mteb 2.3.1__py3-none-any.whl → 2.3.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -43,6 +43,7 @@ from mteb.benchmarks.benchmarks.benchmarks import (
43
43
  VN_MTEB,
44
44
  CoIR,
45
45
  MTEB_code,
46
+ MTEB_MAIN_RU_v1_1,
46
47
  MTEB_multilingual_v1,
47
48
  MTEB_multilingual_v2,
48
49
  RAR_b,
@@ -113,6 +114,7 @@ __all__ = [
113
114
  "VISUAL_DOCUMENT_RETRIEVAL",
114
115
  "VN_MTEB",
115
116
  "CoIR",
117
+ "MTEB_MAIN_RU_v1_1",
116
118
  "MTEB_code",
117
119
  "MTEB_multilingual_v1",
118
120
  "MTEB_multilingual_v2",
@@ -185,7 +185,7 @@ We recommend that you use [MTEB(eng, v2)](http://mteb-leaderboard.hf.space/?benc
185
185
 
186
186
  MTEB_MAIN_RU = Benchmark(
187
187
  name="MTEB(rus, v1)",
188
- display_name="Russian",
188
+ display_name="Russian legacy",
189
189
  icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/ru.svg",
190
190
  tasks=MTEBTasks(
191
191
  get_tasks(
@@ -240,6 +240,67 @@ MTEB_MAIN_RU = Benchmark(
240
240
  year = {2024},
241
241
  }
242
242
  """,
243
+ contacts=["Samoed", "artemsnegirev", "Drozhzhinastya"],
244
+ )
245
+
246
+ MTEB_MAIN_RU_v1_1 = Benchmark(
247
+ name="MTEB(rus, v1.1)",
248
+ display_name="Russian",
249
+ icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/ru.svg",
250
+ tasks=MTEBTasks(
251
+ get_tasks(
252
+ languages=["rus"],
253
+ tasks=[
254
+ # Classification
255
+ "GeoreviewClassification",
256
+ "HeadlineClassification",
257
+ "InappropriatenessClassification",
258
+ "KinopoiskClassification",
259
+ "MassiveIntentClassification",
260
+ "MassiveScenarioClassification",
261
+ "RuReviewsClassification",
262
+ "RuSciBenchGRNTIClassification",
263
+ "RuSciBenchOECDClassification",
264
+ # Clustering
265
+ "GeoreviewClusteringP2P",
266
+ "RuSciBenchGRNTIClusteringP2P",
267
+ "RuSciBenchOECDClusteringP2P",
268
+ # MultiLabelClassification
269
+ "CEDRClassification",
270
+ "SensitiveTopicsClassification",
271
+ # PairClassification
272
+ "TERRa",
273
+ # Reranking
274
+ "MIRACLReranking",
275
+ "RuBQReranking",
276
+ # Retrieval
277
+ "MIRACLRetrievalHardNegatives.v2",
278
+ "RiaNewsRetrievalHardNegatives.v2",
279
+ "RuBQRetrieval",
280
+ # STS
281
+ "RUParaPhraserSTS",
282
+ "STS22",
283
+ ],
284
+ )
285
+ + get_tasks(
286
+ tasks=["RuSTSBenchmarkSTS"],
287
+ eval_splits=["test"],
288
+ )
289
+ ),
290
+ description="A Russian version of the Massive Text Embedding Benchmark covering the task categories of classification, clustering, reranking, pair classification, retrieval, and semantic similarity. In v1.1, MIRACLRetrieval and RiaNewsRetrieval were replaced with their HardNegatives variants for improved time-optimization measurement. MIRACLRetrievalHardNegatives and RiaNewsRetrievalHardNegatives are used in their updated versions (v2), both of which include improved default prompts.",
291
+ reference="https://aclanthology.org/2023.eacl-main.148/",
292
+ citation=r"""
293
+ @misc{snegirev2024russianfocusedembeddersexplorationrumteb,
294
+ archiveprefix = {arXiv},
295
+ author = {Artem Snegirev and Maria Tikhonova and Anna Maksimova and Alena Fenogenova and Alexander Abramov},
296
+ eprint = {2408.12503},
297
+ primaryclass = {cs.CL},
298
+ title = {The Russian-focused embedders' exploration: ruMTEB benchmark and Russian embedding model design},
299
+ url = {https://arxiv.org/abs/2408.12503},
300
+ year = {2024},
301
+ }
302
+ """,
303
+ contacts=["Samoed", "artemsnegirev", "Drozhzhinastya"],
243
304
  )
244
305
 
