mteb 2.3.11__py3-none-any.whl → 2.4.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (55) hide show
  1. mteb/benchmarks/benchmarks/__init__.py +2 -0
  2. mteb/benchmarks/benchmarks/benchmarks.py +57 -0
  3. mteb/deprecated_evaluator.py +8 -13
  4. mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
  5. mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
  6. mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
  7. mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
  8. mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
  9. mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
  10. mteb/evaluate.py +2 -33
  11. mteb/leaderboard/figures.py +1 -1
  12. mteb/leaderboard/table.py +1 -11
  13. mteb/models/abs_encoder.py +21 -17
  14. mteb/models/get_model_meta.py +3 -123
  15. mteb/models/instruct_wrapper.py +2 -1
  16. mteb/models/model_implementations/andersborges.py +12 -0
  17. mteb/models/model_implementations/bge_models.py +43 -0
  18. mteb/models/model_implementations/bica_model.py +34 -0
  19. mteb/models/model_implementations/dino_models.py +152 -0
  20. mteb/models/model_implementations/emillykkejensen_models.py +18 -0
  21. mteb/models/model_implementations/euler_models.py +6 -0
  22. mteb/models/model_implementations/fa_models.py +50 -0
  23. mteb/models/model_implementations/facebookai.py +44 -0
  24. mteb/models/model_implementations/google_models.py +10 -0
  25. mteb/models/model_implementations/gte_models.py +69 -0
  26. mteb/models/model_implementations/kalm_models.py +38 -0
  27. mteb/models/model_implementations/kblab.py +6 -0
  28. mteb/models/model_implementations/kowshik24_models.py +9 -0
  29. mteb/models/model_implementations/misc_models.py +293 -0
  30. mteb/models/model_implementations/mod_models.py +189 -0
  31. mteb/models/model_implementations/mxbai_models.py +6 -0
  32. mteb/models/model_implementations/nomic_models.py +150 -4
  33. mteb/models/model_implementations/pylate_models.py +33 -0
  34. mteb/models/model_implementations/ru_sentence_models.py +22 -0
  35. mteb/models/model_implementations/sentence_transformers_models.py +39 -0
  36. mteb/models/model_implementations/spartan8806_atles_champion.py +7 -0
  37. mteb/models/model_implementations/ua_sentence_models.py +9 -0
  38. mteb/models/model_implementations/vi_vn_models.py +33 -0
  39. mteb/models/model_meta.py +396 -19
  40. mteb/models/sentence_transformer_wrapper.py +2 -7
  41. mteb/tasks/reranking/jpn/__init__.py +9 -1
  42. mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
  43. mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
  44. mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
  45. mteb/tasks/retrieval/jpn/__init__.py +8 -0
  46. mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
  47. mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
  48. mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
  49. mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
  50. {mteb-2.3.11.dist-info → mteb-2.4.2.dist-info}/METADATA +1 -1
  51. {mteb-2.3.11.dist-info → mteb-2.4.2.dist-info}/RECORD +55 -41
  52. {mteb-2.3.11.dist-info → mteb-2.4.2.dist-info}/WHEEL +0 -0
  53. {mteb-2.3.11.dist-info → mteb-2.4.2.dist-info}/entry_points.txt +0 -0
  54. {mteb-2.3.11.dist-info → mteb-2.4.2.dist-info}/licenses/LICENSE +0 -0
  55. {mteb-2.3.11.dist-info → mteb-2.4.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,47 @@
1
+ from mteb.abstasks.retrieval import AbsTaskRetrieval
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class JaCWIRRetrievalLite(AbsTaskRetrieval):
6
+ metadata = TaskMetadata(
7
+ name="JaCWIRRetrievalLite",
8
+ dataset={
9
+ "path": "mteb/JaCWIRRetrievalLite",
10
+ "revision": "79472b360242cf2692e24a6d9999ef50d350d672",
11
+ },
12
+ description=(
13
+ "JaCWIR (Japanese Casual Web IR) is a dataset consisting of questions and webpage meta descriptions "
14
+ "collected from Hatena Bookmark. This is the lightweight version with a reduced corpus "
15
+ "(302,638 documents) constructed using hard negatives from 5 high-performance models."
16
+ ),
17
+ reference="https://huggingface.co/datasets/hotchpotch/JaCWIR",
18
+ type="Retrieval",
19
+ category="t2t",
20
+ modalities=["text"],
21
+ eval_splits=["test"],
22
+ eval_langs=["jpn-Jpan"],
23
+ main_score="ndcg_at_10",
24
+ date=("2020-01-01", "2025-01-01"),
25
+ domains=["Web", "Written"],
26
+ task_subtypes=["Article retrieval"],
27
+ license="not specified",
28
+ annotations_creators="derived",
29
+ dialect=[],
30
+ sample_creation="found",
31
+ adapted_from=["JaCWIRRetrieval"],
32
+ bibtex_citation=r"""
33
+ @misc{jmteb_lite,
34
+ author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan and Fukuchi, Akihiko and Shibata, Tomohide
35
+ and Kawahara, Daisuke},
36
+ howpublished = {\url{https://huggingface.co/datasets/sbintuitions/JMTEB-lite}},
37
+ title = {{J}{M}{T}{E}{B}-lite: {T}he {L}ightweight {V}ersion of {JMTEB}},
38
+ year = {2025},
39
+ }
40
+
41
+ @misc{yuichi-tateno-2024-jacwir,
42
+ author = {Yuichi Tateno},
43
+ title = {JaCWIR: Japanese Casual Web IR - 日本語情報検索評価のための小規模でカジュアルなWebタイトルと概要のデータセット},
44
+ url = {https://huggingface.co/datasets/hotchpotch/JaCWIR},
45
+ }
46
+ """,
47
+ )
@@ -0,0 +1,50 @@
1
+ from mteb.abstasks.retrieval import AbsTaskRetrieval
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class JaqketRetrievalLite(AbsTaskRetrieval):
6
+ metadata = TaskMetadata(
7
+ name="JaqketRetrievalLite",
8
+ dataset={
9
+ "path": "mteb/JaqketRetrievalLite",
10
+ "revision": "860965fbb6526dd8edff12627dacf07c8f5a54f3",
11
+ },
12
+ description=(
13
+ "JAQKET (JApanese Questions on Knowledge of EnTities) is a QA dataset created based on quiz questions. "
14
+ "This is the lightweight version with a reduced corpus (65,802 documents) constructed using "
15
+ "hard negatives from 5 high-performance models."
