.8.dist-info → mteb-2.3.9.dist-info}/WHEEL +0 -0
- {mteb-2.3.8.dist-info → mteb-2.3.9.dist-info}/entry_points.txt +0 -0
- {mteb-2.3.8.dist-info → mteb-2.3.9.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.3.8.dist-info → mteb-2.3.9.dist-info}/top_level.txt +0 -0
|
@@ -5,108 +5,10 @@ from mteb.models.model_meta import (
|
|
|
5
5
|
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
6
6
|
from mteb.types import PromptType
|
|
7
7
|
|
|
8
|
+
from .facebookai import XLMR_LANGUAGES
|
|
9
|
+
|
|
8
10
|
E5_PAPER_RELEASE_DATE = "2024-02-08"
|
|
9
|
-
|
|
10
|
-
"afr-Latn",
|
|
11
|
-
"amh-Latn",
|
|
12
|
-
"ara-Latn",
|
|
13
|
-
"asm-Latn",
|
|
14
|
-
"aze-Latn",
|
|
15
|
-
"bel-Latn",
|
|
16
|
-
"bul-Latn",
|
|
17
|
-
"ben-Latn",
|
|
18
|
-
"ben-Beng",
|
|
19
|
-
"bre-Latn",
|
|
20
|
-
"bos-Latn",
|
|
21
|
-
"cat-Latn",
|
|
22
|
-
"ces-Latn",
|
|
23
|
-
"cym-Latn",
|
|
24
|
-
"dan-Latn",
|
|
25
|
-
"deu-Latn",
|
|
26
|
-
"ell-Latn",
|
|
27
|
-
"eng-Latn",
|
|
28
|
-
"epo-Latn",
|
|
29
|
-
"spa-Latn",
|
|
30
|
-
"est-Latn",
|
|
31
|
-
"eus-Latn",
|
|
32
|
-
"fas-Latn",
|
|
33
|
-
"fin-Latn",
|
|
34
|
-
"fra-Latn",
|
|
35
|
-
"fry-Latn",
|
|
36
|
-
"gle-Latn",
|
|
37
|
-
"gla-Latn",
|
|
38
|
-
"glg-Latn",
|
|
39
|
-
"guj-Latn",
|
|
40
|
-
"hau-Latn",
|
|
41
|
-
"heb-Latn",
|
|
42
|
-
"hin-Latn",
|
|
43
|
-
"hin-Deva",
|
|
44
|
-
"hrv-Latn",
|
|
45
|
-
"hun-Latn",
|
|
46
|
-
"hye-Latn",
|
|
47
|
-
"ind-Latn",
|
|
48
|
-
"isl-Latn",
|
|
49
|
-
"ita-Latn",
|
|
50
|
-
"jpn-Latn",
|
|
51
|
-
"jav-Latn",
|
|
52
|
-
"kat-Latn",
|
|
53
|
-
"kaz-Latn",
|
|
54
|
-
"khm-Latn",
|
|
55
|
-
"kan-Latn",
|
|
56
|
-
"kor-Latn",
|
|
57
|
-
"kur-Latn",
|
|
58
|
-
"kir-Latn",
|
|
59
|
-
"lat-Latn",
|
|
60
|
-
"lao-Latn",
|
|
61
|
-
"lit-Latn",
|
|
62
|
-
"lav-Latn",
|
|
63
|
-
"mlg-Latn",
|
|
64
|
-
"mkd-Latn",
|
|
65
|
-
"mal-Latn",
|
|
66
|
-
"mon-Latn",
|
|
67
|
-
"mar-Latn",
|
|
68
|
-
"msa-Latn",
|
|
69
|
-
"mya-Latn",
|
|
70
|
-
"nep-Latn",
|
|
71
|
-
"nld-Latn",
|
|
72
|
-
"nob-Latn",
|
|
73
|
-
"orm-Latn",
|
|
74
|
-
"ori-Latn",
|
|
75
|
-
"pan-Latn",
|
|
76
|
-
"pol-Latn",
|
|
77
|
-
"pus-Latn",
|
|
78
|
-
"por-Latn",
|
|
79
|
-
"ron-Latn",
|
|
80
|
-
"rus-Latn",
|
|
81
|
-
"san-Latn",
|
|
82
|
-
"snd-Latn",
|
|
83
|
-
"sin-Latn",
|
|
84
|
-
"slk-Latn",
|
|
85
|
-
"slv-Latn",
|
|
86
|
-
"som-Latn",
|
|
87
|
-
"sqi-Latn",
|
|
88
|
-
"srp-Latn",
|
|
89
|
-
"sun-Latn",
|
|
90
|
-
"swe-Latn",
|
|
91
|
-
"swa-Latn",
|
|
92
|
-
"tam-Latn",
|
|
93
|
-
"tam-Taml",
|
|
94
|
-
"tel-Latn",
|
|
95
|
-
"tel-Telu",
|
|
96
|
-
"tha-Latn",
|
|
97
|
-
"tgl-Latn",
|
|
98
|
-
"tur-Latn",
|
|
99
|
-
"uig-Latn",
|
|
100
|
-
"ukr-Latn",
|
|
101
|
-
"urd-Latn",
|
|
102
|
-
"urd-Arab",
|
|
103
|
-
"uzb-Latn",
|
|
104
