mteb 2.3.11__py3-none-any.whl → 2.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +57 -0
- mteb/deprecated_evaluator.py +8 -13
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/evaluate.py +2 -33
- mteb/leaderboard/figures.py +1 -1
- mteb/leaderboard/table.py +1 -11
- mteb/models/abs_encoder.py +21 -17
- mteb/models/get_model_meta.py +3 -123
- mteb/models/instruct_wrapper.py +2 -1
- mteb/models/model_implementations/bica_model.py +34 -0
- mteb/models/model_implementations/google_models.py +10 -0
- mteb/models/model_implementations/mod_models.py +204 -0
- mteb/models/model_implementations/nomic_models.py +142 -4
- mteb/models/model_meta.py +396 -19
- mteb/models/sentence_transformer_wrapper.py +2 -7
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- {mteb-2.3.11.dist-info → mteb-2.4.1.dist-info}/METADATA +1 -1
- {mteb-2.3.11.dist-info → mteb-2.4.1.dist-info}/RECORD +36 -22
- {mteb-2.3.11.dist-info → mteb-2.4.1.dist-info}/WHEEL +0 -0
- {mteb-2.3.11.dist-info → mteb-2.4.1.dist-info}/entry_points.txt +0 -0
- {mteb-2.3.11.dist-info → mteb-2.4.1.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.3.11.dist-info → mteb-2.4.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class JaCWIRRetrievalLite(AbsTaskRetrieval):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="JaCWIRRetrievalLite",
|
|
8
|
+
dataset={
|
|
9
|
+
"path": "mteb/JaCWIRRetrievalLite",
|
|
10
|
+
"revision": "79472b360242cf2692e24a6d9999ef50d350d672",
|
|
11
|
+
},
|
|
12
|
+
description=(
|
|
13
|
+
"JaCWIR (Japanese Casual Web IR) is a dataset consisting of questions and webpage meta descriptions "
|
|
14
|
+
"collected from Hatena Bookmark. This is the lightweight version with a reduced corpus "
|
|
15
|
+
"(302,638 documents) constructed using hard negatives from 5 high-performance models."
|
|
16
|
+
),
|
|
17
|
+
reference="https://huggingface.co/datasets/hotchpotch/JaCWIR",
|
|
18
|
+
type="Retrieval",
|
|
19
|
+
category="t2t",
|
|
20
|
+
modalities=["text"],
|
|
21
|
+
eval_splits=["test"],
|
|
22
|
+
eval_langs=["jpn-Jpan"],
|
|
23
|
+
main_score="ndcg_at_10",
|
|
24
|
+
date=("2020-01-01", "2025-01-01"),
|
|
25
|
+
domains=["Web", "Written"],
|
|
26
|
+
task_subtypes=["Article retrieval"],
|
|
27
|
+
license="not specified",
|
|
28
|
+
annotations_creators="derived",
|
|
29
|
+
dialect=[],
|
|
30
|
+
sample_creation="found",
|
|
31
|
+
adapted_from=["JaCWIRRetrieval"],
|
|
32
|
+
bibtex_citation=r"""
|
|
33
|
+
@misc{jmteb_lite,
|
|
34
|
+
author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan and Fukuchi, Akihiko and Shibata, Tomohide
|
|
35
|
+
and Kawahara, Daisuke},
|
|
36
|
+
howpublished = {\url{https://huggingface.co/datasets/sbintuitions/JMTEB-lite}},
|
|
37
|
+
title = {{J}{M}{T}{E}{B}-lite: {T}he {L}ightweight {V}ersion of {JMTEB}},
|
|
38
|
+
year = {2025},
|
|
39
|
+
}
|
|
40
|
+
|
|
41
|
+
@misc{yuichi-tateno-2024-jacwir,
|
|
42
|
+
author = {Yuichi Tateno},
|
|
43
|
+
title = {JaCWIR: Japanese Casual Web IR - 日本語情報検索評価のための小規模でカジュアルなWebタイトルと概要のデータセット},
|
|
44
|
+
url = {https://huggingface.co/datasets/hotchpotch/JaCWIR},
|
|
45
|
+
}
|
|
46
|
+
""",
|
|
47
|
+
)
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class JaqketRetrievalLite(AbsTaskRetrieval):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="JaqketRetrievalLite",
|
|
8
|
+
dataset={
|
|
9
|
+
"path": "mteb/JaqketRetrievalLite",
|
|
10
|
+
"revision": "860965fbb6526dd8edff12627dacf07c8f5a54f3",
|
|
11
|
+
},
|
|
12
|
+
description=(
|
|
13
|
+
"JAQKET (JApanese Questions on Knowledge of EnTities) is a QA dataset created based on quiz questions. "
|
|
14
|
+
"This is the lightweight version with a reduced corpus (65,802 documents) constructed using "
|
|
15
|
+
"hard negatives from 5 high-performance models."