245
306
 
mteb/leaderboard/app.py CHANGED
@@ -5,7 +5,7 @@ import tempfile
5
5
  import time
6
6
  import warnings
7
7
  from pathlib import Path
8
- from typing import Literal, get_args
8
+ from typing import Literal
9
9
  from urllib.parse import urlencode
10
10
 
11
11
  import cachetools
@@ -14,7 +14,6 @@ import pandas as pd
14
14
 
15
15
  import mteb
16
16
  from mteb import BenchmarkResults
17
- from mteb.abstasks.task_metadata import TaskDomain, TaskType
18
17
  from mteb.benchmarks.benchmark import RtebBenchmark
19
18
  from mteb.cache import ResultCache
20
19
  from mteb.leaderboard.benchmark_selector import (
@@ -29,7 +28,6 @@ from mteb.leaderboard.table import (
29
28
  apply_summary_styling_from_benchmark,
30
29
  )
31
30
  from mteb.leaderboard.text_segments import ACKNOWLEDGEMENT, FAQ
32
- from mteb.types import Modalities
33
31
 
34
32
  logger = logging.getLogger(__name__)
35
33
 
@@ -139,7 +137,10 @@ def _update_task_info(task_names: str) -> gr.DataFrame:
139
137
  df["languages"] = df["languages"].map(_format_list)
140
138
  df = df.sort_values("name")
141
139
  df["domains"] = df["domains"].map(_format_list)
142
- df["name"] = f'<a href="{df["reference"]}" target="_blank">{df["name"]}</a>'
140
+ df["name"] = df.apply(
141
+ lambda row: f'<a href="{row["reference"]}" target="_blank">{row["name"]}</a>',
142
+ axis=1,
143
+ )
143
144
  df["modalities"] = df["modalities"].map(_format_list)
144
145
  df = df.rename(
145
146
  columns={
@@ -155,9 +156,8 @@ def _update_task_info(task_names: str) -> gr.DataFrame:
155
156
  df = df.drop(columns="reference")
156
157
  return gr.DataFrame(
157
158
  df,
158
- datatype=["markdown"] + ["str"] * (len(df.columns) - 1),
159
- show_copy_button=True,
160
- show_fullscreen_button=True,
159
+ datatype=["markdown"] + ["str"] * (len(df.columns) - 1), # type: ignore
160
+ buttons=["copy", "fullscreen"],
161
161
  show_search="filter",
162
162
  )
163
163
 
@@ -215,6 +215,110 @@ def _should_show_zero_shot_filter(benchmark_name: str) -> bool:
215
215
  return True
216
216
 