16
+ ),
17
+ reference="https://github.com/kumapo/JAQKET-dataset",
18
+ type="Retrieval",
19
+ category="t2t",
20
+ modalities=["text"],
21
+ eval_splits=["test"],
22
+ eval_langs=["jpn-Jpan"],
23
+ main_score="ndcg_at_10",
24
+ date=("2023-10-09", "2025-01-01"),
25
+ domains=["Encyclopaedic", "Non-fiction", "Written"],
26
+ task_subtypes=["Question answering"],
27
+ license="cc-by-sa-4.0",
28
+ annotations_creators="human-annotated",
29
+ dialect=[],
30
+ sample_creation="found",
31
+ adapted_from=["JaqketRetrieval"],
32
+ bibtex_citation=r"""
33
+ @misc{jmteb_lite,
34
+ author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan and Fukuchi, Akihiko and Shibata, Tomohide
35
+ and Kawahara, Daisuke},
36
+ howpublished = {\url{https://huggingface.co/datasets/sbintuitions/JMTEB-lite}},
37
+ title = {{J}{M}{T}{E}{B}-lite: {T}he {L}ightweight {V}ersion of {JMTEB}},
38
+ year = {2025},
39
+ }
40
+
41
+ @inproceedings{Kurihara_nlp2020,
42
+ author = {鈴木正敏 and 鈴木潤 and 松田耕史 and ⻄田京介 and 井之上直也},
43
+ booktitle = {言語処理学会第26回年次大会},
44
+ note = {in Japanese},
45
+ title = {JAQKET: クイズを題材にした日本語 QA データセットの構築},
46
+ url = {https://www.anlp.jp/proceedings/annual_meeting/2020/pdf_dir/P2-24.pdf},
47
+ year = {2020},
48
+ }
49
+ """,
50
+ )
@@ -0,0 +1,52 @@
1
+ from mteb.abstasks.retrieval import AbsTaskRetrieval
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class MIRACLJaRetrievalLite(AbsTaskRetrieval):
6
+ metadata = TaskMetadata(
7
+ name="MIRACLJaRetrievalLite",
8
+ dataset={
9
+ "path": "mteb/MIRACLJaRetrievalLite",
10
+ "revision": "575c225da29d1f5fec01082afa56f35df0f44295",
11
+ },
12
+ description=(
13
+ "MIRACL (Multilingual Information Retrieval Across a Continuum of Languages) is a multilingual "
14
+ "retrieval dataset. This is the lightweight Japanese version with a reduced corpus (105,064 documents) "
15
+ "constructed using hard negatives from 5 high-performance models."
16
+ ),
17
+ reference="https://project-miracl.github.io/",
18
+ type="Retrieval",
19
+ category="t2t",
20
+ modalities=["text"],
21
+ eval_splits=["test"],
22
+ eval_langs=["jpn-Jpan"],
23
+ main_score="ndcg_at_10",
24
+ date=("2022-06-01", "2025-01-01"),
25
+ domains=["Encyclopaedic", "Written"],
26
+ task_subtypes=[],
27
+ license="apache-2.0",
28
+ annotations_creators="expert-annotated",
29
+ dialect=[],
30
+ sample_creation="created",
31
+ adapted_from=["MIRACLRetrieval"],
32
+ bibtex_citation=r"""
33
+ @article{10.1162/tacl_a_00595,
34
+ author = {Zhang, Xinyu and Thakur, Nandan and Ogundepo, Odunayo and Kamalloo, Ehsan and Alfonso-Hermelo, David
35
+ and Li, Xiaoguang and Liu, Qun and Rezagholizadeh, Mehdi and Lin, Jimmy},
36
+ doi = {10.1162/tacl_a_00595},
37
+ journal = {Transactions of the Association for Computational Linguistics},
38
+ pages = {1114-1131},
39
+ title = {{MIRACL: A Multilingual Retrieval Dataset Covering 18 Diverse Languages}},
40
+ volume = {11},
41
+ year = {2023},
42
+ }
43
+
44
+ @misc{jmteb_lite,
45
+ author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan and Fukuchi, Akihiko and Shibata, Tomohide
46
+ and Kawahara, Daisuke},
47
+ howpublished = {\url{https://huggingface.co/datasets/sbintuitions/JMTEB-lite}},
48
+ title = {{J}{M}{T}{E}{B}-lite: {T}he {L}ightweight {V}ersion of {JMTEB}},
49
+ year = {2025},
50
+ }
51
+ """,
52
+ )
@@ -0,0 +1,48 @@
1
+ from mteb.abstasks.retrieval import AbsTaskRetrieval
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class MrTyDiJaRetrievalLite(AbsTaskRetrieval):
6
+ metadata = TaskMetadata(
7
+ name="MrTyDiJaRetrievalLite",
8
+ dataset={
9
+ "path": "mteb/MrTyDiJaRetrievalLite",
10
+ "revision": "b87e6ff25f4e32d1c97498a539ea8aad5fde3cb1",
11
+ },
12
+ description=(
13
+ "Mr.TyDi is a multilingual benchmark dataset built on TyDi for document retrieval tasks. "
14
+ "This is the lightweight Japanese version with a reduced corpus (93,382 documents) constructed using "
15
+ "hard negatives from 5 high-performance models."
16
+ ),
17
+ reference="https://huggingface.co/datasets/castorini/mr-tydi",
18
+ type="Retrieval",
19
+ category="t2t",
20
+ modalities=["text"],
21
+ eval_splits=["test"],
22
+ eval_langs=["jpn-Jpan"],
23
+ main_score="ndcg_at_10",
24
+ date=("2021-01-01", "2025-01-01"),
25
+ domains=["Encyclopaedic", "Non-fiction", "Written"],
26
+ task_subtypes=["Question answering"],
27
+ license="apache-2.0",
28
+ annotations_creators="human-annotated",
29
+ dialect=[],
30
+ sample_creation="found",
31
+ adapted_from=["MrTidyRetrieval"],
32
+ bibtex_citation=r"""
33
+ @misc{jmteb_lite,
34
+ author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan and Fukuchi, Akihiko and Shibata, Tomohide
35
+ and Kawahara, Daisuke},
36
+ howpublished = {\url{https://huggingface.co/datasets/sbintuitions/JMTEB-lite}},
37
+ title = {{J}{M}{T}{E}{B}-lite: {T}he {L}ightweight {V}ersion of {JMTEB}},
38
+ year = {2025},
39
+ }
40
+
41
+ @article{mrtydi,
42
+ author = {Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