|
-
"vie-Latn",
|
|
105
|
-
"xho-Latn",
|
|
106
|
-
"yid-Latn",
|
|
107
|
-
"zho-Hant",
|
|
108
|
-
"zho-Hans",
|
|
109
|
-
]
|
|
11
|
+
|
|
110
12
|
|
|
111
13
|
MULTILINGUAL_E5_CITATION = """
|
|
112
14
|
@article{wang2024multilingual,
|
|
@@ -0,0 +1,147 @@
|
|
|
1
|
+
from mteb.models import sentence_transformers_loader
|
|
2
|
+
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
3
|
+
|
|
4
|
+
XLMR_LANGUAGES = [
|
|
5
|
+
"afr-Latn",
|
|
6
|
+
"amh-Latn",
|
|
7
|
+
"ara-Latn",
|
|
8
|
+
"asm-Latn",
|
|
9
|
+
"aze-Latn",
|
|
10
|
+
"bel-Latn",
|
|
11
|
+
"bul-Latn",
|
|
12
|
+
"ben-Latn",
|
|
13
|
+
"ben-Beng",
|
|
14
|
+
"bre-Latn",
|
|
15
|
+
"bos-Latn",
|
|
16
|
+
"cat-Latn",
|
|
17
|
+
"ces-Latn",
|
|
18
|
+
"cym-Latn",
|
|
19
|
+
"dan-Latn",
|
|
20
|
+
"deu-Latn",
|
|
21
|
+
"ell-Latn",
|
|
22
|
+
"eng-Latn",
|
|
23
|
+
"epo-Latn",
|
|
24
|
+
"spa-Latn",
|
|
25
|
+
"est-Latn",
|
|
26
|
+
"eus-Latn",
|
|
27
|
+
"fas-Latn",
|
|
28
|
+
"fin-Latn",
|
|
29
|
+
"fra-Latn",
|
|
30
|
+
"fry-Latn",
|
|
31
|
+
"gle-Latn",
|
|
32
|
+
"gla-Latn",
|
|
33
|
+
"glg-Latn",
|
|
34
|
+
"guj-Latn",
|
|
35
|
+
"hau-Latn",
|
|
36
|
+
"heb-Latn",
|
|
37
|
+
"hin-Latn",
|
|
38
|
+
"hin-Deva",
|
|
39
|
+
"hrv-Latn",
|
|
40
|
+
"hun-Latn",
|
|
41
|
+
"hye-Latn",
|
|
42
|
+
"ind-Latn",
|
|
43
|
+
"isl-Latn",
|
|
44
|
+
"ita-Latn",
|
|
45
|
+
"jpn-Latn",
|
|
46
|
+
"jav-Latn",
|
|
47
|
+
"kat-Latn",
|
|
48
|
+
"kaz-Latn",
|
|
49
|
+
"khm-Latn",
|
|
50
|
+
"kan-Latn",
|
|
51
|
+
"kor-Latn",
|
|
52
|
+
"kur-Latn",
|
|
53
|
+
"kir-Latn",
|
|
54
|
+
"lat-Latn",
|
|
55
|
+
"lao-Latn",
|
|
56
|
+
"lit-Latn",
|
|
57
|
+
"lav-Latn",
|
|
58
|
+
"mlg-Latn",
|
|
59
|
+
"mkd-Latn",
|
|
60
|
+
"mal-Latn",
|
|
61
|
+
"mon-Latn",
|
|
62
|
+
"mar-Latn",
|
|
63
|
+
"msa-Latn",
|
|
64
|
+
"mya-Latn",
|
|
65
|
+
"nep-Latn",
|
|
66
|
+
"nld-Latn",
|
|
67
|
+
"nob-Latn",
|
|
68
|
+
"orm-Latn",
|
|
69
|
+
"ori-Latn",
|
|
70
|
+
"pan-Latn",
|
|
71
|
+
"pol-Latn",
|
|
72
|
+
"pus-Latn",
|
|
73
|
+
"por-Latn",
|
|
74
|
+
"ron-Latn",
|
|
75
|
+
"rus-Latn",
|
|
76
|
+
"san-Latn",
|
|
77
|
+
"snd-Latn",
|
|
78
|
+
"sin-Latn",
|
|
79
|
+
"slk-Latn",
|
|
80
|
+
"slv-Latn",
|
|
81
|
+
"som-Latn",
|
|
82
|
+
"sqi-Latn",
|
|
83
|
+
"srp-Latn",
|
|
84
|
+
"sun-Latn",
|
|
85
|
+
"swe-Latn",
|
|
86
|
+
"swa-Latn",
|
|
87
|
+
"tam-Latn",
|
|
88
|
+
"tam-Taml",
|
|
89
|
+
"tel-Latn",
|
|
90
|
+
"tel-Telu",
|
|
91
|
+
"tha-Latn",
|
|
92
|
+
"tgl-Latn",
|
|
93
|
+
"tur-Latn",
|
|
94
|
+
"uig-Latn",
|
|
95
|
+
"ukr-Latn",
|
|
96
|
+
"urd-Latn",
|
|
97
|
+
"urd-Arab",
|
|
98
|
+
"uzb-Latn",
|
|
99
|
+
"vie-Latn",
|
|
100
|
+
"xho-Latn",
|
|
101
|
+
"yid-Latn",
|
|
102
|
+
"zho-Hant",
|
|
103
|
+
"zho-Hans",
|
|
104
|
+
]