217
217
 
218
+ @cachetools.cached(
219
+ cache={},
220
+ key=lambda benchmark_name, all_benchmark_results: hash(benchmark_name),
221
+ )
222
+ def _cache_on_benchmark_select(benchmark_name, all_benchmark_results):
223
+ start_time = time.time()
224
+ benchmark = mteb.get_benchmark(benchmark_name)
225
+ languages = [task.languages for task in benchmark.tasks if task.languages]
226
+ languages = set(itertools.chain.from_iterable(languages))
227
+ languages = sorted(languages)
228
+ domains = [
229
+ task.metadata.domains for task in benchmark.tasks if task.metadata.domains
230
+ ]
231
+ domains = set(itertools.chain.from_iterable(domains))
232
+ types = {task.metadata.type for task in benchmark.tasks if task.metadata.type}
233
+ modalities = set()
234
+ for task in benchmark.tasks:
235
+ modalities.update(task.metadata.modalities)
236
+ languages, domains, types, modalities = (
237
+ sorted(languages),
238
+ sorted(domains),
239
+ sorted(types),
240
+ sorted(modalities),
241
+ )
242
+ elapsed = time.time() - start_time
243
+ benchmark_results = all_benchmark_results[benchmark_name]
244
+ scores = benchmark_results._get_scores(format="long")
245
+ logger.debug(f"on_benchmark_select callback: {elapsed}s")
246
+ show_zero_shot = _should_show_zero_shot_filter(benchmark_name)
247
+
248
+ # Calculate initial models for this benchmark to avoid race conditions
249
+ benchmark_tasks = sorted([task.metadata.name for task in benchmark.tasks])
250
+ all_models_in_scores = list({entry["model_name"] for entry in scores})
251
+ initial_models = _filter_models(
252
+ all_models_in_scores,
253
+ benchmark_tasks,
254
+ availability=None,
255
+ compatibility=[],
256
+ instructions=None,
257
+ max_model_size=MAX_MODEL_SIZE,
258
+ zero_shot_setting="allow_all",
259
+ )
260
+ # Sort to ensure consistency with update_models
261
+ initial_models = sorted(initial_models)
262
+
263
+ return (
264
+ languages,
265
+ domains,
266
+ types,
267
+ modalities,
268
+ benchmark_tasks,
269
+ scores,
270
+ show_zero_shot,
271
+ initial_models,
272
+ )
273
+
274
+
275
+ @cachetools.cached(
276
+ cache={},
277
+ key=lambda benchmark_name,
278
+ type_select,
279
+ domain_select,
280
+ lang_select,
281
+ modality_select: hash(
282
+ (
283
+ hash(benchmark_name),
284
+ hash(tuple(type_select)),
285
+ hash(tuple(domain_select)),
286
+ hash(tuple(lang_select)),
287
+ hash(tuple(modality_select)),
288
+ )
289
+ ),
290
+ )
291
+ def _cache_update_task_list(
292
+ benchmark_name, type_select, domain_select, lang_select, modality_select
293
+ ):
294
+ if not len(lang_select):
295
+ return []
296
+ start_time = time.time()
297
+ benchmark_tasks = []
298
+ tasks_to_keep = []
299
+ for task in mteb.get_benchmark(benchmark_name).tasks:
300
+ benchmark_tasks.append(task.metadata.name)
301
+ if task.metadata.type not in type_select:
302
+ continue
303
+ if task.metadata.domains and not (
304
+ set(task.metadata.domains) & set(domain_select)
305
+ ):
306
+ continue
307
+ if task.languages and not (set(task.languages) & set(lang_select)):
308
+ continue
309
+ if task.metadata.modalities and not (
310
+ set(task.metadata.modalities) & set(modality_select)
311
+ ):
312
+ continue
313
+ tasks_to_keep.append(task.metadata.name)
314
+ benchmark_tasks.sort()
315
+ tasks_to_keep.sort()
316
+ elapsed = time.time() - start_time
317
+ logger.debug(f"update_task_list callback: {elapsed}s")
318
+
319
+ return benchmark_tasks, tasks_to_keep
320
+
321
+
218
322
  def get_leaderboard_app(cache: ResultCache = ResultCache()) -> gr.Blocks:
219
323
  """Returns a Gradio Blocks app for the MTEB leaderboard."""
220
324
  logger.info("Loading all benchmark results")
@@ -227,6 +331,7 @@ def get_leaderboard_app(cache: ResultCache = ResultCache()) -> gr.Blocks:
227
331
  benchmark.name: all_results.select_tasks(benchmark.tasks).join_revisions()
228
332
  for benchmark in benchmarks
229
333
  }
334
+
230
335
  default_benchmark = mteb.get_benchmark(DEFAULT_BENCHMARK_NAME)
231
336
  default_results = all_benchmark_results[default_benchmark.name]
232
337
  logger.info("Benchmark results loaded")
@@ -257,55 +362,48 @@ def get_leaderboard_app(cache: ResultCache = ResultCache()) -> gr.Blocks:
257
362
  default_benchmark, filtered_benchmark_results
258
363
  )
259
364
 