43
+ journal = {arXiv:2108.08787},
44
+ title = {{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
45
+ year = {2021},
46
+ }
47
+ """,
48
+ )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.3.11
3
+ Version: 2.4.2
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -6,8 +6,8 @@ mteb/_log_once.py,sha256=-tUKzxGQzf2LZSuQXi97oYFXMta1B6GEYXd7BPqssvY,1095
6
6
  mteb/_requires_package.py,sha256=eHg_TD9BVZRzNCcQQrUP17d8M1DF_vOd_tVx54AmAnM,3017
7
7
  mteb/_set_seed.py,sha256=HPlPRl__Pe6IG-4UgJqTfplcivJ_wA2kaClbXoHQedM,1178
8
8
  mteb/cache.py,sha256=XiFuhjZ2C-o0LgP1YM8g9As_vigJCUNfTrOb9-EiFlM,20177
9
- mteb/deprecated_evaluator.py,sha256=t13Eluvm5ByVIOqgT7fqiVfLb8Ud3A4bbF2djRfs8iA,26901
10
- mteb/evaluate.py,sha256=B60CkqRHzkI-3zIfHyocp-YUeWrzeoOvX_RN5vSlGqE,19363
9
+ mteb/deprecated_evaluator.py,sha256=9cJIahJHNZphoqo6KZfp30LLhIdyiR3SSLcut4FR_Ek,26778
10
+ mteb/evaluate.py,sha256=IcaNu3VQwoeH7F1m8_7qJ6_lffHPujRcjKOBo4A7JBI,18631
11
11
  mteb/filter_tasks.py,sha256=5XE1OYmgDDoJYnXwFf4ma_PIT_Lekzs420sQF_kpCiY,7240
12
12
  mteb/get_tasks.py,sha256=6Gc18a2bZoLQV1Ms_qdr2KieAqIXg8TDg4l7ZN8rW2I,14218
13
13
  mteb/load_results.py,sha256=Xw2ZX7BToU92WwUTQUQKPAgPhX7ucyRRdoCrxAoPHdI,6414
@@ -59,8 +59,8 @@ mteb/benchmarks/__init__.py,sha256=MQEVeli-zLaJ7Xg0z7RhXQwsdmm7Ht_W2Ln0rZo1Szc,2
59
59
  mteb/benchmarks/_create_table.py,sha256=b2RqGqi0ZonKbHecEcZiF4pkfE96smFRIzxOI82ETA8,22304
60
60
  mteb/benchmarks/benchmark.py,sha256=UEllUtZQ0L10SNnxRyKbiv4wLCMcNF2nUPhBDKY3nz8,5097
61
61
  mteb/benchmarks/get_benchmark.py,sha256=-n_O-gitRKZi48gJKNgGuI36hsP7yLVSiwulnMHN7Gw,3935
62
- mteb/benchmarks/benchmarks/__init__.py,sha256=Ig5dSFunzI-F-OamruuKJVSstbG3xQNkXCxRY3Bj_Ck,2180
63
- mteb/benchmarks/benchmarks/benchmarks.py,sha256=mZQ56KBQwnBj2qLSQFOv39Av0HBNpH9HXYsDoFmqvu4,95640
62
+ mteb/benchmarks/benchmarks/__init__.py,sha256=73NYNv98q-tRCqf2YHabvElz_a8g_mF75HTup0J-E5E,2220
63
+ mteb/benchmarks/benchmarks/benchmarks.py,sha256=KuXEjB7-3S4b7sChJGmzt2z5iviujRxfqZx5kKNeQAc,97968
64
64
  mteb/benchmarks/benchmarks/rteb_benchmarks.py,sha256=QnCSrTTaBfcRlAQp2Nu81tgv1idMXqiM16Fp2zKJ5Ys,10607
65
65
  mteb/cli/__init__.py,sha256=v-csUr3eUZElIvrGB6QGtaIdndDfNWEe9oZchsGsJpg,64
66
66
  mteb/cli/_display_tasks.py,sha256=7A06dT9sSoTz6shyMvskPxuc5eHY_H7PGPlROzMP0yw,2196
@@ -959,7 +959,9 @@ mteb/descriptive_stats/Reranking/HUMENews21InstructionReranking.json,sha256=8R-4
959
959
  mteb/descriptive_stats/Reranking/HUMERobust04InstructionReranking.json,sha256=Wk9-8xNePKEImoy3UkRasid58gai-e6gIlkzO_VIjIc,1156
960
960
  mteb/descriptive_stats/Reranking/HUMEWikipediaRerankingMultilingual.json,sha256=7HSs-XvtdORejbHXbBu6GjPSRPYnemI-r3aWIdauwUo,5448
961
961
  mteb/descriptive_stats/Reranking/JQaRAReranking.json,sha256=jH5RuOb36a-gH_QNh0DZQpofpyoYGkjKQm9iFn7-VUM,1201
962
+ mteb/descriptive_stats/Reranking/JQaRARerankingLite.json,sha256=pQFLnAx3zUt1AzlpkQhvI-Hix9rr_3dQ0WEmdUPKL6o,1205
962
963
  mteb/descriptive_stats/Reranking/JaCWIRReranking.json,sha256=N4djULyJD_lgJa8x-qoACiaL33hUjdLK02hqXv7Bv5M,1169
964
+ mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json,sha256=CC6F5QTDt5dwroOBvm6h2FObxeCHifraGAZTzwLnUcc,1175
963
965
  mteb/descriptive_stats/Reranking/LocBenchRR.json,sha256=k3Jck8QfSBxrsDenSgT06T2CbTSs8SGH2Y_RBrDWiTs,1227
964
966
  mteb/descriptive_stats/Reranking/MIRACLReranking.json,sha256=boUEIFlFgCUG40M2-mXuXkJluK2POQYuoJYMXPdatVQ,27457
965
967
  mteb/descriptive_stats/Reranking/MMarcoReranking.json,sha256=XF75mWbGFkCCOxgvgy04PWgd7AiHBvCrBGPumK_gKIk,1173
@@ -1180,11 +1182,13 @@ mteb/descriptive_stats/Retrieval/HumanEvalRetrieval.json,sha256=aiW3AaImNrsEfUUp
1180
1182
  mteb/descriptive_stats/Retrieval/HunSum2AbstractiveRetrieval.json,sha256=o3FOm7CJmMUGsdfOc8fC2yln3C69WOnG78K13tq90Q0,992
1181
1183
  mteb/descriptive_stats/Retrieval/IndicQARetrieval.json,sha256=Ao6BLg1DeZG0QLGerXX8YlqtoqMqw--G2QvaP2-9wtA,14374
1182
1184
  mteb/descriptive_stats/Retrieval/JaCWIRRetrieval.json,sha256=sJH2BuaFdoxHH0MSqxdE1DCYSyGslvAbrWaanMSqOUA,985
1185
+ mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json,sha256=67G5OL3dGxPgk_oAClj4IYFgo28Zf_GZ4OnMdRy044c,986
1183
1186
  mteb/descriptive_stats/Retrieval/JaGovFaqsRetrieval.json,sha256=CfZmdZfVDZjMqnAcCmgIFKoNHhIENxh0KVPVQe_lDi0,987
1184
1187
  mteb/descriptive_stats/Retrieval/JaQuADRetrieval.json,sha256=-IxLNwbqC0ZSICvLnICXcANdefo-YrE8GSjU5Ir_vsY,986
1185
1188
  mteb/descriptive_stats/Retrieval/JapaneseCode1Retrieval.json,sha256=DkRoV776czj5-d2-ehjZDHDzQhDwA0WVnjuVjRG-h4w,998
1186
1189
  mteb/descriptive_stats/Retrieval/JapaneseLegal1Retrieval.json,sha256=LMZQX5p24p3mGkwqIYbqzGU76_nSGCtRP9aMXjAIc9s,1012
1187
1190
  mteb/descriptive_stats/Retrieval/JaqketRetrieval.json,sha256=LJ0tsK1pov8gtcmfHl7-X8jqi8fIr_tjIMUMEK9YlJ0,993
1191
+ mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json,sha256=78u8XUaxtWViVgE6TWQRhUljNKx_XJX14S9FQuWzCzM,991
1188
1192
  mteb/descriptive_stats/Retrieval/Ko-StrategyQA.json,sha256=DRJ8rW7y58wIlm8dRHlEiYnrR03Fz-Q9P_Y7y3BOEaw,1001
