mteb 2.3.10__py3-none-any.whl → 2.3.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +7 -2
- mteb/abstasks/_statistics_calculation.py +6 -2
- mteb/abstasks/classification.py +0 -2
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +2 -2
- mteb/models/model_implementations/colpali_models.py +7 -2
- mteb/models/model_implementations/colqwen_models.py +1 -1
- mteb/models/model_implementations/gme_v_models.py +9 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +6 -2
- mteb/models/model_implementations/jasper_models.py +2 -2
- mteb/models/model_implementations/jina_models.py +1 -1
- mteb/models/model_implementations/nomic_models_vision.py +6 -2
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +6 -2
- mteb/models/model_implementations/pylate_models.py +1 -4
- mteb/models/model_implementations/random_baseline.py +6 -2
- mteb/models/model_implementations/seed_1_6_embedding_models.py +7 -2
- mteb/models/model_implementations/voyage_v.py +6 -2
- mteb/types/_encoder_io.py +7 -2
- {mteb-2.3.10.dist-info → mteb-2.3.11.dist-info}/METADATA +2 -1
- {mteb-2.3.10.dist-info → mteb-2.3.11.dist-info}/RECORD +23 -23
- {mteb-2.3.10.dist-info → mteb-2.3.11.dist-info}/WHEEL +0 -0
- {mteb-2.3.10.dist-info → mteb-2.3.11.dist-info}/entry_points.txt +0 -0
- {mteb-2.3.10.dist-info → mteb-2.3.11.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.3.10.dist-info → mteb-2.3.11.dist-info}/top_level.txt +0 -0
|
@@ -1,10 +1,11 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
3
5
|
|
|
4
6
|
import torch
|
|
5
7
|
import torch.nn.functional as F
|
|
6
8
|
from datasets import Dataset
|
|
7
|
-
from PIL.Image import Image
|
|
8
9
|
from torch.utils.data import DataLoader
|
|
9
10
|
|
|
10
11
|
from mteb._create_dataloaders import (
|
|
@@ -15,6 +16,10 @@ from mteb._requires_package import requires_image_dependencies
|
|
|
15
16
|
from mteb.abstasks.task_metadata import TaskMetadata
|
|
16
17
|
from mteb.models.models_protocols import EncoderProtocol
|
|
17
18
|
|
|
19
|
+
if TYPE_CHECKING:
|
|
20
|
+
from PIL.Image import Image
|
|
21
|
+
|
|
22
|
+
|
|
18
23
|
logger = logging.getLogger(__name__)
|
|
19
24
|
|
|
20
25
|
|
|
@@ -1,7 +1,8 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import hashlib
|
|
2
4
|
from collections import Counter
|
|
3
|
-
|
|
4
|
-
from PIL import Image
|
|
5
|
+
from typing import TYPE_CHECKING
|
|
5
6
|
|
|
6
7
|
from mteb.types import TopRankedDocumentsType
|
|
7
8
|
from mteb.types.statistics import (
|
|
@@ -13,6 +14,9 @@ from mteb.types.statistics import (
|
|
|
13
14
|
TopRankedStatistics,
|
|
14
15
|
)
|
|
15
16
|
|
|
17
|
+
if TYPE_CHECKING:
|
|
18
|
+
from PIL import Image
|
|
19
|
+
|
|
16
20
|
|
|
17
21
|
def calculate_text_statistics(texts: list[str]) -> TextStatistics:
|
|
18
22
|
"""Calculate descriptive statistics for a list of texts.
|
mteb/abstasks/classification.py
CHANGED
|
@@ -5,7 +5,6 @@ from typing import Any, TypedDict
|
|
|
5
5
|
|
|
6
6
|
import numpy as np
|
|
7
7
|
from datasets import Dataset, DatasetDict
|
|
8
|
-
from PIL import ImageFile
|
|
9
8
|
from sklearn.linear_model import LogisticRegression
|
|
10
9
|
from sklearn.metrics import (
|
|
11
10
|
accuracy_score,
|
|
@@ -32,7 +31,6 @@ from ._statistics_calculation import (
|
|
|
32
31
|
)
|
|
33
32
|
from .abstask import AbsTask
|
|
34
33
|
|
|
35
|
-
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
|
36
34
|
logger = logging.getLogger(__name__)
|
|
37
35
|
|
|
38
36
|
|
|
@@ -1,7 +1,5 @@
|
|
|
1
1
|
import hashlib
|
|
2
2
|
|
|
3
|
-
from PIL import Image
|
|
4
|
-
|
|
5
3
|
from mteb.types import BatchedInput
|
|
6
4
|
|
|
7
5
|
|
|
@@ -11,6 +9,8 @@ def _hash_item(item: BatchedInput) -> str:
|
|
|
11
9
|
item_hash = hashlib.sha256(item["text"].encode()).hexdigest()
|
|
12
10
|
|
|
13
11
|
if "image" in item:
|
|
12
|
+
from PIL import Image
|
|
13
|
+
|
|
14
14
|
image: Image.Image = item["image"]
|
|
15
15
|