260
- lang_select = gr.Dropdown(
261
- LANGUAGE,
365
+ lang_select = gr.CheckboxGroup(
366
+ sorted(default_results.languages),
262
367
  value=sorted(default_results.languages),
263
- allow_custom_value=True,
264
- multiselect=True,
368
+ show_label=True,
369
+ show_select_all=True,
265
370
  label="Language",
266
371
  info="Select languages to include.",
267
372
  )
268
- type_select = gr.Dropdown(
269
- sorted(get_args(TaskType)),
373
+ type_select = gr.CheckboxGroup(
374
+ sorted(default_results.task_types),
270
375
  value=sorted(default_results.task_types),
271
- multiselect=True,
376
+ show_label=True,
377
+ show_select_all=True,
272
378
  label="Task Type",
273
379
  info="Select task types to include.",
274
380
  )
275
- domain_select = gr.Dropdown(
276
- sorted(get_args(TaskDomain)),
381
+ domain_select = gr.CheckboxGroup(
382
+ sorted(default_results.domains),
277
383
  value=sorted(default_results.domains),
278
- multiselect=True,
384
+ show_label=True,
385
+ show_select_all=True,
279
386
  label="Domain",
280
387
  info="Select domains to include.",
281
388
  )
282
- task_select = gr.Dropdown(
283
- sorted(all_results.task_names),
389
+ task_select = gr.CheckboxGroup(
390
+ sorted(default_results.task_names),
284
391
  value=sorted(default_results.task_names),
285
- allow_custom_value=True,
286
- multiselect=True,
392
+ show_label=True,
393
+ show_select_all=True,
287
394
  label="Task",
288
395
  info="Select specific tasks to include",
289
396
  )
290
- modality_select = gr.Dropdown(
291
- sorted(get_args(Modalities)),
397
+ modality_select = gr.CheckboxGroup(
398
+ sorted(default_results.modalities),
292
399
  value=sorted(default_results.modalities),
293
- multiselect=True,
400
+ show_label=True,
401
+ show_select_all=True,
294
402
  label="Modality",
295
403
  info="Select modalities to include.",
296
404
  )
297
405
 
298
- head = """
299
- <link href="https://cdn.jsdelivr.net/npm/tailwindcss@2.2.19/dist/tailwind.min.css" rel="stylesheet">
300
- """
301
-
302
- with gr.Blocks(
303
- fill_width=True,
304
- theme=gr.themes.Soft(
305
- font=[gr.themes.GoogleFont("Roboto Mono"), "Arial", "sans-serif"],
306
- ),
307
- head=head,
308
- ) as demo:
406
+ with gr.Blocks(fill_width=True) as demo:
309
407
  with gr.Sidebar(
310
408
  position="left",
311
409
  label="Benchmark Selection and Customization",
@@ -465,62 +563,25 @@ def get_leaderboard_app(cache: ResultCache = ResultCache()) -> gr.Blocks:
465
563
  # This sets the benchmark from the URL query parameters
466
564
  demo.load(_set_benchmark_on_load, inputs=[], outputs=[benchmark_select])
467
565
 