|
|
16
|
+
),
|
|
17
|
+
reference="https://github.com/kumapo/JAQKET-dataset",
|
|
18
|
+
type="Retrieval",
|
|
19
|
+
category="t2t",
|
|
20
|
+
modalities=["text"],
|
|
21
|
+
eval_splits=["test"],
|
|
22
|
+
eval_langs=["jpn-Jpan"],
|
|
23
|
+
main_score="ndcg_at_10",
|
|
24
|
+
date=("2023-10-09", "2025-01-01"),
|
|
25
|
+
domains=["Encyclopaedic", "Non-fiction", "Written"],
|
|
26
|
+
task_subtypes=["Question answering"],
|
|
27
|
+
license="cc-by-sa-4.0",
|
|
28
|
+
annotations_creators="human-annotated",
|
|
29
|
+
dialect=[],
|
|
30
|
+
sample_creation="found",
|
|
31
|
+
adapted_from=["JaqketRetrieval"],
|
|
32
|
+
bibtex_citation=r"""
|
|
33
|
+
@misc{jmteb_lite,
|
|
34
|
+
author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan and Fukuchi, Akihiko and Shibata, Tomohide
|
|
35
|
+
and Kawahara, Daisuke},
|
|
36
|
+
howpublished = {\url{https://huggingface.co/datasets/sbintuitions/JMTEB-lite}},
|
|
37
|
+
title = {{J}{M}{T}{E}{B}-lite: {T}he {L}ightweight {V}ersion of {JMTEB}},
|
|
38
|
+
year = {2025},
|
|
39
|
+
}
|
|
40
|
+
|
|
41
|
+
@inproceedings{Kurihara_nlp2020,
|
|
42
|
+
author = {鈴木正敏 and 鈴木潤 and 松田耕史 and ⻄田京介 and 井之上直也},
|
|
43
|
+
booktitle = {言語処理学会第26回年次大会},
|
|
44
|
+
note = {in Japanese},
|
|
45
|
+
title = {JAQKET: クイズを題材にした日本語 QA データセットの構築},
|
|
46
|
+
url = {https://www.anlp.jp/proceedings/annual_meeting/2020/pdf_dir/P2-24.pdf},
|
|
47
|
+
year = {2020},
|
|
48
|
+
}
|
|
49
|
+
""",
|
|
50
|
+
)
|
|
@@ -0,0 +1,52 @@
|
|
|
1
|
+
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class MIRACLJaRetrievalLite(AbsTaskRetrieval):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="MIRACLJaRetrievalLite",
|
|
8
|
+
dataset={
|
|
9
|
+
"path": "mteb/MIRACLJaRetrievalLite",
|
|
10
|
+
"revision": "575c225da29d1f5fec01082afa56f35df0f44295",
|
|
11
|
+
},
|
|
12
|
+
description=(
|
|
13
|
+
"MIRACL (Multilingual Information Retrieval Across a Continuum of Languages) is a multilingual "
|
|
14
|
+
"retrieval dataset. This is the lightweight Japanese version with a reduced corpus (105,064 documents) "
|
|
15
|
+
"constructed using hard negatives from 5 high-performance models."
|
|
16
|
+
),
|
|
17
|
+
reference="https://project-miracl.github.io/",
|
|
18
|
+
type="Retrieval",
|
|
19
|
+
category="t2t",
|
|
20
|
+
modalities=["text"],
|
|
21
|
+
eval_splits=["test"],
|
|
22
|
+
eval_langs=["jpn-Jpan"],
|
|
23
|
+
main_score="ndcg_at_10",
|
|
24
|
+
date=("2022-06-01", "2025-01-01"),
|
|
25
|
+
domains=["Encyclopaedic", "Written"],
|
|
26
|
+
task_subtypes=[],
|
|
27
|
+
license="apache-2.0",
|
|
28
|
+
annotations_creators="expert-annotated",
|
|
29
|
+
dialect=[],
|
|
30
|
+
sample_creation="created",
|
|
31
|
+
adapted_from=["MIRACLRetrieval"],
|
|
32
|
+
bibtex_citation=r"""
|
|
33
|
+
@article{10.1162/tacl_a_00595,
|
|
34
|
+
author = {Zhang, Xinyu and Thakur, Nandan and Ogundepo, Odunayo and Kamalloo, Ehsan and Alfonso-Hermelo, David
|
|
35
|
+
and Li, Xiaoguang and Liu, Qun and Rezagholizadeh, Mehdi and Lin, Jimmy},
|
|
36
|
+
doi = {10.1162/tacl_a_00595},
|
|
37
|
+
journal = {Transactions of the Association for Computational Linguistics},
|
|
38
|
+
pages = {1114-1131},
|
|
39
|
+
title = {{MIRACL: A Multilingual Retrieval Dataset Covering 18 Diverse Languages}},
|
|
40
|
+
volume = {11},
|
|
41
|
+
year = {2023},
|
|
42
|
+
}
|
|
43
|
+
|
|
44
|
+
@misc{jmteb_lite,
|
|
45
|
+
author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan and Fukuchi, Akihiko and Shibata, Tomohide
|
|
46
|
+
and Kawahara, Daisuke},
|
|
47
|
+
howpublished = {\url{https://huggingface.co/datasets/sbintuitions/JMTEB-lite}},
|
|
48
|
+
title = {{J}{M}{T}{E}{B}-lite: {T}he {L}ightweight {V}ersion of {JMTEB}},
|
|
49
|
+
year = {2025},
|
|
50
|
+
}
|
|
51
|
+
""",
|
|
52
|
+
)
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class MrTyDiJaRetrievalLite(AbsTaskRetrieval):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="MrTyDiJaRetrievalLite",
|
|
8
|
+
dataset={
|
|
9
|
+
"path": "mteb/MrTyDiJaRetrievalLite",
|
|
10
|
+
"revision": "b87e6ff25f4e32d1c97498a539ea8aad5fde3cb1",
|
|
11
|
+
},
|
|
12
|
+
description=(
|
|
13
|
+
"Mr.TyDi is a multilingual benchmark dataset built on TyDi for document retrieval tasks. "
|
|
14
|
+
"This is the lightweight Japanese version with a reduced corpus (93,382 documents) constructed using "
|
|
15
|
+
"hard negatives from 5 high-performance models."