item_hash += hashlib.sha256(image.tobytes()).hexdigest()
|
|
16
16
|
|
|
@@ -1,8 +1,9 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
3
5
|
|
|
4
6
|
import torch
|
|
5
|
-
from PIL import Image
|
|
6
7
|
from torch.utils.data import DataLoader
|
|
7
8
|
from tqdm.auto import tqdm
|
|
8
9
|
|
|
@@ -15,6 +16,9 @@ from mteb.models.abs_encoder import AbsEncoder
|
|
|
15
16
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
16
17
|
from mteb.types import Array, BatchedInput, PromptType
|
|
17
18
|
|
|
19
|
+
if TYPE_CHECKING:
|
|
20
|
+
from PIL import Image
|
|
21
|
+
|
|
18
22
|
logger = logging.getLogger(__name__)
|
|
19
23
|
|
|
20
24
|
|
|
@@ -89,6 +93,7 @@ class ColPaliEngineWrapper(AbsEncoder):
|
|
|
89
93
|
**kwargs,
|
|
90
94
|
):
|
|
91
95
|
import torchvision.transforms.functional as F
|
|
96
|
+
from PIL import Image
|
|
92
97
|
|
|
93
98
|
all_embeds = []
|
|
94
99
|
|
|
@@ -2,7 +2,6 @@ import logging
|
|
|
2
2
|
from typing import Any
|
|
3
3
|
|
|
4
4
|
import torch
|
|
5
|
-
from PIL import Image
|
|
6
5
|
from torch.utils.data import DataLoader
|
|
7
6
|
from tqdm.auto import tqdm
|
|
8
7
|
|
|
@@ -154,6 +153,7 @@ class ColQwen3Wrapper(AbsEncoder):
|
|
|
154
153
|
**kwargs: Any,
|
|
155
154
|
):
|
|
156
155
|
import torchvision.transforms.functional as F
|
|
156
|
+
from PIL import Image
|
|
157
157
|
|
|
158
158
|
contains_image = "image" in image_texts_pairs.dataset.features
|
|
159
159
|
contains_text = "text" in image_texts_pairs.dataset.features
|
|
@@ -1,9 +1,10 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
4
|
import math
|
|
3
|
-
from typing import Any
|
|
5
|
+
from typing import TYPE_CHECKING, Any
|
|
4
6
|
|
|
5
7
|
import torch
|
|
6
|
-
from PIL import Image
|
|
7
8
|
from torch.utils.data import DataLoader
|
|
8
9
|
from tqdm.autonotebook import tqdm
|
|
9
10
|
|
|
@@ -12,6 +13,9 @@ from mteb.models.abs_encoder import AbsEncoder
|
|
|
12
13
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
13
14
|
from mteb.types import Array, BatchedInput, PromptType
|
|
14
15
|
|
|
16
|
+
if TYPE_CHECKING:
|
|
17
|
+
from PIL import Image
|
|
18
|
+
|
|
15
19
|
logger = logging.getLogger(__name__)
|
|
16
20
|
|
|
17
21
|
GME_CITATION = """@misc{zhang2024gme,
|
|
@@ -267,9 +271,9 @@ def smart_resize(
|
|
|
267
271
|
return h_bar, w_bar
|
|
268
272
|
|
|
269
273
|
|
|
270
|
-
def fetch_image(
|
|
271
|
-
|
|
272
|
-
|
|
274
|
+
def fetch_image(image: Image.Image, size_factor: int = IMAGE_FACTOR) -> Image.Image:
|
|
275
|
+
from PIL import Image
|
|
276
|
+
|
|
273
277
|
image_obj = None
|
|
274
278
|
if isinstance(image, Image.Image):
|
|
275
279
|
image_obj = image
|
|
@@ -1,8 +1,9 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
3
5
|
|
|
4
6
|
import torch
|
|
5
|
-
from PIL import Image
|
|
6
7
|
from torch.utils.data import DataLoader
|
|
7
8
|
from tqdm.auto import tqdm
|
|
8
9
|
|
|
@@ -15,6 +16,9 @@ from mteb.types import Array, BatchedInput, PromptType
|
|
|
15
16
|
|
|
16
17
|
logger = logging.getLogger(__name__)
|
|
17
18
|
|
|
19
|
+
if TYPE_CHECKING:
|
|
20
|
+
from PIL import Image
|
|
21
|
+
|
|
18
22
|
|
|
19
23
|
class GraniteVisionEmbeddingWrapper:
|
|
20
24
|
def __init__(
|
|
@@ -355,13 +355,13 @@ Jasper_Token_Compression_600M = ModelMeta(
|
|
|
355
355
|
| qzhou_training_data,
|
|
356
356
|
citation="""
|
|
357
357
|
@misc{zhang2025jaspertokencompression600mtechnicalreport,
|
|
358
|
-
title={Jasper-Token-Compression-600M Technical Report},
|
|
358
|
+
title={Jasper-Token-Compression-600M Technical Report},
|
|
359
359
|
author={Dun Zhang and Ziyang Zeng and Yudong Zhou and Shuyang Lu},
|
|
360
360
|
year={2025},
|
|
361
361
|
eprint={2511.14405},
|
|
362
362
|
archivePrefix={arXiv},
|
|
363
363
|
primaryClass={cs.IR},
|
|
364
|
-
url={https://arxiv.org/abs/2511.14405},
|
|
364
|
+
url={https://arxiv.org/abs/2511.14405},
|
|
365
365
|
}
|
|
366
366
|
""",
|
|
367
367