1189
1193
  mteb/descriptive_stats/Retrieval/LEMBNarrativeQARetrieval.json,sha256=bGyt0faJEvh2TILMC_2qmrCRG37utjOayw3ZpjDNX9Q,1001
1190
1194
  mteb/descriptive_stats/Retrieval/LEMBNeedleRetrieval.json,sha256=f-PHx91WO4YC6q0SqfbMWsH3S1zfhnXYCJZ2kwnQ17M,7685
@@ -1203,6 +1207,7 @@ mteb/descriptive_stats/Retrieval/LegalSummarization.json,sha256=wOTo3a35f0hcHwfw
1203
1207
  mteb/descriptive_stats/Retrieval/LitSearchRetrieval.json,sha256=ws1aeRMer8XyiuYjsBoSgafej46zkeEf3XidAViWbNM,1003
1204
1208
  mteb/descriptive_stats/Retrieval/LoTTE.json,sha256=L4lPCphR0r3_xN4IXQklQdE5NsLo97LsNvRv79rz5ZE,27011
1205
1209
  mteb/descriptive_stats/Retrieval/MBPPRetrieval.json,sha256=jfOr5rVx4304Icglrh-94dXNuGjnxPIqP7e5_v6WRLs,983
1210
+ mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json,sha256=rcXFC5tqA5KdU8J8mxCKqkpUMY_-qVEgKjCO7yuVZxU,1008
1206
1211
  mteb/descriptive_stats/Retrieval/MIRACLRetrieval.json,sha256=a_tOrkxHdINJY_hXF24COOs5WF39NOgXGGTZgmN_ZpY,23211
1207
1212
  mteb/descriptive_stats/Retrieval/MIRACLRetrievalHardNegatives.json,sha256=bcifWI51GUSkrhbIPCYT7ieV21Wsr1eBSCmZbXkjXCs,23040
1208
1213
  mteb/descriptive_stats/Retrieval/MIRACLRetrievalHardNegatives.v2.json,sha256=bcifWI51GUSkrhbIPCYT7ieV21Wsr1eBSCmZbXkjXCs,23040
@@ -1222,6 +1227,7 @@ mteb/descriptive_stats/Retrieval/MedicalQARetrieval.json,sha256=3mN6T82PDSlpUJB0
1222
1227
  mteb/descriptive_stats/Retrieval/MedicalRetrieval.json,sha256=vMa94jsIhkoTXMsPoHaJuXbBRaPuKto-KYlyHkOKHLM,980
1223
1228
  mteb/descriptive_stats/Retrieval/MintakaRetrieval.json,sha256=1XcaYZBo5VHD6SVmKKzSCUk3FlJQK4uopnBV2epQeWk,10698
1224
1229
  mteb/descriptive_stats/Retrieval/MrTidyRetrieval.json,sha256=X2Jp5nByCv_UNmeeHOpLbE20iGnos9nB_E28D4ZIvhg,14653
1230
+ mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json,sha256=Y_6lLFpRcqXCrGYCs19VfwMvpdVFrkqJVBsJvEfokt4,1004
1225
1231
  mteb/descriptive_stats/Retrieval/MultiLongDocRetrieval.json,sha256=MGBeQevI03sxAK3qldfye3yRxQ7O5URV90NFyCNUr_k,33239
1226
1232
  mteb/descriptive_stats/Retrieval/NFCorpus-Fa.json,sha256=rqHqn43MBaA4cni5FbCD5CK_TmQ5z3SiXDmfGx7GIUg,1002
1227
1233
  mteb/descriptive_stats/Retrieval/NFCorpus-NL.json,sha256=x5eYhzWMKToA0ayxP3h10FyegCrbirrCywRQCzMI9SM,1003
@@ -1432,17 +1438,17 @@ mteb/languages/programming_languages.py,sha256=zxAakT3OSUnAuTnQ34VyeFIECnNXMlleZ
1432
1438
  mteb/leaderboard/__init__.py,sha256=991roXmtRwEQysV-37hWEzWpkvPgMCGRqZTHR-hm2io,88
1433
1439
  mteb/leaderboard/app.py,sha256=-sBAkZ9JTr9czhsYEbSm92MfTmB8BOQ17WDkQ1dsP90,34282
1434
1440
  mteb/leaderboard/benchmark_selector.py,sha256=qd-2L20RQ4ACke01UlytkhZok1dkWgfUlXzfET52kGc,7956
1435
- mteb/leaderboard/figures.py,sha256=mPO0go_23QEhAm1RJdLiBxPFCoUiA74_ztyl6yimc7k,7553
1436
- mteb/leaderboard/table.py,sha256=NxXAUkQRWtxjJwfIiO9yvdvw9do3ogzqmAn6az01SSc,10609
1441
+ mteb/leaderboard/figures.py,sha256=cfOK82rRf-7sCjyP7GBxh4ezhOIt0OhD0_86mKtzLrg,7530
1442
+ mteb/leaderboard/table.py,sha256=KqU8aAbZ_tDp1O_qXRGWR32QnB7v_lsF6k5jxLcQVN0,10366
1437
1443
  mteb/leaderboard/text_segments.py,sha256=iMIkS04QQjPbT-SkU0x6fOcS8xRbUYevryu9HydipKM,6570
1438
1444
  mteb/models/__init__.py,sha256=ABTuoqiBjBtBWW3LYY7ItBHdylR6jWoy06HH0g6j6fU,910
1439
- mteb/models/abs_encoder.py,sha256=m0JkRfRPMYadDgBR9eozRloI31ZSWkSzDFINpwbfLZk,16533
1440
- mteb/models/get_model_meta.py,sha256=GeofphZ8wFtwAHYQipgQlZzxNIFAVFGzo_E2sMzjZTc,9350
1441
- mteb/models/instruct_wrapper.py,sha256=Ty4nfEvioycL_uATkhd0PGuyeB5Xc9xrRd6HOGgb-tc,9005
1442
- mteb/models/model_meta.py,sha256=b-Nel9nX5bJk4cgJnqkBzEKyMY7uXvxlCBSxmmH1Ios,14769
1445
+ mteb/models/abs_encoder.py,sha256=XblcGJYJlbTwhX43wvRft_XqnSq2WpzjFcNIwOyRjYo,16443
1446
+ mteb/models/get_model_meta.py,sha256=BMzlqTuzzhIFmfzmtshnRu2KCWxw9mCPyClJfe4oGdQ,5396
1447
+ mteb/models/instruct_wrapper.py,sha256=G4dMcmD5A4M3hmKATf5OYezmZv8-Ie189BrdmipBo7Y,9091
1448
+ mteb/models/model_meta.py,sha256=08jnKQ2-TZ9IFRy_Nx2-tb9eZXMflWN4i3PvNvi5HGw,27899
1443
1449
  mteb/models/models_protocols.py,sha256=D2hYWn_UBGMaKtRwBx3u0B0ni6lHJjSzTxX21XFNwIc,8917
1444
1450
  mteb/models/search_wrappers.py,sha256=zpCvxUVNQWekyC4Fiz7mvlI0VPdSrFq41A0GrCDvBK4,20331
1445
- mteb/models/sentence_transformer_wrapper.py,sha256=n5CMsM6Lpg_CFHH0NkpJusMsaLUTt-L9vRmFINQ961k,12338
1451
+ mteb/models/sentence_transformer_wrapper.py,sha256=xSkFcw6EiCmPJeeMPYm0A0jONRIi0lQc0jBSEhUgXN8,12144
1446
1452
  mteb/models/cache_wrappers/__init__.py,sha256=1w1TnMwulWJSzNkLXjbh5MY3sqgHWc6vUntYn49i9X8,169
1447
1453
  mteb/models/cache_wrappers/cache_backend_protocol.py,sha256=TR7kD7KbN1J4piszIecpegtLZYGy7sRHZt3SDWlImKk,1665
1448
1454
  mteb/models/cache_wrappers/cache_wrapper.py,sha256=KLDeOCe_ndQshbZa5ep2u3jovsl--tfpQzvt9EXyxCA,6589
@@ -1453,12 +1459,13 @@ mteb/models/cache_wrappers/cache_backends/numpy_cache.py,sha256=GyTVC5DLph3EeRnD
1453
1459
  mteb/models/model_implementations/__init__.py,sha256=BZDdde6ajKv-yroy9mqE2YS3Hw1KBdKoxBPg8aPTZEs,1164
1454
1460