|
|
16
|
+
),
|
|
17
|
+
reference="https://huggingface.co/datasets/castorini/mr-tydi",
|
|
18
|
+
type="Retrieval",
|
|
19
|
+
category="t2t",
|
|
20
|
+
modalities=["text"],
|
|
21
|
+
eval_splits=["test"],
|
|
22
|
+
eval_langs=["jpn-Jpan"],
|
|
23
|
+
main_score="ndcg_at_10",
|
|
24
|
+
date=("2021-01-01", "2025-01-01"),
|
|
25
|
+
domains=["Encyclopaedic", "Non-fiction", "Written"],
|
|
26
|
+
task_subtypes=["Question answering"],
|
|
27
|
+
license="apache-2.0",
|
|
28
|
+
annotations_creators="human-annotated",
|
|
29
|
+
dialect=[],
|
|
30
|
+
sample_creation="found",
|
|
31
|
+
adapted_from=["MrTidyRetrieval"],
|
|
32
|
+
bibtex_citation=r"""
|
|
33
|
+
@misc{jmteb_lite,
|
|
34
|
+
author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan and Fukuchi, Akihiko and Shibata, Tomohide
|
|
35
|
+
and Kawahara, Daisuke},
|
|
36
|
+
howpublished = {\url{https://huggingface.co/datasets/sbintuitions/JMTEB-lite}},
|
|
37
|
+
title = {{J}{M}{T}{E}{B}-lite: {T}he {L}ightweight {V}ersion of {JMTEB}},
|
|
38
|
+
year = {2025},
|
|
39
|
+
}
|
|
40
|
+
|
|
41
|
+
@article{mrtydi,
|
|
42
|
+
author = {Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
|
|
43
|
+
journal = {arXiv:2108.08787},
|
|
44
|
+
title = {{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
|
|
45
|
+
year = {2021},
|
|
46
|
+
}
|
|
47
|
+
""",
|
|
48
|
+
)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.
|
|
3
|
+
Version: 2.4.1
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -6,8 +6,8 @@ mteb/_log_once.py,sha256=-tUKzxGQzf2LZSuQXi97oYFXMta1B6GEYXd7BPqssvY,1095
|
|
|
6
6
|
mteb/_requires_package.py,sha256=eHg_TD9BVZRzNCcQQrUP17d8M1DF_vOd_tVx54AmAnM,3017
|
|
7
7
|
mteb/_set_seed.py,sha256=HPlPRl__Pe6IG-4UgJqTfplcivJ_wA2kaClbXoHQedM,1178
|
|
8
8
|
mteb/cache.py,sha256=XiFuhjZ2C-o0LgP1YM8g9As_vigJCUNfTrOb9-EiFlM,20177
|
|
9
|
-
mteb/deprecated_evaluator.py,sha256=
|
|
10
|
-
mteb/evaluate.py,sha256=
|
|
9
|
+
mteb/deprecated_evaluator.py,sha256=9cJIahJHNZphoqo6KZfp30LLhIdyiR3SSLcut4FR_Ek,26778
|
|
10
|
+
mteb/evaluate.py,sha256=IcaNu3VQwoeH7F1m8_7qJ6_lffHPujRcjKOBo4A7JBI,18631
|
|
11
11
|
mteb/filter_tasks.py,sha256=5XE1OYmgDDoJYnXwFf4ma_PIT_Lekzs420sQF_kpCiY,7240
|
|
12
12
|
mteb/get_tasks.py,sha256=6Gc18a2bZoLQV1Ms_qdr2KieAqIXg8TDg4l7ZN8rW2I,14218
|
|
13
13
|
mteb/load_results.py,sha256=Xw2ZX7BToU92WwUTQUQKPAgPhX7ucyRRdoCrxAoPHdI,6414
|
|
@@ -59,8 +59,8 @@ mteb/benchmarks/__init__.py,sha256=MQEVeli-zLaJ7Xg0z7RhXQwsdmm7Ht_W2Ln0rZo1Szc,2
|
|
|
59
59
|
mteb/benchmarks/_create_table.py,sha256=b2RqGqi0ZonKbHecEcZiF4pkfE96smFRIzxOI82ETA8,22304
|
|
60
60
|
mteb/benchmarks/benchmark.py,sha256=UEllUtZQ0L10SNnxRyKbiv4wLCMcNF2nUPhBDKY3nz8,5097
|
|
61
61
|
mteb/benchmarks/get_benchmark.py,sha256=-n_O-gitRKZi48gJKNgGuI36hsP7yLVSiwulnMHN7Gw,3935
|
|
62
|
-
mteb/benchmarks/benchmarks/__init__.py,sha256=
|
|
63
|
-
mteb/benchmarks/benchmarks/benchmarks.py,sha256=
|
|
62
|
+
mteb/benchmarks/benchmarks/__init__.py,sha256=73NYNv98q-tRCqf2YHabvElz_a8g_mF75HTup0J-E5E,2220
|
|
63
|
+
mteb/benchmarks/benchmarks/benchmarks.py,sha256=KuXEjB7-3S4b7sChJGmzt2z5iviujRxfqZx5kKNeQAc,97968
|
|
64
64
|
mteb/benchmarks/benchmarks/rteb_benchmarks.py,sha256=QnCSrTTaBfcRlAQp2Nu81tgv1idMXqiM16Fp2zKJ5Ys,10607
|
|
65
65
|
mteb/cli/__init__.py,sha256=v-csUr3eUZElIvrGB6QGtaIdndDfNWEe9oZchsGsJpg,64
|
|
66
66
|