|
)
|
|
@@ -740,7 +740,7 @@ jina_reranker_v3 = ModelMeta(
|
|
|
740
740
|
training_datasets=JINARerankerV3_TRAINING_DATA,
|
|
741
741
|
adapted_from="Qwen/Qwen3-0.6B",
|
|
742
742
|
citation="""@misc{wang2025jinarerankerv3lateinteractionlistwise,
|
|
743
|
-
title={jina-reranker-v3: Last but Not Late Interaction for Listwise Document Reranking},
|
|
743
|
+
title={jina-reranker-v3: Last but Not Late Interaction for Listwise Document Reranking},
|
|
744
744
|
author={Feng Wang and Yuqing Li and Han Xiao},
|
|
745
745
|
year={2025},
|
|
746
746
|
eprint={2509.25085},
|
|
@@ -1,8 +1,9 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
2
4
|
|
|
3
5
|
import torch
|
|
4
6
|
import torch.nn.functional as F
|
|
5
|
-
from PIL import Image
|
|
6
7
|
from torch.utils.data import DataLoader
|
|
7
8
|
from tqdm.auto import tqdm
|
|
8
9
|
|
|
@@ -12,6 +13,9 @@ from mteb.models.abs_encoder import AbsEncoder
|
|
|
12
13
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
13
14
|
from mteb.types import Array, BatchedInput, PromptType
|
|
14
15
|
|
|
16
|
+
if TYPE_CHECKING:
|
|
17
|
+
from PIL import Image
|
|
18
|
+
|
|
15
19
|
NOMIC_EMBED_VISION_CITATION = """@article{nussbaum2024nomicembedvision,
|
|
16
20
|
title={Nomic Embed Vision: Expanding the Latent Space},
|
|
17
21
|
author={Nussbaum, Zach and Duderstadt, Brandon and Mulyar, Andriy},
|
|
@@ -1,7 +1,6 @@
|
|
|
1
|
-
from typing import Any
|
|
1
|
+
from typing import TYPE_CHECKING, Any
|
|
2
2
|
|
|
3
3
|
import torch
|
|
4
|
-
from PIL import Image
|
|
5
4
|
from torch.utils.data import DataLoader
|
|
6
5
|
|
|
7
6
|
from mteb.abstasks.task_metadata import TaskMetadata
|
|
@@ -9,6 +8,10 @@ from mteb.models.abs_encoder import AbsEncoder
|
|
|
9
8
|
from mteb.models.model_meta import ModelMeta
|
|
10
9
|
from mteb.types import Array, BatchedInput, PromptType
|
|
11
10
|
|
|
11
|
+
if TYPE_CHECKING:
|
|
12
|
+
pass
|
|
13
|
+
|
|
14
|
+
|
|
12
15
|
LLAMA_NEMORETRIEVER_CITATION = """@misc{xu2025llamanemoretrievercolembedtopperforming,
|
|
13
16
|
title={Llama Nemoretriever Colembed: Top-Performing Text-Image Retrieval Model},
|
|
14
17
|
author={Mengyao Xu and Gabriel Moreira and Ronay Ak and Radek Osmulski and Yauhen Babakhin and Zhiding Yu and Benedikt Schifferer and Even Oldridge},
|
|
@@ -53,6 +56,7 @@ class LlamaNemoretrieverColembed(AbsEncoder):
|
|
|
53
56
|
**kwargs,
|
|
54
57
|
):
|
|
55
58
|
import torchvision.transforms.functional as F
|
|
59
|
+
from PIL import Image
|
|
56
60
|
|
|
57
61
|
all_images = []
|
|
58
62
|
if isinstance(images, DataLoader):
|
|
@@ -328,13 +328,10 @@ class MultiVectorModel(AbsEncoder, PylateSearchEncoder):
|
|
|
328
328
|
inputs,
|
|
329
329
|
prompt_name=prompt_name,
|
|
330
330
|
is_query=prompt_type == PromptType.query,
|
|
331
|
-
convert_to_tensor=True,
|
|
332
331
|
**kwargs,
|
|
333
332
|
)
|
|
334
333
|
|
|
335
|
-
|
|
336
|
-
pred = torch.nn.utils.rnn.pad_sequence(pred, batch_first=True, padding_value=0)
|
|
337
|
-
return pred.cpu().numpy()
|
|
334
|
+
return pred
|
|
338
335
|
|
|
339
336
|
|
|
340
337
|
colbert_v2 = ModelMeta(
|
|
@@ -1,9 +1,10 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import hashlib
|
|
2
|
-
from typing import Any, Literal
|
|
4
|
+
from typing import TYPE_CHECKING, Any, Literal
|
|
3
5
|
|
|
4
6
|
import numpy as np
|
|
5
7
|
import torch
|
|
6
|
-
from PIL import Image
|
|
7
8
|
from torch.utils.data import DataLoader
|
|
8
9
|
|
|
9
10
|
from mteb.abstasks.task_metadata import TaskMetadata
|
|
@@ -14,6 +15,9 @@ from mteb.similarity_functions import (
|
|
|
14
15
|
)
|
|
15
16
|
from mteb.types._encoder_io import Array, BatchedInput, PromptType
|
|
16
17
|
|
|
18
|
+
if TYPE_CHECKING:
|
|
19
|
+
from PIL import Image
|
|
20
|
+
|
|
17
21
|
|
|
18
22
|
def _string_to_vector(text: str | None, size: int) -> np.ndarray:
|
|
19
23
|
"""Generate a deterministic random vector based on a string.