468
- @cachetools.cached(
469
- cache={},
470
- key=lambda benchmark_name: hash(benchmark_name),
471
- )
472
566
  def on_benchmark_select(benchmark_name):
473
- start_time = time.time()
474
- benchmark = mteb.get_benchmark(benchmark_name)
475
- languages = [task.languages for task in benchmark.tasks if task.languages]
476
- languages = set(itertools.chain.from_iterable(languages))
477
- languages = sorted(languages)
478
- domains = [
479
- task.metadata.domains
480
- for task in benchmark.tasks
481
- if task.metadata.domains
482
- ]
483
- domains = set(itertools.chain.from_iterable(domains))
484
- types = {
485
- task.metadata.type for task in benchmark.tasks if task.metadata.type
486
- }
487
- modalities = set()
488
- for task in benchmark.tasks:
489
- modalities.update(task.metadata.modalities)
490
- languages, domains, types, modalities = (
491
- sorted(languages),
492
- sorted(domains),
493
- sorted(types),
494
- sorted(modalities),
495
- )
496
- elapsed = time.time() - start_time
497
- benchmark_results = all_benchmark_results[benchmark_name]
498
- scores = benchmark_results._get_scores(format="long")
499
- logger.debug(f"on_benchmark_select callback: {elapsed}s")
500
- show_zero_shot = _should_show_zero_shot_filter(benchmark_name)
501
-
502
- # Calculate initial models for this benchmark to avoid race conditions
503
- benchmark_tasks = sorted([task.metadata.name for task in benchmark.tasks])
504
- all_models_in_scores = list({entry["model_name"] for entry in scores})
505
- initial_models = _filter_models(
506
- all_models_in_scores,
507
- benchmark_tasks,
508
- availability=None,
509
- compatibility=[],
510
- instructions=None,
511
- max_model_size=MAX_MODEL_SIZE,
512
- zero_shot_setting="allow_all",
513
- )
514
- # Sort to ensure consistency with update_models
515
- initial_models = sorted(initial_models)
516
-
517
- return (
567
+ (
518
568
  languages,
519
569
  domains,
520
570
  types,
521
571
  modalities,
522
572
  benchmark_tasks,
523
573
  scores,
574
+ show_zero_shot,
575
+ initial_models,
576
+ ) = _cache_on_benchmark_select(benchmark_name, all_benchmark_results)
577
+
578
+ return (
579
+ gr.update(choices=languages, value=languages),
580
+ gr.update(choices=domains, value=domains),
581
+ gr.update(choices=types, value=types),
582
+ gr.update(choices=modalities, value=modalities),
583
+ gr.update(choices=benchmark_tasks, value=benchmark_tasks),
584
+ scores,
524
585
  gr.update(visible=show_zero_shot),
525
586
  initial_models,
526
587
  )
@@ -562,48 +623,13 @@ def get_leaderboard_app(cache: ResultCache = ResultCache()) -> gr.Blocks:
562
623
  outputs=[scores],
563
624
  )
564
625
 
565
- @cachetools.cached(
566
- cache={},
567
- key=lambda benchmark_name,
568
- type_select,
569
- domain_select,
570
- lang_select,
571
- modality_select: hash(
572
- (
573
- hash(benchmark_name),
574
- hash(tuple(type_select)),
575
- hash(tuple(domain_select)),
576
- hash(tuple(lang_select)),
577
- hash(tuple(modality_select)),
578
- )
579
- ),
580
- )
581
626
  def update_task_list(
582
627
  benchmark_name, type_select, domain_select, lang_select, modality_select
583
628
  ):
584
- if not len(lang_select):
585
- return []
586
- start_time = time.time()
587
- tasks_to_keep = []
588
- for task in mteb.get_benchmark(benchmark_name).tasks:
589
- if task.metadata.type not in type_select:
590
- continue
591
- if task.metadata.domains is not None and not (
592
- set(task.metadata.domains) & set(domain_select)
593
- ):
594
- continue
595
- if task.languages is not None and not (
596
- set(task.languages) & set(lang_select)
597
- ):
598
- continue
599
- if task.metadata.modalities and not (
600
- set(task.metadata.modalities) & set(modality_select)
601
- ):
602
- continue
603
- tasks_to_keep.append(task.metadata.name)
604
- elapsed = time.time() - start_time
605
- logger.debug(f"update_task_list callback: {elapsed}s")
606
- return sorted(tasks_to_keep)
629
+ benchmark_tasks, tasks_to_keep = _cache_update_task_list(
630
+ benchmark_name, type_select, domain_select, lang_select, modality_select
631
+ )
632
+ return gr.update(choices=benchmark_tasks, value=tasks_to_keep)
607
633
 