mteb/cli/_display_tasks.py,sha256=7A06dT9sSoTz6shyMvskPxuc5eHY_H7PGPlROzMP0yw,2196
|
|
@@ -959,7 +959,9 @@ mteb/descriptive_stats/Reranking/HUMENews21InstructionReranking.json,sha256=8R-4
|
|
|
959
959
|
mteb/descriptive_stats/Reranking/HUMERobust04InstructionReranking.json,sha256=Wk9-8xNePKEImoy3UkRasid58gai-e6gIlkzO_VIjIc,1156
|
|
960
960
|
mteb/descriptive_stats/Reranking/HUMEWikipediaRerankingMultilingual.json,sha256=7HSs-XvtdORejbHXbBu6GjPSRPYnemI-r3aWIdauwUo,5448
|
|
961
961
|
mteb/descriptive_stats/Reranking/JQaRAReranking.json,sha256=jH5RuOb36a-gH_QNh0DZQpofpyoYGkjKQm9iFn7-VUM,1201
|
|
962
|
+
mteb/descriptive_stats/Reranking/JQaRARerankingLite.json,sha256=pQFLnAx3zUt1AzlpkQhvI-Hix9rr_3dQ0WEmdUPKL6o,1205
|
|
962
963
|
mteb/descriptive_stats/Reranking/JaCWIRReranking.json,sha256=N4djULyJD_lgJa8x-qoACiaL33hUjdLK02hqXv7Bv5M,1169
|
|
964
|
+
mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json,sha256=CC6F5QTDt5dwroOBvm6h2FObxeCHifraGAZTzwLnUcc,1175
|
|
963
965
|
mteb/descriptive_stats/Reranking/LocBenchRR.json,sha256=k3Jck8QfSBxrsDenSgT06T2CbTSs8SGH2Y_RBrDWiTs,1227
|
|
964
966
|
mteb/descriptive_stats/Reranking/MIRACLReranking.json,sha256=boUEIFlFgCUG40M2-mXuXkJluK2POQYuoJYMXPdatVQ,27457
|
|
965
967
|
mteb/descriptive_stats/Reranking/MMarcoReranking.json,sha256=XF75mWbGFkCCOxgvgy04PWgd7AiHBvCrBGPumK_gKIk,1173
|
|
@@ -1180,11 +1182,13 @@ mteb/descriptive_stats/Retrieval/HumanEvalRetrieval.json,sha256=aiW3AaImNrsEfUUp
|
|
|
1180
1182
|
mteb/descriptive_stats/Retrieval/HunSum2AbstractiveRetrieval.json,sha256=o3FOm7CJmMUGsdfOc8fC2yln3C69WOnG78K13tq90Q0,992
|
|
1181
1183
|
mteb/descriptive_stats/Retrieval/IndicQARetrieval.json,sha256=Ao6BLg1DeZG0QLGerXX8YlqtoqMqw--G2QvaP2-9wtA,14374
|
|
1182
1184
|
mteb/descriptive_stats/Retrieval/JaCWIRRetrieval.json,sha256=sJH2BuaFdoxHH0MSqxdE1DCYSyGslvAbrWaanMSqOUA,985
|
|
1185
|
+
mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json,sha256=67G5OL3dGxPgk_oAClj4IYFgo28Zf_GZ4OnMdRy044c,986
|
|
1183
1186
|
mteb/descriptive_stats/Retrieval/JaGovFaqsRetrieval.json,sha256=CfZmdZfVDZjMqnAcCmgIFKoNHhIENxh0KVPVQe_lDi0,987
|
|
1184
1187
|
mteb/descriptive_stats/Retrieval/JaQuADRetrieval.json,sha256=-IxLNwbqC0ZSICvLnICXcANdefo-YrE8GSjU5Ir_vsY,986
|
|
1185
1188
|
mteb/descriptive_stats/Retrieval/JapaneseCode1Retrieval.json,sha256=DkRoV776czj5-d2-ehjZDHDzQhDwA0WVnjuVjRG-h4w,998
|
|
1186
1189
|
mteb/descriptive_stats/Retrieval/JapaneseLegal1Retrieval.json,sha256=LMZQX5p24p3mGkwqIYbqzGU76_nSGCtRP9aMXjAIc9s,1012
|
|
1187
1190
|
mteb/descriptive_stats/Retrieval/JaqketRetrieval.json,sha256=LJ0tsK1pov8gtcmfHl7-X8jqi8fIr_tjIMUMEK9YlJ0,993
|
|
1191
|
+
mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json,sha256=78u8XUaxtWViVgE6TWQRhUljNKx_XJX14S9FQuWzCzM,991
|
|
1188
1192
|
mteb/descriptive_stats/Retrieval/Ko-StrategyQA.json,sha256=DRJ8rW7y58wIlm8dRHlEiYnrR03Fz-Q9P_Y7y3BOEaw,1001
|
|
1189
1193
|
mteb/descriptive_stats/Retrieval/LEMBNarrativeQARetrieval.json,sha256=bGyt0faJEvh2TILMC_2qmrCRG37utjOayw3ZpjDNX9Q,1001
|
|
1190
1194
|
mteb/descriptive_stats/Retrieval/LEMBNeedleRetrieval.json,sha256=f-PHx91WO4YC6q0SqfbMWsH3S1zfhnXYCJZ2kwnQ17M,7685
|
|
@@ -1203,6 +1207,7 @@ mteb/descriptive_stats/Retrieval/LegalSummarization.json,sha256=wOTo3a35f0hcHwfw
|
|
|
1203
1207
|
mteb/descriptive_stats/Retrieval/LitSearchRetrieval.json,sha256=ws1aeRMer8XyiuYjsBoSgafej46zkeEf3XidAViWbNM,1003