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
xlmr_base = ModelMeta(
|
|
108
|
+
loader=sentence_transformers_loader, # type: ignore[arg-type]
|
|
109
|
+
name="FacebookAI/xlm-roberta-base",
|
|
110
|
+
languages=XLMR_LANGUAGES,
|
|
111
|
+
open_weights=True,
|
|
112
|
+
revision="e73636d4f797dec63c3081bb6ed5c7b0bb3f2089",
|
|
113
|
+
release_date="2019-11-05", # arxiv paper release
|
|
114
|
+
n_parameters=278043648,
|
|
115
|
+
memory_usage_mb=1064,
|
|
116
|
+
embed_dim=768,
|
|
117
|
+
license="mit",
|
|
118
|
+
max_tokens=512,
|
|
119
|
+
reference="https://huggingface.co/FacebookAI/xlm-roberta-base",
|
|
120
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
121
|
+
framework=["Sentence Transformers", "PyTorch"],
|
|
122
|
+
use_instructions=False,
|
|
123
|
+
public_training_code=None,
|
|
124
|
+
public_training_data=None,
|
|
125
|
+
training_datasets=set(),
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
xlmr_large = ModelMeta(
|
|
129
|
+
loader=sentence_transformers_loader, # type: ignore[arg-type]
|
|
130
|
+
name="FacebookAI/xlm-roberta-large",
|
|
131
|
+
languages=XLMR_LANGUAGES,
|
|
132
|
+
open_weights=True,
|
|
133
|
+
revision="c23d21b0620b635a76227c604d44e43a9f0ee389",
|
|
134
|
+
release_date="2019-11-05", # arxiv paper release
|
|
135
|
+
n_parameters=559890432,
|
|
136
|
+
memory_usage_mb=2141,
|
|
137
|
+
embed_dim=1024,
|
|
138
|
+
license="mit",
|
|
139
|
+
max_tokens=512,
|
|
140
|
+
reference="https://huggingface.co/FacebookAI/xlm-roberta-large",
|
|
141
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
142
|
+
framework=["Sentence Transformers", "PyTorch"],
|
|
143
|
+
use_instructions=False,
|
|
144
|
+
public_training_code=None,
|
|
145
|
+
public_training_data=None,
|
|
146
|
+
training_datasets=set(),
|
|
147
|
+
)
|
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
from mteb.models import sentence_transformers_loader
|
|
2
|
+
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
3
|
+
|
|
4
|
+
sbert_swedish = ModelMeta(
|
|
5
|
+
loader=sentence_transformers_loader, # type: ignore[arg-type]
|
|
6
|
+
name="KBLab/sentence-bert-swedish-cased",
|
|
7
|
+
languages=["swe-Latn"],
|
|
8
|
+
open_weights=True,
|
|
9
|
+
revision="6b5e83cd29c03729cfdc33d13b1423399b0efb5c",
|
|
10
|
+
release_date="2023-01-11",
|
|
11
|
+
n_parameters=124690944,
|
|
12
|
+
memory_usage_mb=476,
|
|
13
|
+
embed_dim=768,
|
|
14
|
+
license="apache-2.0",
|
|
15
|
+
max_tokens=384,
|
|
16
|
+
reference="https://huggingface.co/KBLab/sentence-bert-swedish-cased",
|
|
17
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
18
|
+
framework=["Sentence Transformers", "PyTorch"],
|
|
19
|
+
use_instructions=False,
|
|
20
|
+
public_training_code=None,
|
|
21
|
+