|
|
@@ -1,14 +1,15 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import base64
|
|
2
4
|
import logging
|
|
3
5
|
import os
|
|
4
6
|
import time
|
|
5
7
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
6
8
|
from io import BytesIO
|
|
7
|
-
from typing import Any
|
|
9
|
+
from typing import TYPE_CHECKING, Any
|
|
8
10
|
|
|
9
11
|
import requests
|
|
10
12
|
import torch
|
|
11
|
-
from PIL import Image
|
|
12
13
|
from torch.utils.data import DataLoader
|
|
13
14
|
|
|
14
15
|
from mteb._requires_package import requires_package
|
|
@@ -19,6 +20,10 @@ from mteb.models.model_implementations.nvidia_models import nvidia_training_data
|
|
|
19
20
|
from mteb.models.model_meta import ModelMeta
|
|
20
21
|
from mteb.types import Array, BatchedInput, PromptType
|
|
21
22
|
|
|
23
|
+
if TYPE_CHECKING:
|
|
24
|
+
from PIL import Image
|
|
25
|
+
|
|
26
|
+
|
|
22
27
|
logger = logging.getLogger(__name__)
|
|
23
28
|
|
|
24
29
|
|
|
@@ -1,8 +1,9 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any, Literal
|
|
4
|
+
from typing import TYPE_CHECKING, Any, Literal
|
|
3
5
|
|
|
4
6
|
import torch
|
|
5
|
-
from PIL import Image
|
|
6
7
|
from torch.utils.data import DataLoader
|
|
7
8
|
from tqdm.auto import tqdm
|
|
8
9
|
|
|
@@ -12,6 +13,9 @@ from mteb.models.abs_encoder import AbsEncoder
|
|
|
12
13
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
13
14
|
from mteb.types import Array, BatchedInput, PromptType
|
|
14
15
|
|
|
16
|
+
if TYPE_CHECKING:
|
|
17
|
+
from PIL import Image
|
|
18
|
+
|
|
15
19
|
|
|
16
20
|
def _downsample_image(
|
|
17
21
|
image: Image.Image, max_pixels: int = 16000000, target_longest_side: int = 4000
|
mteb/types/_encoder_io.py
CHANGED
|
@@ -1,13 +1,18 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
from collections.abc import Mapping
|
|
2
4
|
from enum import Enum
|
|
3
|
-
from typing import TypedDict
|
|
5
|
+
from typing import TYPE_CHECKING, TypedDict
|
|
4
6
|
|
|
5
7
|
import numpy as np
|
|
6
8
|
import torch
|
|
7
9
|
from datasets import Dataset
|
|
8
|
-
from PIL import Image
|
|
9
10
|
from typing_extensions import NotRequired
|
|
10
11
|
|
|
12
|
+
if TYPE_CHECKING:
|
|
13
|
+
from PIL import Image
|
|
14
|
+
|
|
15
|
+
|
|
11
16
|
# --- Output types ---
|
|
12
17
|
Array = np.ndarray | torch.Tensor
|
|
13
18
|
"""General array type, can be a numpy array or a torch tensor."""
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.3.
|
|
3
|
+
Version: 2.3.11
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -34,6 +34,7 @@ Requires-Dist: pydantic>=2.0.0
|
|
|
34
34
|
Requires-Dist: polars>=0.20.22
|
|
35
35
|
Provides-Extra: image
|
|
36
36
|
Requires-Dist: torchvision>0.2.1; extra == "image"
|
|
37
|
+
Requires-Dist: transformers[torch-vision,vision]; extra == "image"
|
|
37
38
|
Provides-Extra: codecarbon
|
|
38
39
|
Requires-Dist: codecarbon<3.0.0,>=2.0.0; extra == "codecarbon"
|
|
39
40
|
Provides-Extra: leaderboard
|
|
@@ -24,17 +24,17 @@ mteb/_evaluators/retrieval_metrics.py,sha256=we0damQCJrdaRUD6JlU2MM7Ls9xERP_OBS5
|
|
|
24
24
|
mteb/_evaluators/sklearn_evaluator.py,sha256=f9SgBbvgCrkltdTebQTixT7KmIagGkjQ_cNnKuHTb3w,3772
|
|
25
25
|
mteb/_evaluators/zeroshot_classification_evaluator.py,sha256=dQq6g9my-0xn_0fLJXSnhN9Qu6PuJtWCKGIDrlkeyJk,2282
|
|
26
26
|