  mteb/models/model_implementations/align_models.py,sha256=DUdVWxETiwC2IrXI90zQwlvHMjeI7JJCNOmFVd2RNws,4518
1455
1461
  mteb/models/model_implementations/amazon_models.py,sha256=pdRU2QGAB5ccQnAfbRSzHE1G3ZUdjvsAgeJwkB_olDQ,694
1456
- mteb/models/model_implementations/andersborges.py,sha256=QUFpASdcCy-IMz2O2C3OAOhMWA2ksNHM4GFWlkELIT4,1879
1462
+ mteb/models/model_implementations/andersborges.py,sha256=1FVmRpdfnuQ7_vzO7WITk2MASMmlcFuXgUONO78IFLs,2361
1457
1463
  mteb/models/model_implementations/ara_models.py,sha256=zS0t9rI21wwEwTlrlX94GqkmPKLnb8ktUaAOY-ZLmw0,1421
1458
1464
  mteb/models/model_implementations/arctic_models.py,sha256=eaMRaN9WdpVq1W6cbtNcJMdrJUTXrTSYUjTJufCdZRY,10350
1459
1465
  mteb/models/model_implementations/b1ade_models.py,sha256=aEKmXWVX8iJ_OotAYPOMxsOHTDEOJYdSwkR6iJsZ-ms,1609
1460
1466
  mteb/models/model_implementations/bedrock_models.py,sha256=RWN25Es4Nb6eIMiZlFHWNAnftKMVBumM2kozpO7Kh50,8709
1461
- mteb/models/model_implementations/bge_models.py,sha256=LL_JnXsjGPnzzxby05Z0Jm3v6-v76nCB-yI36H9fKwo,22386
1467
+ mteb/models/model_implementations/bge_models.py,sha256=9x0cA1Kih9zScHreboFh2MVPnD_jhCxSp1rh5PV9_lk,24086
1468
+ mteb/models/model_implementations/bica_model.py,sha256=vNO6FiqOhAwUky-_Suq3ZpeJ8GVIsd6-uIU6-Y-wFy8,1227
1462
1469
  mteb/models/model_implementations/blip2_models.py,sha256=hBdilqIIFkILmGoSl6GjT5gpFVxArp3xL3JEcWfJ1KU,7635
1463
1470
  mteb/models/model_implementations/blip_models.py,sha256=n_XRcymbYL2Rx8AFl96OpGQcWvfzrvFQxKvFl4swzA4,11516
1464
1471
  mteb/models/model_implementations/bm25.py,sha256=orjdCPWRdeAskQ3zJEzuNMyEks6WW1qv4mGfw8Ih51Q,4836
@@ -1475,23 +1482,23 @@ mteb/models/model_implementations/colpali_models.py,sha256=l-0A3J5rt1bhhTKFPQ3Ti
1475
1482
  mteb/models/model_implementations/colqwen_models.py,sha256=wxR3sqyzObuXMlm1QLoFopJK3ZpQTzd3ZB5IrkzPfZk,15553
1476
1483
  mteb/models/model_implementations/colsmol_models.py,sha256=O2M7Ksydh94M_Iax4KytHb-wOL18N0BIYLKSsLF8BFs,2967
1477
1484
  mteb/models/model_implementations/conan_models.py,sha256=G-s7xo9VtNX-f7lWKtYVGHHiMMN0Xp44PlNIp7E0LAo,6502
1478
- mteb/models/model_implementations/dino_models.py,sha256=QFgaFHR5YKrylqJGSljXCBn2W7qHhmF6KdXkvHrQNEI,16380
1485
+ mteb/models/model_implementations/dino_models.py,sha256=SFGXFZsI0ziCehNVfDn0CmQ5Uc_QDqP6jw8-jgIqDYU,25018
1479
1486
  mteb/models/model_implementations/e5_instruct.py,sha256=9R4GoSFicgqNDCh3HhTN_8L1qhzuEKvatjHYn3T9zlU,7676
1480
1487
  mteb/models/model_implementations/e5_models.py,sha256=ZLRgzx2uEBc_yWY6DwcJFUNKG6RHpWSEVp1_jaEURhs,9373
1481
1488
  mteb/models/model_implementations/e5_v.py,sha256=_9W7I0ryIzx_H9eCkzwdm8iHdGX1LIjKGXkhSh_zNv8,6690
1482
1489
  mteb/models/model_implementations/eagerworks_models.py,sha256=NOQkCUqn9jLSpf9p6KyaIHnJxYV1MNlr2z7hO2AcRSc,5744
1483
- mteb/models/model_implementations/emillykkejensen_models.py,sha256=QdhGqCm_1-AURkrniZj2S1MjwwIVOPMzLvpgfJq-3EQ,2779
1490
+ mteb/models/model_implementations/emillykkejensen_models.py,sha256=qNrKLu7NDFCRW1YTAoS-aHjjfx6UIHATlydepitaCog,3665
1484
1491
  mteb/models/model_implementations/en_code_retriever.py,sha256=leZ-0M6LrunocY3XQBYZU1uevDRopeyR5ujIhwqBbd8,1043
1485
- mteb/models/model_implementations/euler_models.py,sha256=fZoXYeDjSRN2Qj1Pf-ROi8xok03PjhYi4FLEZKjMPkk,905
1492
+ mteb/models/model_implementations/euler_models.py,sha256=EfxegMwatdeQ4Qhq5aGRnZTSu2AVc0g51ikSu9sPNXs,1106
1486
1493
  mteb/models/model_implementations/evaclip_models.py,sha256=cPMGYLDIq4s8zJxb4vPXqJ-rqwPaq7KOh2QZSO6cDas,8000
1487
- mteb/models/model_implementations/fa_models.py,sha256=WGal70_ezITWoNdjcMdbOCTSCtoaXzuPadYstLVXxhg,7478
1488
- mteb/models/model_implementations/facebookai.py,sha256=uhE6rB1YgxE0SIc7u8heE1U62qRFFA23IMgpjxBq_Ok,3116
1494
+ mteb/models/model_implementations/fa_models.py,sha256=BoFk99qwsX-PqedV6-8PK7AZQbJQaB8Eaf8o75dJwqI,9610
1495
+ mteb/models/model_implementations/facebookai.py,sha256=pJ4OTTQT1ggLiVmOGfp8IMQatyTsTWmrFFsDQUpN9h4,4834
1489
1496
  mteb/models/model_implementations/geogpt_models.py,sha256=Juv86SwhgQX80lVLjAFtim2aSiJT1AcgjniyyiKyk1Q,1923
1490
1497
  mteb/models/model_implementations/gme_v_models.py,sha256=GEu1wl5q77RMM3BwtKMjkMwm38KX_r0qWxD_IEMVC2U,13657
1491
- mteb/models/model_implementations/google_models.py,sha256=7QfsaJ5JNDRQxFl7Zh2AtiR2PR7PZcfeCBgviuOFBCo,9130
1498
+ mteb/models/model_implementations/google_models.py,sha256=d6hZ-yWY-yZnQsXDVbdtBb_xqwYAkdeeAnsEMaqqGXI,11013
1492
1499
  mteb/models/model_implementations/granite_vision_embedding_models.py,sha256=cvG5NliPwDVMvGuJTo8rk5yL3m6cuJZ_fMLEc0ESNfc,7315
1493
1500
  mteb/models/model_implementations/gritlm_models.py,sha256=aS_CuioL95JAQMYiaKlGuAWU9wZjabn268Xut3bD8-w,3005
1494
- mteb/models/model_implementations/gte_models.py,sha256=o26Xyu_tucUlP435Q_jB4-bl0xckgj4wtbutTwhYgIo,10073
1501
+ mteb/models/model_implementations/gte_models.py,sha256=G7nbR-ItIEUZdwAxlMJIX9tlXAfnaVBCQ84F75WjspQ,13661
1495
1502
  mteb/models/model_implementations/hinvec_models.py,sha256=I_d_dSNVaGIwMIwyvTlaPAzGMpwh_PzvsfE4y47GFyg,1575
1496
1503