|
|
1204
1208
|
mteb/descriptive_stats/Retrieval/LoTTE.json,sha256=L4lPCphR0r3_xN4IXQklQdE5NsLo97LsNvRv79rz5ZE,27011
|
|
1205
1209
|
mteb/descriptive_stats/Retrieval/MBPPRetrieval.json,sha256=jfOr5rVx4304Icglrh-94dXNuGjnxPIqP7e5_v6WRLs,983
|
|
1210
|
+
mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json,sha256=rcXFC5tqA5KdU8J8mxCKqkpUMY_-qVEgKjCO7yuVZxU,1008
|
|
1206
1211
|
mteb/descriptive_stats/Retrieval/MIRACLRetrieval.json,sha256=a_tOrkxHdINJY_hXF24COOs5WF39NOgXGGTZgmN_ZpY,23211
|
|
1207
1212
|
mteb/descriptive_stats/Retrieval/MIRACLRetrievalHardNegatives.json,sha256=bcifWI51GUSkrhbIPCYT7ieV21Wsr1eBSCmZbXkjXCs,23040
|
|
1208
1213
|
mteb/descriptive_stats/Retrieval/MIRACLRetrievalHardNegatives.v2.json,sha256=bcifWI51GUSkrhbIPCYT7ieV21Wsr1eBSCmZbXkjXCs,23040
|
|
@@ -1222,6 +1227,7 @@ mteb/descriptive_stats/Retrieval/MedicalQARetrieval.json,sha256=3mN6T82PDSlpUJB0
|
|
|
1222
1227
|
mteb/descriptive_stats/Retrieval/MedicalRetrieval.json,sha256=vMa94jsIhkoTXMsPoHaJuXbBRaPuKto-KYlyHkOKHLM,980
|
|
1223
1228
|
mteb/descriptive_stats/Retrieval/MintakaRetrieval.json,sha256=1XcaYZBo5VHD6SVmKKzSCUk3FlJQK4uopnBV2epQeWk,10698
|
|
1224
1229
|
mteb/descriptive_stats/Retrieval/MrTidyRetrieval.json,sha256=X2Jp5nByCv_UNmeeHOpLbE20iGnos9nB_E28D4ZIvhg,14653
|
|
1230
|
+
mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json,sha256=Y_6lLFpRcqXCrGYCs19VfwMvpdVFrkqJVBsJvEfokt4,1004
|
|
1225
1231
|
mteb/descriptive_stats/Retrieval/MultiLongDocRetrieval.json,sha256=MGBeQevI03sxAK3qldfye3yRxQ7O5URV90NFyCNUr_k,33239
|
|
1226
1232
|
mteb/descriptive_stats/Retrieval/NFCorpus-Fa.json,sha256=rqHqn43MBaA4cni5FbCD5CK_TmQ5z3SiXDmfGx7GIUg,1002
|
|
1227
1233
|
mteb/descriptive_stats/Retrieval/NFCorpus-NL.json,sha256=x5eYhzWMKToA0ayxP3h10FyegCrbirrCywRQCzMI9SM,1003
|
|
@@ -1432,17 +1438,17 @@ mteb/languages/programming_languages.py,sha256=zxAakT3OSUnAuTnQ34VyeFIECnNXMlleZ
|
|
|
1432
1438
|
mteb/leaderboard/__init__.py,sha256=991roXmtRwEQysV-37hWEzWpkvPgMCGRqZTHR-hm2io,88
|
|
1433
1439
|
mteb/leaderboard/app.py,sha256=-sBAkZ9JTr9czhsYEbSm92MfTmB8BOQ17WDkQ1dsP90,34282
|
|
1434
1440
|
mteb/leaderboard/benchmark_selector.py,sha256=qd-2L20RQ4ACke01UlytkhZok1dkWgfUlXzfET52kGc,7956
|
|
1435
|
-
mteb/leaderboard/figures.py,sha256=
|
|
1436
|
-
mteb/leaderboard/table.py,sha256=
|
|
1441
|
+
mteb/leaderboard/figures.py,sha256=cfOK82rRf-7sCjyP7GBxh4ezhOIt0OhD0_86mKtzLrg,7530
|
|
1442
|
+
mteb/leaderboard/table.py,sha256=KqU8aAbZ_tDp1O_qXRGWR32QnB7v_lsF6k5jxLcQVN0,10366
|
|
1437
1443
|
mteb/leaderboard/text_segments.py,sha256=iMIkS04QQjPbT-SkU0x6fOcS8xRbUYevryu9HydipKM,6570
|
|
1438
1444
|
mteb/models/__init__.py,sha256=ABTuoqiBjBtBWW3LYY7ItBHdylR6jWoy06HH0g6j6fU,910
|
|
1439
|
-
mteb/models/abs_encoder.py,sha256=
|
|
1440
|
-
mteb/models/get_model_meta.py,sha256=
|
|
1441
|
-
mteb/models/instruct_wrapper.py,sha256=
|
|
1442
|
-
mteb/models/model_meta.py,sha256=
|
|
1445
|
+
mteb/models/abs_encoder.py,sha256=XblcGJYJlbTwhX43wvRft_XqnSq2WpzjFcNIwOyRjYo,16443
|
|
1446
|
+
mteb/models/get_model_meta.py,sha256=BMzlqTuzzhIFmfzmtshnRu2KCWxw9mCPyClJfe4oGdQ,5396
|
|
1447
|
+
mteb/models/instruct_wrapper.py,sha256=G4dMcmD5A4M3hmKATf5OYezmZv8-Ie189BrdmipBo7Y,9091
|
|
1448
|
+
mteb/models/model_meta.py,sha256=08jnKQ2-TZ9IFRy_Nx2-tb9eZXMflWN4i3PvNvi5HGw,27899
|
|
1443
1449
|