mteb/_evaluators/image/__init__.py,sha256=CsQd7OMkeV2Phun7paPWjayZ5qRnvj8H0TYBFeqMxag,148
|
|
27
|
-
mteb/_evaluators/image/imagetext_pairclassification_evaluator.py,sha256=
|
|
27
|
+
mteb/_evaluators/image/imagetext_pairclassification_evaluator.py,sha256=lVizL_11s0yFAZzuGqv-wtkBbMaK7cArD1eUkxwG4uU,4883
|
|
28
28
|
mteb/_evaluators/text/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
29
29
|
mteb/_evaluators/text/bitext_mining_evaluator.py,sha256=XS7AVml5-BpQWtG1XFHf6fx8VMVPRwibg-9si4b-A_U,6308
|
|
30
30
|
mteb/_evaluators/text/summarization_evaluator.py,sha256=l0AwjVO594mtzPV9Kcqf_xtHHpkx6uhDJ61KnolcVAo,10461
|
|
31
31
|
mteb/abstasks/__init__.py,sha256=1iAwpYTWX7U-goak2KMmacPFCzxPchLQAmZ_uI0t-p0,1130
|
|
32
|
-
mteb/abstasks/_statistics_calculation.py,sha256=
|
|
32
|
+
mteb/abstasks/_statistics_calculation.py,sha256=UP2H2Cy8yqwtqeimTWfe4unmZ4iyyr5qiBNZzzFjy9o,5669
|
|
33
33
|
mteb/abstasks/_stratification.py,sha256=zfwkIVmD7Aq7mR2Yt8jTeW1j5ZVV7CIweW842VzcfXc,14364
|
|
34
34
|
mteb/abstasks/abstask.py,sha256=nZwiY_5d0VVtUrlCATngpFLG3JAovO5AvmD0nkkWsLE,25118
|
|
35
35
|
mteb/abstasks/aggregate_task_metadata.py,sha256=vzt1z2wDl0sXD7ErZFwKojYwmFUBPAnGlXLuqLA_-6Q,5992
|
|
36
36
|
mteb/abstasks/aggregated_task.py,sha256=puY6-EAqbL5ehKvFHTMriIdy3rAuqqYHF3ezog1eYxw,6671
|
|
37
|
-
mteb/abstasks/classification.py,sha256=
|
|
37
|
+
mteb/abstasks/classification.py,sha256=k_wrM1rq2XcVEK97RpU_uEcqhiWWbV7sm3B0dtvP5yY,13376
|
|
38
38
|
mteb/abstasks/clustering.py,sha256=4KcaU8_sNLmLvMhwDpNmcY2nD3BNyx_LcM-ddSv-wtY,14410
|
|
39
39
|
mteb/abstasks/clustering_legacy.py,sha256=HZY8zgBgqqs5urF_to9wzqm3MnjFivs59hU6P3NrzcI,8684
|
|
40
40
|
mteb/abstasks/dataset_card_template.md,sha256=aD6l8qc3_jxwoIGJNYLzse-jpRa8hu92AxpnUtNgges,5122
|
|
@@ -1447,7 +1447,7 @@ mteb/models/cache_wrappers/__init__.py,sha256=1w1TnMwulWJSzNkLXjbh5MY3sqgHWc6vUn
|
|
|
1447
1447
|
mteb/models/cache_wrappers/cache_backend_protocol.py,sha256=TR7kD7KbN1J4piszIecpegtLZYGy7sRHZt3SDWlImKk,1665
|
|
1448
1448
|
mteb/models/cache_wrappers/cache_wrapper.py,sha256=KLDeOCe_ndQshbZa5ep2u3jovsl--tfpQzvt9EXyxCA,6589
|
|
1449
1449
|
mteb/models/cache_wrappers/cache_backends/__init__.py,sha256=hN2Tq7cpTxoOYSCJ1Wnpvb8dEm-kQLfCCahT1N9Bacw,123
|
|
1450
|
-
mteb/models/cache_wrappers/cache_backends/_hash_utils.py,sha256=
|
|
1450
|
+
mteb/models/cache_wrappers/cache_backends/_hash_utils.py,sha256=zAp7BDuYyGETn2kX58uk8_tn1G2B7bgcsItDDxgyn-w,488
|
|
1451
1451
|
mteb/models/cache_wrappers/cache_backends/faiss_cache.py,sha256=i9IfaCv1-_BvVokXFW1UZ9hMLCuM6rZ0tI-ZesoBkt4,3734
|
|
1452
1452
|
mteb/models/cache_wrappers/cache_backends/numpy_cache.py,sha256=GyTVC5DLph3EeRnDMO1EEQzBDoOgk2J1hPqpl07lefM,7442
|
|
1453
1453
|
mteb/models/model_implementations/__init__.py,sha256=BZDdde6ajKv-yroy9mqE2YS3Hw1KBdKoxBPg8aPTZEs,1164
|
|
@@ -1471,8 +1471,8 @@ mteb/models/model_implementations/codefuse_models.py,sha256=19Y-d_qetVU64quzEvuU
|
|
|
1471
1471
|
mteb/models/model_implementations/codesage_models.py,sha256=D4CdISGyv5f2GMYq4_efgm5qNq80SWAX5R2u5mjEiXM,2998
|
|
1472
1472
|
mteb/models/model_implementations/cohere_models.py,sha256=OWFClVAN4phjBoxfGGDyGDmzMu-t2VrjCGFyAIWmz4w,13832
|
|
1473
1473
|
mteb/models/model_implementations/cohere_v.py,sha256=K6VEw1NkyM2PuMd18kHE6aqPrcByYSwEmAKjvLods_w,15760
|
|
1474
|
-