608
634
  type_select.input(
609
635
  update_task_list,
@@ -913,4 +939,15 @@ if __name__ == "__main__":
913
939
  warnings.filterwarnings("ignore", message="Couldn't get scores for .* due to .*")
914
940
 
915
941
  app = get_leaderboard_app()
916
- app.launch(server_name="0.0.0.0", server_port=7860)
942
+
943
+ head = """
944
+ <link href="https://cdn.jsdelivr.net/npm/tailwindcss@2.2.19/dist/tailwind.min.css" rel="stylesheet">
945
+ """
946
+ app.launch(
947
+ server_name="0.0.0.0",
948
+ server_port=7860,
949
+ theme=gr.themes.Soft(
950
+ font=[gr.themes.GoogleFont("Roboto Mono"), "Arial", "sans-serif"],
951
+ ),
952
+ head=head,
953
+ )
@@ -75,14 +75,17 @@ GP_BENCHMARK_ENTRIES = [
75
75
  "MTEB(kor, v1)",
76
76
  "MTEB(nld, v1)",
77
77
  "MTEB(pol, v1)",
78
- "MTEB(rus, v1)",
78
+ "MTEB(rus, v1.1)",
79
79
  "MTEB(fas, v2)",
80
80
  "VN-MTEB (vie, v1)",
81
81
  ]
82
82
  )
83
83
  + [
84
84
  MenuEntry(
85
- "Other", mteb.get_benchmarks(["MTEB(eng, v1)", "MTEB(fas, v1)"])
85
+ "Other",
86
+ mteb.get_benchmarks(
87
+ ["MTEB(eng, v1)", "MTEB(fas, v1)", "MTEB(rus, v1)"]
88
+ ),
86
89
  )
87
90
  ],
88
91
  ),
mteb/leaderboard/table.py CHANGED
@@ -204,8 +204,7 @@ def _apply_summary_table_styling(joint_table: pd.DataFrame) -> gr.DataFrame:
204
204
  pinned_columns=2,
205
205
  column_widths=column_widths,
206
206
  wrap=True,
207
- show_fullscreen_button=True,
208
- show_copy_button=True,
207
+ buttons=["copy", "fullscreen"],
209
208
  show_search="filter",
210
209
  )
211
210
 
@@ -227,7 +226,6 @@ def _apply_per_task_table_styling(per_task: pd.DataFrame) -> gr.DataFrame:
227
226
  per_task_style,
228
227
  interactive=False,
229
228
  pinned_columns=1,
230
- show_fullscreen_button=True,
231
- show_copy_button=True,
229
+ buttons=["copy", "fullscreen"],
232
230
  show_search="filter",
233
231
  )
@@ -43,6 +43,10 @@ GIGA_task_prompts = {
43
43
  "query": "Given a news title, retrieve relevant news article",
44
44
  "document": "",
45
45
  },
46
+ "RiaNewsRetrievalHardNegatives.v2": {
47
+ "query": "Given a news title, retrieve relevant news article",
48
+ "document": "",
49
+ },
46
50
  "MIRACLReranking": {
47
51
  "query": "Given a question, retrieve Wikipedia passages that answer the question",
48
52
  "document": "",
@@ -51,6 +55,10 @@ GIGA_task_prompts = {
51
55
  "query": "Given a question, retrieve Wikipedia passages that answer the question",
52
56
  "document": "",
53
57
  },
58
+ "MIRACLRetrievalHardNegatives.v2": {
59
+ "query": "Given a question, retrieve Wikipedia passages that answer the question",
60
+ "document": "",
61
+ },
54
62
  "ArguAna": {
55
63
  "query": "Given a search query, retrieve passages that answer the question",
56
64
  "document": "Given a search query, retrieve passages that answer the question",
@@ -755,6 +763,7 @@ frida_prompts = {
755
763
  "SensitiveTopicsClassification": "categorize_topic: ",
756
764
  "TERRa": "categorize_entailment: ",
757
765
  "RiaNewsRetrieval": "categorize: ",
766
+ "RiaNewsRetrievalHardNegatives.v2": "",
758
767
  }
759
768
 