mteb/models/models_protocols.py,sha256=D2hYWn_UBGMaKtRwBx3u0B0ni6lHJjSzTxX21XFNwIc,8917
|
|
1444
1450
|
mteb/models/search_wrappers.py,sha256=zpCvxUVNQWekyC4Fiz7mvlI0VPdSrFq41A0GrCDvBK4,20331
|
|
1445
|
-
mteb/models/sentence_transformer_wrapper.py,sha256=
|
|
1451
|
+
mteb/models/sentence_transformer_wrapper.py,sha256=xSkFcw6EiCmPJeeMPYm0A0jONRIi0lQc0jBSEhUgXN8,12144
|
|
1446
1452
|
mteb/models/cache_wrappers/__init__.py,sha256=1w1TnMwulWJSzNkLXjbh5MY3sqgHWc6vUntYn49i9X8,169
|
|
1447
1453
|
mteb/models/cache_wrappers/cache_backend_protocol.py,sha256=TR7kD7KbN1J4piszIecpegtLZYGy7sRHZt3SDWlImKk,1665
|
|
1448
1454
|
mteb/models/cache_wrappers/cache_wrapper.py,sha256=KLDeOCe_ndQshbZa5ep2u3jovsl--tfpQzvt9EXyxCA,6589
|
|
@@ -1459,6 +1465,7 @@ mteb/models/model_implementations/arctic_models.py,sha256=eaMRaN9WdpVq1W6cbtNcJM
|
|
|
1459
1465
|
mteb/models/model_implementations/b1ade_models.py,sha256=aEKmXWVX8iJ_OotAYPOMxsOHTDEOJYdSwkR6iJsZ-ms,1609
|
|
1460
1466
|
mteb/models/model_implementations/bedrock_models.py,sha256=RWN25Es4Nb6eIMiZlFHWNAnftKMVBumM2kozpO7Kh50,8709
|
|
1461
1467
|
mteb/models/model_implementations/bge_models.py,sha256=LL_JnXsjGPnzzxby05Z0Jm3v6-v76nCB-yI36H9fKwo,22386
|
|
1468
|
+
mteb/models/model_implementations/bica_model.py,sha256=vNO6FiqOhAwUky-_Suq3ZpeJ8GVIsd6-uIU6-Y-wFy8,1227
|
|
1462
1469
|
mteb/models/model_implementations/blip2_models.py,sha256=hBdilqIIFkILmGoSl6GjT5gpFVxArp3xL3JEcWfJ1KU,7635
|
|
1463
1470
|
mteb/models/model_implementations/blip_models.py,sha256=n_XRcymbYL2Rx8AFl96OpGQcWvfzrvFQxKvFl4swzA4,11516
|
|
1464
1471
|
mteb/models/model_implementations/bm25.py,sha256=orjdCPWRdeAskQ3zJEzuNMyEks6WW1qv4mGfw8Ih51Q,4836
|
|
@@ -1488,7 +1495,7 @@ mteb/models/model_implementations/fa_models.py,sha256=WGal70_ezITWoNdjcMdbOCTSCt
|
|
|
1488
1495
|
mteb/models/model_implementations/facebookai.py,sha256=uhE6rB1YgxE0SIc7u8heE1U62qRFFA23IMgpjxBq_Ok,3116
|
|
1489
1496
|
mteb/models/model_implementations/geogpt_models.py,sha256=Juv86SwhgQX80lVLjAFtim2aSiJT1AcgjniyyiKyk1Q,1923
|
|
1490
1497
|
mteb/models/model_implementations/gme_v_models.py,sha256=GEu1wl5q77RMM3BwtKMjkMwm38KX_r0qWxD_IEMVC2U,13657
|
|
1491
|
-
mteb/models/model_implementations/google_models.py,sha256=
|
|
1498
|
+
mteb/models/model_implementations/google_models.py,sha256=d6hZ-yWY-yZnQsXDVbdtBb_xqwYAkdeeAnsEMaqqGXI,11013
|
|
1492
1499
|
mteb/models/model_implementations/granite_vision_embedding_models.py,sha256=cvG5NliPwDVMvGuJTo8rk5yL3m6cuJZ_fMLEc0ESNfc,7315
|
|
1493
1500
|
mteb/models/model_implementations/gritlm_models.py,sha256=aS_CuioL95JAQMYiaKlGuAWU9wZjabn268Xut3bD8-w,3005
|
|
1494
1501
|
mteb/models/model_implementations/gte_models.py,sha256=o26Xyu_tucUlP435Q_jB4-bl0xckgj4wtbutTwhYgIo,10073
|
|
@@ -1515,12 +1522,13 @@ mteb/models/model_implementations/mdbr_models.py,sha256=B7R3dVEH9EZ_fSZ05VveSbmT
|
|
|
1515
1522
|
mteb/models/model_implementations/misc_models.py,sha256=bgKOuXJC8cVQmVRXEfIBlgzxDRb9nzOCsHdJ1kM8Z2Q,56691
|
|
1516
1523
|
mteb/models/model_implementations/mme5_models.py,sha256=cRRXecC8EHeLQiEd1nfCb1vt75x_CnG1s_9lYRrtyTA,1484
|
|
1517
1524
|
mteb/models/model_implementations/moco_models.py,sha256=Kl0nBsqkG3crYoo5YulFq1fv97U0-IBWVFHN0UuO0lg,5483
|
|
1525
|
+
mteb/models/model_implementations/mod_models.py,sha256=KHVdZWmag0Yz_NLGDPUz4TgNbKjUYqKVXS_G_rL_5yU,6731
|
|
1518
1526
|