mteb/models/model_implementations/colpali_models.py,sha256=
|
|
1475
|
-
mteb/models/model_implementations/colqwen_models.py,sha256=
|
|
1474
|
+
mteb/models/model_implementations/colpali_models.py,sha256=l-0A3J5rt1bhhTKFPQ3Ti0qvWf2qXYkiv3j1si04R8I,9108
|
|
1475
|
+
mteb/models/model_implementations/colqwen_models.py,sha256=wxR3sqyzObuXMlm1QLoFopJK3ZpQTzd3ZB5IrkzPfZk,15553
|
|
1476
1476
|
mteb/models/model_implementations/colsmol_models.py,sha256=O2M7Ksydh94M_Iax4KytHb-wOL18N0BIYLKSsLF8BFs,2967
|
|
1477
1477
|
mteb/models/model_implementations/conan_models.py,sha256=G-s7xo9VtNX-f7lWKtYVGHHiMMN0Xp44PlNIp7E0LAo,6502
|
|
1478
1478
|
mteb/models/model_implementations/dino_models.py,sha256=QFgaFHR5YKrylqJGSljXCBn2W7qHhmF6KdXkvHrQNEI,16380
|
|
@@ -1487,18 +1487,18 @@ mteb/models/model_implementations/evaclip_models.py,sha256=cPMGYLDIq4s8zJxb4vPXq
|
|
|
1487
1487
|
mteb/models/model_implementations/fa_models.py,sha256=WGal70_ezITWoNdjcMdbOCTSCtoaXzuPadYstLVXxhg,7478
|
|
1488
1488
|
mteb/models/model_implementations/facebookai.py,sha256=uhE6rB1YgxE0SIc7u8heE1U62qRFFA23IMgpjxBq_Ok,3116
|
|
1489
1489
|
mteb/models/model_implementations/geogpt_models.py,sha256=Juv86SwhgQX80lVLjAFtim2aSiJT1AcgjniyyiKyk1Q,1923
|
|
1490
|
-
mteb/models/model_implementations/gme_v_models.py,sha256=
|
|
1490
|
+
mteb/models/model_implementations/gme_v_models.py,sha256=GEu1wl5q77RMM3BwtKMjkMwm38KX_r0qWxD_IEMVC2U,13657
|
|
1491
1491
|
mteb/models/model_implementations/google_models.py,sha256=7QfsaJ5JNDRQxFl7Zh2AtiR2PR7PZcfeCBgviuOFBCo,9130
|
|
1492
|
-
mteb/models/model_implementations/granite_vision_embedding_models.py,sha256=
|
|
1492
|
+
mteb/models/model_implementations/granite_vision_embedding_models.py,sha256=cvG5NliPwDVMvGuJTo8rk5yL3m6cuJZ_fMLEc0ESNfc,7315
|
|
1493
1493
|
mteb/models/model_implementations/gritlm_models.py,sha256=aS_CuioL95JAQMYiaKlGuAWU9wZjabn268Xut3bD8-w,3005
|
|
1494
1494
|
mteb/models/model_implementations/gte_models.py,sha256=o26Xyu_tucUlP435Q_jB4-bl0xckgj4wtbutTwhYgIo,10073
|
|
1495
1495
|
mteb/models/model_implementations/hinvec_models.py,sha256=I_d_dSNVaGIwMIwyvTlaPAzGMpwh_PzvsfE4y47GFyg,1575
|
|
1496
1496
|
mteb/models/model_implementations/human.py,sha256=klMpuMAtYH92EIEwNMEhne_Baf9fNiTg1DNWYD11P44,532
|
|
1497
1497
|
mteb/models/model_implementations/ibm_granite_models.py,sha256=YCT0jbgawy19ps5l8QlxpQoJLjq8Nh-3R-e6yxS0DRM,7902
|
|
1498
1498
|
mteb/models/model_implementations/inf_models.py,sha256=lvXUFhAYDltq2_Xa9MHcwfhh1V20rbJLSgON76tkj6w,2906
|
|
1499
|
-
mteb/models/model_implementations/jasper_models.py,sha256=
|
|
1499
|
+
mteb/models/model_implementations/jasper_models.py,sha256=onX_ipI-UZbaZrjcHpZtk34tpy6DcT6Yvq6X3RMSmYA,16211
|
|
1500
1500
|
mteb/models/model_implementations/jina_clip.py,sha256=CfiIxbhKspjQajNtObCfGPHOWPk6uLn4cuwydQHFTMo,5118
|
|
1501
|
-
mteb/models/model_implementations/jina_models.py,sha256=
|
|
1501
|
+
mteb/models/model_implementations/jina_models.py,sha256=1bkGwIaRNIun2ghkWb4FG-7js4lJ39s97Q9KAW3wkXo,34858
|
|
1502
1502
|
mteb/models/model_implementations/kalm_models.py,sha256=FmW7Z5Qs6WYBLuKvql3u4IJW36kj4k-Ypah8qTBEBkg,59837
|
|
1503
1503
|
mteb/models/model_implementations/kblab.py,sha256=DDh8gDEI6YPjS4_yGYWC4HatE0mFf7vhGDU83zzV7V0,866
|
|
1504
1504
|
mteb/models/model_implementations/kennethenevoldsen_models.py,sha256=DF-9nmsewYO9ikZ0kV81ujKGr7Ot36-9iPoxN7KX2mY,2993