  mteb/models/model_implementations/human.py,sha256=klMpuMAtYH92EIEwNMEhne_Baf9fNiTg1DNWYD11P44,532
1497
1504
  mteb/models/model_implementations/ibm_granite_models.py,sha256=YCT0jbgawy19ps5l8QlxpQoJLjq8Nh-3R-e6yxS0DRM,7902
@@ -1499,11 +1506,11 @@ mteb/models/model_implementations/inf_models.py,sha256=lvXUFhAYDltq2_Xa9MHcwfhh1
1499
1506
  mteb/models/model_implementations/jasper_models.py,sha256=onX_ipI-UZbaZrjcHpZtk34tpy6DcT6Yvq6X3RMSmYA,16211
1500
1507
  mteb/models/model_implementations/jina_clip.py,sha256=CfiIxbhKspjQajNtObCfGPHOWPk6uLn4cuwydQHFTMo,5118
1501
1508
  mteb/models/model_implementations/jina_models.py,sha256=1bkGwIaRNIun2ghkWb4FG-7js4lJ39s97Q9KAW3wkXo,34858
1502
- mteb/models/model_implementations/kalm_models.py,sha256=FmW7Z5Qs6WYBLuKvql3u4IJW36kj4k-Ypah8qTBEBkg,59837
1503
- mteb/models/model_implementations/kblab.py,sha256=DDh8gDEI6YPjS4_yGYWC4HatE0mFf7vhGDU83zzV7V0,866
1509
+ mteb/models/model_implementations/kalm_models.py,sha256=po9RdIr2zgHrE3BwgKq0uoOqrQzWkUUUecR6JgCohWk,61959
1510
+ mteb/models/model_implementations/kblab.py,sha256=pDA-OUgBAQ2C4jGbNXoBY0RQFTyM72kt2F9yN_IZT0I,1135
1504
1511
  mteb/models/model_implementations/kennethenevoldsen_models.py,sha256=DF-9nmsewYO9ikZ0kV81ujKGr7Ot36-9iPoxN7KX2mY,2993
1505
1512
  mteb/models/model_implementations/kfst.py,sha256=BQj0fxMJwyA6NOdK26NDYVL3z2PW1_F-lTTVImxEWZQ,892
1506
- mteb/models/model_implementations/kowshik24_models.py,sha256=HoQpybjhquK2XSnawlq0aiSWFI5M7l6N4DNY4MQ-P10,976
1513
+ mteb/models/model_implementations/kowshik24_models.py,sha256=_gIJdiseyEni0Z-rOLCzVfeS4wtZZb9CCTkl-9nVH-E,1419
1507
1514
  mteb/models/model_implementations/lens_models.py,sha256=fC7_NB1F8vBAlXD0p0-hALf6eZTPFJwpz57dy71OlwI,1696
1508
1515
  mteb/models/model_implementations/lgai_embedding_models.py,sha256=S83pbfkMH3YUNl4skusgbK-Rn-uLuScQVxgXwegR_N4,2333
1509
1516
  mteb/models/model_implementations/linq_models.py,sha256=EtvUyiNbjU-GJd1kS0Z0gBACkP2pFOjk0KfGMZz4K9Y,1872
@@ -1512,15 +1519,16 @@ mteb/models/model_implementations/llm2clip_models.py,sha256=_sqAOb5oSbxn1oaXjWwP
1512
1519
  mteb/models/model_implementations/llm2vec_models.py,sha256=Og_EqnOXgIfaTcVTl3Lj5BicG83ycnXS_YHNtK63I-A,12638
1513
1520
  mteb/models/model_implementations/mcinext_models.py,sha256=W9MBQFqGTXVa52WDFFq1Pdat2TgRvluOcD6JVAupn28,18968
1514
1521
  mteb/models/model_implementations/mdbr_models.py,sha256=B7R3dVEH9EZ_fSZ05VveSbmTyO3Erh7iJ2WmMn52d-4,2509
1515
- mteb/models/model_implementations/misc_models.py,sha256=bgKOuXJC8cVQmVRXEfIBlgzxDRb9nzOCsHdJ1kM8Z2Q,56691
1522
+ mteb/models/model_implementations/misc_models.py,sha256=X0MvBQn2pRk7IT-jD3fYoja26at61FanjBtroaAg3Zc,69116
1516
1523
  mteb/models/model_implementations/mme5_models.py,sha256=cRRXecC8EHeLQiEd1nfCb1vt75x_CnG1s_9lYRrtyTA,1484
1517
1524
  mteb/models/model_implementations/moco_models.py,sha256=Kl0nBsqkG3crYoo5YulFq1fv97U0-IBWVFHN0UuO0lg,5483
1525
+ mteb/models/model_implementations/mod_models.py,sha256=vCTnzJE9O1ZTaSRNGxn5jWIlpLeRev7L-4E_FVz6_3Q,6226
1518
1526
  mteb/models/model_implementations/model2vec_models.py,sha256=D-EY-6P-cKKunbgzk4DHzJL1ogpWYFhpHbTLb8qQjJw,13765
1519
1527
  mteb/models/model_implementations/moka_models.py,sha256=Y5do7Z4JyGxabYrjHhkBLqCKTQKotniS-f4kOgXJjag,4995
1520
- mteb/models/model_implementations/mxbai_models.py,sha256=33ta2BnhvKYBUgE89wFgPNf-CnOb7ooumZvqHOvbZsA,3593
1528
+ mteb/models/model_implementations/mxbai_models.py,sha256=KJXfUVW8e6LJEq3EO-Zy-pu6-9e-Q0mjP6_W7GP6QoI,3851
1521
1529
  mteb/models/model_implementations/nbailab.py,sha256=bqqR0qs10IH2g5HC6K962tDMBciw8qFsNVHADNS72jk,2396
1522
1530
  mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=6i-xbLRRNKuDpU-hwklwdQjgu1wnz5CecLSoc6kyd7Q,3976
1523
- mteb/models/model_implementations/nomic_models.py,sha256=mT-v5Gs5-sRH8-ziCw_CtxB9ox3C6FtwWJjNghNrunw,11334
1531
+ mteb/models/model_implementations/nomic_models.py,sha256=WmSX6YyYaG5EG9M3OX-tTgdznFVJanfVAxRKJ-vNXF0,14736
1524
1532
  mteb/models/model_implementations/nomic_models_vision.py,sha256=6aca0XVLXnkGk6GW8jVCIbbjPGq98lKq4c9Az4jbEkE,6805
1525
1533
  mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=OEhVrvA-zfX2PSm76VcCDPkRyAArSFkVeweyLyzpqPI,6255
1526
1534
  mteb/models/model_implementations/nvidia_models.py,sha256=acVverAt77lURkILCVkCdXsWgY1BJoG1-ugB7yIhlIM,21555
@@ -1532,7 +1540,7 @@ mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py,
1532
1540
  mteb/models/model_implementations/pawan_models.py,sha256=rV2ePGIuYroocvwqDXm4VU369Y_Vr67CyAE-08K5B9c,1151
1533
1541
  mteb/models/model_implementations/piccolo_models.py,sha256=d8Dtkv_ZTUOCmJLLOuwquq-gX-2UfKvAtl_LvAS0Xi0,2113
1534
1542
  mteb/models/model_implementations/promptriever_models.py,sha256=S7uWes_P74p3OZR_KBJHJN_ezlvvRx2__46DMCWqV5M,6328
1535
- mteb/models/model_implementations/pylate_models.py,sha256=oNoPndZuiJahSd-ikR4dE4vL9261btXYiJbF3bk3Dco,14546
1543
+ mteb/models/model_implementations/pylate_models.py,sha256=VRLcjNTtoLLV-E_Oa-F6KkS0h-oSASvjGq6iKSWZgZs,16715