760
769
  frida_training_datasets = {
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.3.1
3
+ Version: 2.3.2
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -37,7 +37,7 @@ Requires-Dist: torchvision>0.2.1; extra == "image"
37
37
  Provides-Extra: codecarbon
38
38
  Requires-Dist: codecarbon<3.0.0,>=2.0.0; extra == "codecarbon"
39
39
  Provides-Extra: leaderboard
40
- Requires-Dist: gradio==5.49.1; extra == "leaderboard"
40
+ Requires-Dist: gradio==6.0.1; extra == "leaderboard"
41
41
  Requires-Dist: plotly<6.0.0,>=5.24.0; extra == "leaderboard"
42
42
  Requires-Dist: cachetools>=5.2.0; extra == "leaderboard"
43
43
  Requires-Dist: matplotlib>=3.9.4; extra == "leaderboard"
@@ -55,8 +55,8 @@ mteb/benchmarks/__init__.py,sha256=MQEVeli-zLaJ7Xg0z7RhXQwsdmm7Ht_W2Ln0rZo1Szc,2
55
55
  mteb/benchmarks/_create_table.py,sha256=z3iqa5dajLk0DYxEE9EeO1qpR3VJXokg8ZQ2rdUkvdM,20452
56
56
  mteb/benchmarks/benchmark.py,sha256=70RlMyyg_wkWTlU_IbfLl-KaqRWXGCKTd8fWe9X-AQE,4173
57
57
  mteb/benchmarks/get_benchmark.py,sha256=-n_O-gitRKZi48gJKNgGuI36hsP7yLVSiwulnMHN7Gw,3935
58
- mteb/benchmarks/benchmarks/__init__.py,sha256=UD6YjWPDVPSQdUhmD-4rho08Gs5LU9pS_C2jX5eUns0,2102
59
- mteb/benchmarks/benchmarks/benchmarks.py,sha256=KDJanVYs3BkFn74VHwarZ8HJ2DX6EIgcVYBrlyjbv9I,89956
58
+ mteb/benchmarks/benchmarks/__init__.py,sha256=0ySgD14Mu3Y1nJzazR_eUir81ia3x6E23N57SzQNkF0,2150
59
+ mteb/benchmarks/benchmarks/benchmarks.py,sha256=Ob2cHVXwFk328xbV-2ZmUibiVAMtT2RN1ygGgiP6UNQ,92662
60
60
  mteb/benchmarks/benchmarks/rteb_benchmarks.py,sha256=QnCSrTTaBfcRlAQp2Nu81tgv1idMXqiM16Fp2zKJ5Ys,10607
61
61
  mteb/cli/__init__.py,sha256=v-csUr3eUZElIvrGB6QGtaIdndDfNWEe9oZchsGsJpg,64
62
62
  mteb/cli/_display_tasks.py,sha256=7A06dT9sSoTz6shyMvskPxuc5eHY_H7PGPlROzMP0yw,2196
@@ -1424,10 +1424,10 @@ mteb/languages/language_family.json,sha256=OUGcHeOIPcZPb2FWmYLhxTS0JxjK5y3Fo6x0P
1424
1424
  mteb/languages/language_scripts.py,sha256=5wix9HTYolNIpTiS5oXf2pGJyL7ftdGKs_m432w81V8,3998
1425
1425
  mteb/languages/programming_languages.py,sha256=zxAakT3OSUnAuTnQ34VyeFIECnNXMlleZmAake6jsZE,211
1426
1426
  mteb/leaderboard/__init__.py,sha256=991roXmtRwEQysV-37hWEzWpkvPgMCGRqZTHR-hm2io,88
1427
- mteb/leaderboard/app.py,sha256=EsQ_qoJ26yJbg2qExKFFAx90R8VYOO6GbLtIzFuHGpE,32642
1428
- mteb/leaderboard/benchmark_selector.py,sha256=hnXdo_Kj4UUAruFl6nZkCxAQ88IEfbaH8EADFJMMdVo,7686
1427
+ mteb/leaderboard/app.py,sha256=rwU3sHxx8YP3kFOvFNAF8izgBd5zgv6lrvO4mZcEmfA,33255
1428
+ mteb/leaderboard/benchmark_selector.py,sha256=uH66SI0iT1J4_fnebViWa83dQwhPi7toBv7PRL_epDw,7784
1429
1429
  mteb/leaderboard/figures.py,sha256=Rq20LFpaUhQD4tuKp7P7ExQtAjonMLibgO3ud0ykMag,7491
1430