public_training_data=None,
|
|
22
|
+
training_datasets=None,
|
|
23
|
+
adapted_from="sentence-transformers/all-mpnet-base-v2",
|
|
24
|
+
)
|
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
from mteb.models import sentence_transformers_loader
|
|
2
|
+
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
3
|
+
|
|
4
|
+
xlmr_scandi = ModelMeta(
|
|
5
|
+
loader=sentence_transformers_loader, # type: ignore[arg-type]
|
|
6
|
+
name="KFST/XLMRoberta-en-da-sv-nb",
|
|
7
|
+
languages=["swe-Latn", "nob-Latn", "nno-Latn", "dan-Latn", "eng-Latn"],
|
|
8
|
+
open_weights=True,
|
|
9
|
+
revision="d40c10ca7b1e68b5a8372f2d112dac9eb3279df1",
|
|
10
|
+
release_date="2022-02-22",
|
|
11
|
+
n_parameters=278043648,
|
|
12
|
+
memory_usage_mb=1061,
|
|
13
|
+
embed_dim=768,
|
|
14
|
+
license="not specified",
|
|
15
|
+
max_tokens=512,
|
|
16
|
+
reference="https://huggingface.co/KFST/XLMRoberta-en-da-sv-nb",
|
|
17
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
18
|
+
framework=["Sentence Transformers", "PyTorch"],
|
|
19
|
+
use_instructions=False,
|
|
20
|
+
public_training_code=None,
|
|
21
|
+
public_training_data=None,
|
|
22
|
+
training_datasets=None,
|
|
23
|
+
adapted_from="FacebookAI/xlm-roberta-base",
|
|
24
|
+
)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.3.
|
|
3
|
+
Version: 2.3.9
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -1477,7 +1477,7 @@ mteb/models/model_implementations/colsmol_models.py,sha256=O2M7Ksydh94M_Iax4KytH
|
|
|
1477
1477
|
mteb/models/model_implementations/conan_models.py,sha256=G-s7xo9VtNX-f7lWKtYVGHHiMMN0Xp44PlNIp7E0LAo,6502
|
|
1478
1478
|
mteb/models/model_implementations/dino_models.py,sha256=QFgaFHR5YKrylqJGSljXCBn2W7qHhmF6KdXkvHrQNEI,16380
|
|
1479
1479
|
mteb/models/model_implementations/e5_instruct.py,sha256=9R4GoSFicgqNDCh3HhTN_8L1qhzuEKvatjHYn3T9zlU,7676
|
|
1480
|
-
mteb/models/model_implementations/e5_models.py,sha256=
|
|
1480
|
+
mteb/models/model_implementations/e5_models.py,sha256=ZLRgzx2uEBc_yWY6DwcJFUNKG6RHpWSEVp1_jaEURhs,9373
|
|
1481
1481
|
mteb/models/model_implementations/e5_v.py,sha256=_9W7I0ryIzx_H9eCkzwdm8iHdGX1LIjKGXkhSh_zNv8,6690
|
|
1482
1482
|
mteb/models/model_implementations/eagerworks_models.py,sha256=NOQkCUqn9jLSpf9p6KyaIHnJxYV1MNlr2z7hO2AcRSc,5744
|
|
1483
1483
|
mteb/models/model_implementations/emillykkejensen_models.py,sha256=QdhGqCm_1-AURkrniZj2S1MjwwIVOPMzLvpgfJq-3EQ,2779
|
|
@@ -1485,6 +1485,7 @@ mteb/models/model_implementations/en_code_retriever.py,sha256=leZ-0M6LrunocY3XQB
|
|
|
1485
1485
|
mteb/models/model_implementations/euler_models.py,sha256=fZoXYeDjSRN2Qj1Pf-ROi8xok03PjhYi4FLEZKjMPkk,905
|
|
1486
1486
|
mteb/models/model_implementations/evaclip_models.py,sha256=cPMGYLDIq4s8zJxb4vPXqJ-rqwPaq7KOh2QZSO6cDas,8000