1536
1544
  mteb/models/model_implementations/qodo_models.py,sha256=JDqffDlQiOEariyheybOIf3iNkqot2gTkEIHWDnRbUE,2037
1537
1545
  mteb/models/model_implementations/qtack_models.py,sha256=biZLH5E3UWIcMZXIZNGgBZFEUvovPpAo6vUyL776W1w,1224
1538
1546
  mteb/models/model_implementations/qwen3_models.py,sha256=F_o6ciD-6gLFfIlQYD9MsNvcbkmGzJ39eKpFlEog1rM,5132
@@ -1544,7 +1552,7 @@ mteb/models/model_implementations/repllama_models.py,sha256=89HoqEpzkNysHeuf_-Yh
1544
1552
  mteb/models/model_implementations/rerankers_custom.py,sha256=ro73A9-hHudy3_qIMrhP-ja-3Xqu78r_aORm856zHQc,10651
1545
1553
  mteb/models/model_implementations/rerankers_monot5_based.py,sha256=rxVwzapNnHl4gCw79XVCaTXj3-wbToyj7XVL97tpAF4,34302
1546
1554
  mteb/models/model_implementations/richinfoai_models.py,sha256=llvYa0JUjyOOMbuTgOYoJ2qeqZ5rLHX1ZjZIYlYbdvA,989
1547
- mteb/models/model_implementations/ru_sentence_models.py,sha256=GuZFwbzaooufvSMGNjIsL0DDLrqHjhdSsAQHHZo5H08,40480
1555
+ mteb/models/model_implementations/ru_sentence_models.py,sha256=mh5TPy0EZVGioiXizrz-W_ssrlLZ2Q7HCbGZ-6TYszE,41238
1548
1556
  mteb/models/model_implementations/ruri_models.py,sha256=-BTYkZ8dEWZUbGqx3YB5yFSrzMwZtXX7sMUHzrlB8ws,10043
1549
1557
  mteb/models/model_implementations/salesforce_models.py,sha256=KslTK-IKeLvNG-vQir9k6swkaOgjk6eyozm_BOVgTpY,5160
1550
1558
  mteb/models/model_implementations/samilpwc_models.py,sha256=oMwKNwCxoH1jZgCy04oo2oVlBZWu253QMpnEEC6emz8,2021
@@ -1552,18 +1560,18 @@ mteb/models/model_implementations/sarashina_embedding_models.py,sha256=TSmr2FEX7
1552
1560
  mteb/models/model_implementations/searchmap_models.py,sha256=XvVl99emIgnNUCxkTuFQXW6py2R8vgsArfpyHveCugw,1904
1553
1561
  mteb/models/model_implementations/seed_1_6_embedding_models.py,sha256=Q8JTW2fjePR9dq4spuwK2lyVeL3mn1bl-H5wkQuEV_E,18609
1554
1562
  mteb/models/model_implementations/seed_models.py,sha256=SgK4kPVO6V33G3F1zSq06zSkWarPLEwBt1SWp4TUoVw,14142
1555
- mteb/models/model_implementations/sentence_transformers_models.py,sha256=EtEaXg1yFFp3DQEOxu6am8bcVQR-ypcHj6DCqJGHOVU,21160
1563
+ mteb/models/model_implementations/sentence_transformers_models.py,sha256=J0uFt6cFkHohTNtFJe3Ne1weNndYVVinSGFBKYlolt8,22784
1556
1564
  mteb/models/model_implementations/shuu_model.py,sha256=KkcuVYjIzoha3Fvxh8ppqHQ9BfNMWeqDqn9dGCRKUjg,1167
1557
1565
  mteb/models/model_implementations/siglip_models.py,sha256=tvi8QB2ayBoeXsxwHrl5RFlkknvE6FM9N06zSBWGQD0,12602
1558
1566
  mteb/models/model_implementations/sonar_models.py,sha256=Nc6kAJRWSrxA57DPRrgOPHqS1dNhz2vsE_1ZA2JtigQ,4784
1559
- mteb/models/model_implementations/spartan8806_atles_champion.py,sha256=9sWQH7tOT0uxXA7sbQcnqGt2f5O9xcw9HqFpRCzoQAA,918
1567
+ mteb/models/model_implementations/spartan8806_atles_champion.py,sha256=yTwZPWg2pj7WSDecKFO-pV9ykXkebXoPiR3JORavCIQ,1213
1560
1568
  mteb/models/model_implementations/stella_models.py,sha256=NL3tk-rnuBdznsQ-nmelqun4tFO2xKoNPPOOVKqnPGU,8062
1561
1569
  mteb/models/model_implementations/tarka_models.py,sha256=UwSb3e-k7dCgQAJv3176ZvKpkjLZfpdPzwf-b0Oxuuo,27345
1562
1570
  mteb/models/model_implementations/text2vec_models.py,sha256=zaHWRc2W0RYZAOetinqRzug9UGW0HmY5U-jYsLXA8wo,4160
1563
- mteb/models/model_implementations/ua_sentence_models.py,sha256=fcvXR4-Rrt-UDTlDkh2ZAO1gO_ufCOHiT6EhoeKiHx8,1224
1571
+ mteb/models/model_implementations/ua_sentence_models.py,sha256=SNaTaRcRLFn9SO0TECkqqqu-IXO9tWhBduN-i92y3W4,1667
1564
1572
  mteb/models/model_implementations/uae_models.py,sha256=KZxH5a3t-sfh33xUBkLizEuyFAyPlGfnRsn-S7mjq74,3112
1565
1573
  mteb/models/model_implementations/vdr_models.py,sha256=nz8yZLRJc3RDMFWxXf1mb8bPD8c__IQDJMwHxKgJXkA,1422
1566
- mteb/models/model_implementations/vi_vn_models.py,sha256=quWmd3JT2J6SlAsFrV2gcnc67M9zr58mEF2zLUF8-uw,4795
1574
+ mteb/models/model_implementations/vi_vn_models.py,sha256=adATWIhwImbajHqM8zpgrZbNwo-4VEZNehejBEpx4zg,6042
1567
1575
  mteb/models/model_implementations/vista_models.py,sha256=Q3I01kRtIPaoke0iMIcH4CLcCDTnMSIBFNCof7LPTX4,10832
1568
1576
  mteb/models/model_implementations/vlm2vec_models.py,sha256=HGGy_-z9Wc99xOKum71rBNipCPqWcM1efmmXgy5Rvxc,11724
1569
1577
  mteb/models/model_implementations/voyage_models.py,sha256=dOCccOQlloGrg0q44PxMQzx8dHuQ8VgkDUD01EydpJ0,19824
@@ -2120,9 +2128,11 @@ mteb/tasks/reranking/eng/web_linx_candidates_reranking.py,sha256=dGRRkf8GaPIAZAO
2120
2128
  mteb/tasks/reranking/fra/__init__.py,sha256=YhiXArWFZr_zxXFdKas0xkwxKrU45EbssiYF9c3D9FQ,148
2121
2129
  mteb/tasks/reranking/fra/alloprof_reranking.py,sha256=Evsf0YG2pJveP9qrXdJkRqNkfhGrKtXxGTEYfvk2bzU,1784
2122
2130
  mteb/tasks/reranking/fra/syntec_reranking.py,sha256=YqB1OPrcMDbfHEOrkCFd8W_Ve7Fm5b5ezY3FdT82Gd4,1290
2123
- mteb/tasks/reranking/jpn/__init__.py,sha256=RVT3hq_nzutfDCrI3c95oHWkQ2y1VS4XPRjX9CQ-AP0,220
2131
+ mteb/tasks/reranking/jpn/__init__.py,sha256=DBVF5VoKwnxZ0vcGaUEfrZUFz4zJjE9dG8L31Gv3Xg8,399
2124
2132
  mteb/tasks/reranking/jpn/j_qa_ra_reranking.py,sha256=8AhdHQSOzf0WgGCOXNhjG77RZjTtxMHrc1oBY38b13I,1648