mteb/models/model_implementations/model2vec_models.py,sha256=D-EY-6P-cKKunbgzk4DHzJL1ogpWYFhpHbTLb8qQjJw,13765
|
|
1519
1527
|
mteb/models/model_implementations/moka_models.py,sha256=Y5do7Z4JyGxabYrjHhkBLqCKTQKotniS-f4kOgXJjag,4995
|
|
1520
1528
|
mteb/models/model_implementations/mxbai_models.py,sha256=33ta2BnhvKYBUgE89wFgPNf-CnOb7ooumZvqHOvbZsA,3593
|
|
1521
1529
|
mteb/models/model_implementations/nbailab.py,sha256=bqqR0qs10IH2g5HC6K962tDMBciw8qFsNVHADNS72jk,2396
|
|
1522
1530
|
mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=6i-xbLRRNKuDpU-hwklwdQjgu1wnz5CecLSoc6kyd7Q,3976
|
|
1523
|
-
mteb/models/model_implementations/nomic_models.py,sha256=
|
|
1531
|
+
mteb/models/model_implementations/nomic_models.py,sha256=4N18fKKYXe8FGPqe4s5_6LV4rQsZad_2vAIOuxxwVeI,14417
|
|
1524
1532
|
mteb/models/model_implementations/nomic_models_vision.py,sha256=6aca0XVLXnkGk6GW8jVCIbbjPGq98lKq4c9Az4jbEkE,6805
|
|
1525
1533
|
mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=OEhVrvA-zfX2PSm76VcCDPkRyAArSFkVeweyLyzpqPI,6255
|
|
1526
1534
|
mteb/models/model_implementations/nvidia_models.py,sha256=acVverAt77lURkILCVkCdXsWgY1BJoG1-ugB7yIhlIM,21555
|
|
@@ -2120,9 +2128,11 @@ mteb/tasks/reranking/eng/web_linx_candidates_reranking.py,sha256=dGRRkf8GaPIAZAO
|
|
|
2120
2128
|
mteb/tasks/reranking/fra/__init__.py,sha256=YhiXArWFZr_zxXFdKas0xkwxKrU45EbssiYF9c3D9FQ,148
|
|
2121
2129
|
mteb/tasks/reranking/fra/alloprof_reranking.py,sha256=Evsf0YG2pJveP9qrXdJkRqNkfhGrKtXxGTEYfvk2bzU,1784
|
|
2122
2130
|
mteb/tasks/reranking/fra/syntec_reranking.py,sha256=YqB1OPrcMDbfHEOrkCFd8W_Ve7Fm5b5ezY3FdT82Gd4,1290
|
|
2123
|
-
mteb/tasks/reranking/jpn/__init__.py,sha256=
|
|
2131
|
+
mteb/tasks/reranking/jpn/__init__.py,sha256=DBVF5VoKwnxZ0vcGaUEfrZUFz4zJjE9dG8L31Gv3Xg8,399
|
|
2124
2132
|
mteb/tasks/reranking/jpn/j_qa_ra_reranking.py,sha256=8AhdHQSOzf0WgGCOXNhjG77RZjTtxMHrc1oBY38b13I,1648
|
|
2133
|
+
mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py,sha256=RlX6Q4ie07UCAIlxhVmFqUTgSTt3a_H1edvMvXzw-Zk,1948
|
|
2125
2134
|
mteb/tasks/reranking/jpn/ja_cwir_reranking.py,sha256=Us06popt1VSS5zoUUWfg52oTaX3F-6uUmCFYNIcs4i8,1630
|
|
2135
|
+
mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py,sha256=H9Y0u1O5icnnNJZnAFdMtVhEIS4VmYhkb4ctfFK9ULY,1904
|
|
2126
2136
|
mteb/tasks/reranking/jpn/m_marco_reranking.py,sha256=T0kJC1u7OPem1Lg68czKzFb99C6dVpm115T8cg2vdAc,1392
|
|
2127
2137
|
mteb/tasks/reranking/multilingual/__init__.py,sha256=xM-ZicCKPBtpfqkoeMGlhn76vLFOe49B1x27et42uQw,556
|
|
2128
2138
|
mteb/tasks/reranking/multilingual/esci_reranking.py,sha256=opEtarEw8JhcqVhIZ2wQoFP0FFhXhKYXCsubFqM5BX0,1439
|
|
@@ -2156,7 +2166,7 @@ mteb/tasks/retrieval/code/code_trans_ocean_dl_retrieval.py,sha256=WrcLbhtJkGqWcs
|
|
|
2156
2166
|
mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py,sha256=HkRZbMlBa9jhRX7mil7zKAnT7yQna2yYH1UyAJE51EY,3785
|
|
2157
2167
|
mteb/tasks/retrieval/code/cos_qa_retrieval.py,sha256=CYWty69H3aJQi3FHz-Qqj_O2usb19kH7Ct0nAcWNzlQ,1469
|
|
2158
2168
|
mteb/tasks/retrieval/code/ds1000_retrieval.py,sha256=irbW7IN3a8NNkxSnWowBmlnilV7QRCbHp0fruRW8_Ic,3398
|
|
2159
|
-
mteb/tasks/retrieval/code/fresh_stack_retrieval.py,sha256=
|
|
2169
|
+
mteb/tasks/retrieval/code/fresh_stack_retrieval.py,sha256=uoWHouYaDMbatauYFshabr7vH9jdiF8uraUcM5l0m9Q,3505
|
|
2160
2170
|