- mteb/leaderboard/table.py,sha256=qs0H_Gt9FzRvzb-AL0YlqEe0YAsdYsVX3QlncfCBEqg,7828
1430
+ mteb/leaderboard/table.py,sha256=ZBCW8JDk5gLbi06FA6zuGESQ5Xri0XZIO0uK-aWb2us,7772
1431
1431
  mteb/leaderboard/text_segments.py,sha256=iMIkS04QQjPbT-SkU0x6fOcS8xRbUYevryu9HydipKM,6570
1432
1432
  mteb/models/__init__.py,sha256=ABTuoqiBjBtBWW3LYY7ItBHdylR6jWoy06HH0g6j6fU,910
1433
1433
  mteb/models/abs_encoder.py,sha256=m0JkRfRPMYadDgBR9eozRloI31ZSWkSzDFINpwbfLZk,16533
@@ -1531,7 +1531,7 @@ mteb/models/model_implementations/repllama_models.py,sha256=89HoqEpzkNysHeuf_-Yh
1531
1531
  mteb/models/model_implementations/rerankers_custom.py,sha256=ro73A9-hHudy3_qIMrhP-ja-3Xqu78r_aORm856zHQc,10651
1532
1532
  mteb/models/model_implementations/rerankers_monot5_based.py,sha256=rxVwzapNnHl4gCw79XVCaTXj3-wbToyj7XVL97tpAF4,34302
1533
1533
  mteb/models/model_implementations/richinfoai_models.py,sha256=llvYa0JUjyOOMbuTgOYoJ2qeqZ5rLHX1ZjZIYlYbdvA,989
1534
- mteb/models/model_implementations/ru_sentence_models.py,sha256=Dstx46xFcAOC7giKPclC41GJTtFfmg4t6gLTdAnrxDk,40129
1534
+ mteb/models/model_implementations/ru_sentence_models.py,sha256=GuZFwbzaooufvSMGNjIsL0DDLrqHjhdSsAQHHZo5H08,40480
1535
1535
  mteb/models/model_implementations/salesforce_models.py,sha256=KslTK-IKeLvNG-vQir9k6swkaOgjk6eyozm_BOVgTpY,5160
1536
1536
  mteb/models/model_implementations/samilpwc_models.py,sha256=oMwKNwCxoH1jZgCy04oo2oVlBZWu253QMpnEEC6emz8,2021
1537
1537
  mteb/models/model_implementations/searchmap_models.py,sha256=XvVl99emIgnNUCxkTuFQXW6py2R8vgsArfpyHveCugw,1904
@@ -2567,9 +2567,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2567
2567
  mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
2568
2568
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2569
2569
  mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
2570
- mteb-2.3.1.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2571
- mteb-2.3.1.dist-info/METADATA,sha256=AeDGGuksA6YmVR7zGXWB1jbk2mUD3w5tRCgTZjTnZ4U,13798
2572
- mteb-2.3.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2573
- mteb-2.3.1.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2574
- mteb-2.3.1.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2575
- mteb-2.3.1.dist-info/RECORD,,
2570
+ mteb-2.3.2.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2571
+ mteb-2.3.2.dist-info/METADATA,sha256=LEbGSbNtHSdIf03wLQKaayWlIbr0sGHRfUCvlO4Voe0,13797
2572
+ mteb-2.3.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2573
+ mteb-2.3.2.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2574
+ mteb-2.3.2.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2575
+ mteb-2.3.2.dist-info/RECORD,,
File without changes