2133
+ mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py,sha256=RlX6Q4ie07UCAIlxhVmFqUTgSTt3a_H1edvMvXzw-Zk,1948
2125
2134
  mteb/tasks/reranking/jpn/ja_cwir_reranking.py,sha256=Us06popt1VSS5zoUUWfg52oTaX3F-6uUmCFYNIcs4i8,1630
2135
+ mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py,sha256=H9Y0u1O5icnnNJZnAFdMtVhEIS4VmYhkb4ctfFK9ULY,1904
2126
2136
  mteb/tasks/reranking/jpn/m_marco_reranking.py,sha256=T0kJC1u7OPem1Lg68czKzFb99C6dVpm115T8cg2vdAc,1392
2127
2137
  mteb/tasks/reranking/multilingual/__init__.py,sha256=xM-ZicCKPBtpfqkoeMGlhn76vLFOe49B1x27et42uQw,556
2128
2138
  mteb/tasks/reranking/multilingual/esci_reranking.py,sha256=opEtarEw8JhcqVhIZ2wQoFP0FFhXhKYXCsubFqM5BX0,1439
@@ -2156,7 +2166,7 @@ mteb/tasks/retrieval/code/code_trans_ocean_dl_retrieval.py,sha256=WrcLbhtJkGqWcs
2156
2166
  mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py,sha256=HkRZbMlBa9jhRX7mil7zKAnT7yQna2yYH1UyAJE51EY,3785
2157
2167
  mteb/tasks/retrieval/code/cos_qa_retrieval.py,sha256=CYWty69H3aJQi3FHz-Qqj_O2usb19kH7Ct0nAcWNzlQ,1469
2158
2168
  mteb/tasks/retrieval/code/ds1000_retrieval.py,sha256=irbW7IN3a8NNkxSnWowBmlnilV7QRCbHp0fruRW8_Ic,3398
2159
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py,sha256=th9gLiRICULGi4HGzjg2enw0ZkOhEYQpG5HruEk8hFw,3300
2169
+ mteb/tasks/retrieval/code/fresh_stack_retrieval.py,sha256=uoWHouYaDMbatauYFshabr7vH9jdiF8uraUcM5l0m9Q,3505
2160
2170
  mteb/tasks/retrieval/code/human_eval_retrieval.py,sha256=FagmoGdAjyh9hdIUxqjUbE-6QkSfvZTJ47oGQ3Vo_GE,4325
2161
2171
  mteb/tasks/retrieval/code/japanese_code1_retrieval.py,sha256=-FBDBmx2h4iYUv7b-jgwBXmHq7HguGpC6Uvc1fzbyb4,1133
2162
2172
  mteb/tasks/retrieval/code/mbpp_retrieval.py,sha256=EgNOypt5bfgy_-q2a4Sz-3x5CB9S2KGP_qxrWs6td5s,3350
@@ -2343,12 +2353,16 @@ mteb/tasks/retrieval/fra/french_legal1_retrieval.py,sha256=yq4avXuouedGq8y8WP4os
2343
2353
  mteb/tasks/retrieval/fra/syntec_retrieval.py,sha256=SZOm-z5OruxEG47zMYjApJoR2oWiHKsK5Vum41Z5hWU,2305
2344
2354
  mteb/tasks/retrieval/hun/__init__.py,sha256=M59LTpENxaFLMSU43mNiP38lChJ_l_yZh__1giKeUDc,93
2345
2355
  mteb/tasks/retrieval/hun/hun_sum2.py,sha256=td6lxYg_eH9J62sNNuFonHIJ_22E-XGgiFN-D3iAbFw,2373
2346
- mteb/tasks/retrieval/jpn/__init__.py,sha256=FJifPwzk9niyN16RyVr7aPr2T6K0GXSoASotX1PddeA,1175
2356
+ mteb/tasks/retrieval/jpn/__init__.py,sha256=1UA6fWOyaMieDBZxH9asudh9QLl20DW5alOGIdKDMAs,1519
2347
2357
  mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py,sha256=x3rNQwi73WfpkYdGBwt24QccIWJRK_Zj9z16MUMyI3I,1603
2358
+ mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py,sha256=KXg08E250H_ueW3g8BYB-4elBaSAHt90eL4p8nDTIFo,1894
2348
2359
  mteb/tasks/retrieval/jpn/ja_gov_faqs_retrieval.py,sha256=_9zsw9QS53NFp2EiCw3BKQdfk57agHxkSfpzKNqdJXE,1170
2349
2360
  mteb/tasks/retrieval/jpn/ja_qu_ad_retrieval.py,sha256=qc89t-uJqzk37sTRKlSxenYOSq4Qy2E-H_namSBeGN0,1312
2350
2361
  mteb/tasks/retrieval/jpn/japanese_legal1_retrieval.py,sha256=drUYO9QMSWgxvYWxL5QBdYPZ35HNwCF2d0ju1yQlZrI,1121
2351
2362
  mteb/tasks/retrieval/jpn/jaqket_retrieval.py,sha256=dfSNx2QJ3bj5QZOHbGnInOxTlVXkgsFvYfMnmgU8PkE,1438
2363
+ mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py,sha256=HfSu6E_blhZxwzdprrA8r__vnNDur8IDMK6Kpa52XCw,2000
2364
+ mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py,sha256=uce4rZcmbyMq8q6K2UevKhW93wJzg5WGU-aTOgdzvUQ,2061
2365
+ mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py,sha256=PHc3W8ftiDNhUCs8rfPDu6IYs8EzX6gp7OkXtfeFAKs,1819
2352
2366
  mteb/tasks/retrieval/jpn/nlp_journal_abs_article_retrieval.py,sha256=PyxSS9tab2drIQI6yEMUy4BxaoRGYNo8XySjp_xHkE8,3150
2353
2367
  mteb/tasks/retrieval/jpn/nlp_journal_abs_intro_retrieval.py,sha256=EEOQpTC6vEPULzC5_xDCt7r5LIL0K1zlExeqOC-G-E4,3068
2354
2368
  mteb/tasks/retrieval/jpn/nlp_journal_title_abs_retrieval.py,sha256=JOOW_5pRKHzVn8wTOY0fhxLJ6Ns7wlQHoGHGIYVovAQ,3056
@@ -2582,9 +2596,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2582
2596
  mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
2583
2597
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2584
2598
  mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
2585
- mteb-2.3.11.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2586
- mteb-2.3.11.dist-info/METADATA,sha256=zK0XHgO0btF1XS2eXGROlNeh8jCSj6dQV4NAT3N_Hn8,13991
2587
- mteb-2.3.11.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2588
- mteb-2.3.11.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2589
- mteb-2.3.11.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2590
- mteb-2.3.11.dist-info/RECORD,,
2599
+ mteb-2.4.2.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2600
+ mteb-2.4.2.dist-info/METADATA,sha256=T97AMDRmjR29KLQHND4FxM_JMQE15o5sH3WgYV3QtrI,13990
2601
+ mteb-2.4.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2602
+ mteb-2.4.2.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2603
+ mteb-2.4.2.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2604
+ mteb-2.4.2.dist-info/RECORD,,
File without changes