|
|
@@ -1521,8 +1521,8 @@ mteb/models/model_implementations/mxbai_models.py,sha256=33ta2BnhvKYBUgE89wFgPNf
|
|
|
1521
1521
|
mteb/models/model_implementations/nbailab.py,sha256=bqqR0qs10IH2g5HC6K962tDMBciw8qFsNVHADNS72jk,2396
|
|
1522
1522
|
mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=6i-xbLRRNKuDpU-hwklwdQjgu1wnz5CecLSoc6kyd7Q,3976
|
|
1523
1523
|
mteb/models/model_implementations/nomic_models.py,sha256=mT-v5Gs5-sRH8-ziCw_CtxB9ox3C6FtwWJjNghNrunw,11334
|
|
1524
|
-
mteb/models/model_implementations/nomic_models_vision.py,sha256=
|
|
1525
|
-
mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=
|
|
1524
|
+
mteb/models/model_implementations/nomic_models_vision.py,sha256=6aca0XVLXnkGk6GW8jVCIbbjPGq98lKq4c9Az4jbEkE,6805
|
|
1525
|
+
mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=OEhVrvA-zfX2PSm76VcCDPkRyAArSFkVeweyLyzpqPI,6255
|
|
1526
1526
|
mteb/models/model_implementations/nvidia_models.py,sha256=acVverAt77lURkILCVkCdXsWgY1BJoG1-ugB7yIhlIM,21555
|
|
1527
1527
|
mteb/models/model_implementations/openai_models.py,sha256=loU6JByNUwRidq7lmcu8iGOtUQvzejw6HVLaF_IKCR0,9352
|
|
1528
1528
|
mteb/models/model_implementations/openclip_models.py,sha256=W8XcokgLU1nSmMaWpYXkWWizVd3sQezcP02YtF2fXpo,11436
|
|
@@ -1532,12 +1532,12 @@ mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py,
|
|
|
1532
1532
|
mteb/models/model_implementations/pawan_models.py,sha256=rV2ePGIuYroocvwqDXm4VU369Y_Vr67CyAE-08K5B9c,1151
|
|
1533
1533
|
mteb/models/model_implementations/piccolo_models.py,sha256=d8Dtkv_ZTUOCmJLLOuwquq-gX-2UfKvAtl_LvAS0Xi0,2113
|
|
1534
1534
|
mteb/models/model_implementations/promptriever_models.py,sha256=S7uWes_P74p3OZR_KBJHJN_ezlvvRx2__46DMCWqV5M,6328
|
|
1535
|
-
mteb/models/model_implementations/pylate_models.py,sha256=
|
|
1535
|
+
mteb/models/model_implementations/pylate_models.py,sha256=oNoPndZuiJahSd-ikR4dE4vL9261btXYiJbF3bk3Dco,14546
|
|
1536
1536
|
mteb/models/model_implementations/qodo_models.py,sha256=JDqffDlQiOEariyheybOIf3iNkqot2gTkEIHWDnRbUE,2037
|
|
1537
1537
|
mteb/models/model_implementations/qtack_models.py,sha256=biZLH5E3UWIcMZXIZNGgBZFEUvovPpAo6vUyL776W1w,1224
|
|
1538
1538
|
mteb/models/model_implementations/qwen3_models.py,sha256=F_o6ciD-6gLFfIlQYD9MsNvcbkmGzJ39eKpFlEog1rM,5132
|
|
1539
1539
|
mteb/models/model_implementations/qzhou_models.py,sha256=7KaZpHdap-YyK0QxOMHxU0W2aGismx7GZv_bNXkEOcI,3536
|
|
1540
|
-
mteb/models/model_implementations/random_baseline.py,sha256=
|
|
1540
|
+
mteb/models/model_implementations/random_baseline.py,sha256=z4xNs5fbH1HUZhtf3Ry5AKa264SWk2Y4eobRu8rmPKM,7563
|
|
1541
1541
|
mteb/models/model_implementations/rasgaard_models.py,sha256=a8F3kDSBWHH0UR7wRioOrWGQUxtloD5mU7EG27iM-68,1260
|
|
1542
1542
|
mteb/models/model_implementations/reasonir_model.py,sha256=wSCcJpUgZ0pG2g3vTEzYNmPlPG_CVn_rR0ENVCines0,2218
|
|
1543
1543
|
mteb/models/model_implementations/repllama_models.py,sha256=89HoqEpzkNysHeuf_-YhU8WETamHTogSRztGIRo6G1s,7321
|
|
@@ -1550,7 +1550,7 @@ mteb/models/model_implementations/salesforce_models.py,sha256=KslTK-IKeLvNG-vQir
|
|
|
1550
1550
|
mteb/models/model_implementations/samilpwc_models.py,sha256=oMwKNwCxoH1jZgCy04oo2oVlBZWu253QMpnEEC6emz8,2021
|
|
1551
1551
|
mteb/models/model_implementations/sarashina_embedding_models.py,sha256=TSmr2FEX79mJTA9mbEV3meEZYSelGv58Veiw__TTGFM,8415