|
|
1487
1487
|
mteb/models/model_implementations/fa_models.py,sha256=WGal70_ezITWoNdjcMdbOCTSCtoaXzuPadYstLVXxhg,7478
|
|
1488
|
+
mteb/models/model_implementations/facebookai.py,sha256=uhE6rB1YgxE0SIc7u8heE1U62qRFFA23IMgpjxBq_Ok,3116
|
|
1488
1489
|
mteb/models/model_implementations/geogpt_models.py,sha256=Juv86SwhgQX80lVLjAFtim2aSiJT1AcgjniyyiKyk1Q,1923
|
|
1489
1490
|
mteb/models/model_implementations/gme_v_models.py,sha256=NkfgR3_UdZzoBt1NnalVou6LOR-F7qXM4by9EbAVrys,13568
|
|
1490
1491
|
mteb/models/model_implementations/google_models.py,sha256=7QfsaJ5JNDRQxFl7Zh2AtiR2PR7PZcfeCBgviuOFBCo,9130
|
|
@@ -1499,7 +1500,9 @@ mteb/models/model_implementations/jasper_models.py,sha256=ZY7qRRpBpD3eVryQb4rLs5
|
|
|
1499
1500
|
mteb/models/model_implementations/jina_clip.py,sha256=CfiIxbhKspjQajNtObCfGPHOWPk6uLn4cuwydQHFTMo,5118
|
|
1500
1501
|
mteb/models/model_implementations/jina_models.py,sha256=HrHm2Io3g9gHwxU5icAaudy_E8rAVkAAIFSzVYWF-dM,34859
|
|
1501
1502
|
mteb/models/model_implementations/kalm_models.py,sha256=FmW7Z5Qs6WYBLuKvql3u4IJW36kj4k-Ypah8qTBEBkg,59837
|
|
1503
|
+
mteb/models/model_implementations/kblab.py,sha256=DDh8gDEI6YPjS4_yGYWC4HatE0mFf7vhGDU83zzV7V0,866
|
|
1502
1504
|
mteb/models/model_implementations/kennethenevoldsen_models.py,sha256=DF-9nmsewYO9ikZ0kV81ujKGr7Ot36-9iPoxN7KX2mY,2993
|
|
1505
|
+
mteb/models/model_implementations/kfst.py,sha256=BQj0fxMJwyA6NOdK26NDYVL3z2PW1_F-lTTVImxEWZQ,892
|
|
1503
1506
|
mteb/models/model_implementations/kowshik24_models.py,sha256=HoQpybjhquK2XSnawlq0aiSWFI5M7l6N4DNY4MQ-P10,976
|
|
1504
1507
|
mteb/models/model_implementations/lens_models.py,sha256=fC7_NB1F8vBAlXD0p0-hALf6eZTPFJwpz57dy71OlwI,1696
|
|
1505
1508
|
mteb/models/model_implementations/lgai_embedding_models.py,sha256=S83pbfkMH3YUNl4skusgbK-Rn-uLuScQVxgXwegR_N4,2333
|
|
@@ -2578,9 +2581,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
|
|
|
2578
2581
|
mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
|
|
2579
2582
|
mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
|
|
2580
2583
|
mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
|
|
2581
|
-
mteb-2.3.
|
|
2582
|
-
mteb-2.3.
|
|
2583
|
-
mteb-2.3.
|
|
2584
|
-
mteb-2.3.
|
|
2585
|
-
mteb-2.3.
|
|
2586
|
-
mteb-2.3.
|
|
2584
|
+
mteb-2.3.9.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
2585
|
+
mteb-2.3.9.dist-info/METADATA,sha256=da_FgK7mGK2HivEwQfKDyIPYzDVMFaz-lTeVQVvp2q8,13923
|
|
2586
|
+
mteb-2.3.9.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
2587
|
+
mteb-2.3.9.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
|
|
2588
|
+
mteb-2.3.9.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
|
|
2589
|
+
mteb-2.3.9.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|