mteb/tasks/retrieval/code/human_eval_retrieval.py,sha256=FagmoGdAjyh9hdIUxqjUbE-6QkSfvZTJ47oGQ3Vo_GE,4325
|
|
2161
2171
|
mteb/tasks/retrieval/code/japanese_code1_retrieval.py,sha256=-FBDBmx2h4iYUv7b-jgwBXmHq7HguGpC6Uvc1fzbyb4,1133
|
|
2162
2172
|
mteb/tasks/retrieval/code/mbpp_retrieval.py,sha256=EgNOypt5bfgy_-q2a4Sz-3x5CB9S2KGP_qxrWs6td5s,3350
|
|
@@ -2343,12 +2353,16 @@ mteb/tasks/retrieval/fra/french_legal1_retrieval.py,sha256=yq4avXuouedGq8y8WP4os
|
|
|
2343
2353
|
mteb/tasks/retrieval/fra/syntec_retrieval.py,sha256=SZOm-z5OruxEG47zMYjApJoR2oWiHKsK5Vum41Z5hWU,2305
|
|
2344
2354
|
mteb/tasks/retrieval/hun/__init__.py,sha256=M59LTpENxaFLMSU43mNiP38lChJ_l_yZh__1giKeUDc,93
|
|
2345
2355
|
mteb/tasks/retrieval/hun/hun_sum2.py,sha256=td6lxYg_eH9J62sNNuFonHIJ_22E-XGgiFN-D3iAbFw,2373
|
|
2346
|
-
mteb/tasks/retrieval/jpn/__init__.py,sha256=
|
|
2356
|
+
mteb/tasks/retrieval/jpn/__init__.py,sha256=1UA6fWOyaMieDBZxH9asudh9QLl20DW5alOGIdKDMAs,1519
|
|
2347
2357
|
mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py,sha256=x3rNQwi73WfpkYdGBwt24QccIWJRK_Zj9z16MUMyI3I,1603
|
|
2358
|
+
mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py,sha256=KXg08E250H_ueW3g8BYB-4elBaSAHt90eL4p8nDTIFo,1894
|
|
2348
2359
|
mteb/tasks/retrieval/jpn/ja_gov_faqs_retrieval.py,sha256=_9zsw9QS53NFp2EiCw3BKQdfk57agHxkSfpzKNqdJXE,1170
|
|
2349
2360
|
mteb/tasks/retrieval/jpn/ja_qu_ad_retrieval.py,sha256=qc89t-uJqzk37sTRKlSxenYOSq4Qy2E-H_namSBeGN0,1312
|
|
2350
2361
|
mteb/tasks/retrieval/jpn/japanese_legal1_retrieval.py,sha256=drUYO9QMSWgxvYWxL5QBdYPZ35HNwCF2d0ju1yQlZrI,1121
|
|
2351
2362
|
mteb/tasks/retrieval/jpn/jaqket_retrieval.py,sha256=dfSNx2QJ3bj5QZOHbGnInOxTlVXkgsFvYfMnmgU8PkE,1438
|
|
2363
|
+
mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py,sha256=HfSu6E_blhZxwzdprrA8r__vnNDur8IDMK6Kpa52XCw,2000
|
|
2364
|
+
mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py,sha256=uce4rZcmbyMq8q6K2UevKhW93wJzg5WGU-aTOgdzvUQ,2061
|
|
2365
|
+
mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py,sha256=PHc3W8ftiDNhUCs8rfPDu6IYs8EzX6gp7OkXtfeFAKs,1819
|
|
2352
2366
|
mteb/tasks/retrieval/jpn/nlp_journal_abs_article_retrieval.py,sha256=PyxSS9tab2drIQI6yEMUy4BxaoRGYNo8XySjp_xHkE8,3150
|
|
2353
2367
|
mteb/tasks/retrieval/jpn/nlp_journal_abs_intro_retrieval.py,sha256=EEOQpTC6vEPULzC5_xDCt7r5LIL0K1zlExeqOC-G-E4,3068
|
|
2354
2368
|
mteb/tasks/retrieval/jpn/nlp_journal_title_abs_retrieval.py,sha256=JOOW_5pRKHzVn8wTOY0fhxLJ6Ns7wlQHoGHGIYVovAQ,3056
|
|
@@ -2582,9 +2596,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
|
|
|
2582
2596
|
mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
|
|
2583
2597
|
mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
|
|
2584
2598
|
mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
|
|
2585
|
-
mteb-2.
|
|
2586
|
-
mteb-2.
|
|
2587
|
-
mteb-2.
|
|
2588
|
-
mteb-2.
|
|
2589
|
-
mteb-2.
|
|
2590
|
-
mteb-2.
|
|
2599
|
+
mteb-2.4.1.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
2600
|
+
mteb-2.4.1.dist-info/METADATA,sha256=NSoqOepWRk38b5qA_3AUj6QzR66bca71Bcs7TxJx42o,13990
|
|
2601
|
+
mteb-2.4.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
2602
|
+
mteb-2.4.1.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
|
|
2603
|
+
mteb-2.4.1.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
|
|
2604
|
+
mteb-2.4.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|