|
|
1552
1552
|
mteb/models/model_implementations/searchmap_models.py,sha256=XvVl99emIgnNUCxkTuFQXW6py2R8vgsArfpyHveCugw,1904
|
|
1553
|
-
mteb/models/model_implementations/seed_1_6_embedding_models.py,sha256=
|
|
1553
|
+
mteb/models/model_implementations/seed_1_6_embedding_models.py,sha256=Q8JTW2fjePR9dq4spuwK2lyVeL3mn1bl-H5wkQuEV_E,18609
|
|
1554
1554
|
mteb/models/model_implementations/seed_models.py,sha256=SgK4kPVO6V33G3F1zSq06zSkWarPLEwBt1SWp4TUoVw,14142
|
|
1555
1555
|
mteb/models/model_implementations/sentence_transformers_models.py,sha256=EtEaXg1yFFp3DQEOxu6am8bcVQR-ypcHj6DCqJGHOVU,21160
|
|
1556
1556
|
mteb/models/model_implementations/shuu_model.py,sha256=KkcuVYjIzoha3Fvxh8ppqHQ9BfNMWeqDqn9dGCRKUjg,1167
|
|
@@ -1567,7 +1567,7 @@ mteb/models/model_implementations/vi_vn_models.py,sha256=quWmd3JT2J6SlAsFrV2gcnc
|
|
|
1567
1567
|
mteb/models/model_implementations/vista_models.py,sha256=Q3I01kRtIPaoke0iMIcH4CLcCDTnMSIBFNCof7LPTX4,10832
|
|
1568
1568
|
mteb/models/model_implementations/vlm2vec_models.py,sha256=HGGy_-z9Wc99xOKum71rBNipCPqWcM1efmmXgy5Rvxc,11724
|
|
1569
1569
|
mteb/models/model_implementations/voyage_models.py,sha256=dOCccOQlloGrg0q44PxMQzx8dHuQ8VgkDUD01EydpJ0,19824
|
|
1570
|
-
mteb/models/model_implementations/voyage_v.py,sha256=
|
|
1570
|
+
mteb/models/model_implementations/voyage_v.py,sha256=vT1MXCt6-_PWA9U7lNz-Qj2zyGHwm_79WqxH4elMm90,8162
|
|
1571
1571
|
mteb/models/model_implementations/xyz_models.py,sha256=TePlrH6EHwRPO87U_J3Yce9-XHCn_X7I2cJ_6BZ2fUY,1296
|
|
1572
1572
|
mteb/models/model_implementations/youtu_models.py,sha256=NB74E6z-_36HyXb8GXKn8CrmRLN68uX9eH4xcS57zl0,5938
|
|
1573
1573
|
mteb/models/model_implementations/yuan_models.py,sha256=yZ6ki6YFaoVrJ_2pPSRQaMKOsIOUo3GtmhPx1qeUl2w,939
|
|
@@ -2577,14 +2577,14 @@ mteb/tasks/zeroshot_classification/eng/sun397.py,sha256=Nls7tXM2Svu008MmAUjt-o_N
|
|
|
2577
2577
|
mteb/tasks/zeroshot_classification/eng/ucf101.py,sha256=kwNRYks-_Oe4VE3GyoHIvN-2OJ6zhkwFr76WDNL9ymU,1884
|
|
2578
2578
|
mteb/tasks/zeroshot_classification/eng/templates/__init__.py,sha256=da1PTClDMl-IBkrSvq6JC1lnS-K_BASzCvxVhNxN5Ls,13
|
|
2579
2579
|
mteb/types/__init__.py,sha256=7_q6_84RvMuHeZK51GbLc5gbpTb3C1WmnqDHm6bnCzw,1104
|
|
2580
|
-
mteb/types/_encoder_io.py,sha256=
|
|
2580
|
+
mteb/types/_encoder_io.py,sha256=Q7llxv3FfiExFKiQGHtATvbSk4_DwdJolLMPTnAPrrI,5536
|
|
2581
2581
|
mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
|
|
2582
2582
|
mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
|
|
2583
2583
|
mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
|
|
2584
2584
|
mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
|
|
2585
|
-
mteb-2.3.
|
|
2586
|
-
mteb-2.3.
|
|
2587
|
-
mteb-2.3.
|
|
2588
|
-
mteb-2.3.
|
|
2589
|
-
mteb-2.3.
|
|
2590
|
-
mteb-2.3.
|
|
2585
|
+
mteb-2.3.11.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
2586
|
+
mteb-2.3.11.dist-info/METADATA,sha256=zK0XHgO0btF1XS2eXGROlNeh8jCSj6dQV4NAT3N_Hn8,13991
|
|
2587
|
+
mteb-2.3.11.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
2588
|
+
mteb-2.3.11.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
|
|
2589
|
+
mteb-2.3.11.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
|
|
2590
|
+
mteb-2.3.11.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|