mteb 2.3.0__py3-none-any.whl → 2.3.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (27) hide show
  1. mteb/benchmarks/benchmarks/__init__.py +2 -0
  2. mteb/benchmarks/benchmarks/benchmarks.py +62 -1
  3. mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
  4. mteb/evaluate.py +38 -7
  5. mteb/leaderboard/app.py +161 -124
  6. mteb/leaderboard/benchmark_selector.py +5 -2
  7. mteb/leaderboard/table.py +2 -4
  8. mteb/models/model_implementations/colpali_models.py +4 -4
  9. mteb/models/model_implementations/colqwen_models.py +206 -2
  10. mteb/models/model_implementations/euler_models.py +25 -0
  11. mteb/models/model_implementations/jina_models.py +203 -5
  12. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +8 -9
  13. mteb/models/model_implementations/ru_sentence_models.py +9 -0
  14. mteb/models/model_implementations/vdr_models.py +1 -0
  15. mteb/models/model_implementations/yuan_models_en.py +57 -0
  16. mteb/results/model_result.py +2 -1
  17. mteb/results/task_result.py +12 -0
  18. mteb/tasks/reranking/multilingual/__init__.py +2 -0
  19. mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
  20. mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
  21. mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
  22. {mteb-2.3.0.dist-info → mteb-2.3.2.dist-info}/METADATA +5 -2
  23. {mteb-2.3.0.dist-info → mteb-2.3.2.dist-info}/RECORD +27 -23
  24. {mteb-2.3.0.dist-info → mteb-2.3.2.dist-info}/WHEEL +0 -0
  25. {mteb-2.3.0.dist-info → mteb-2.3.2.dist-info}/entry_points.txt +0 -0
  26. {mteb-2.3.0.dist-info → mteb-2.3.2.dist-info}/licenses/LICENSE +0 -0
  27. {mteb-2.3.0.dist-info → mteb-2.3.2.dist-info}/top_level.txt +0 -0
@@ -43,6 +43,7 @@ from mteb.benchmarks.benchmarks.benchmarks import (
43
43
  VN_MTEB,
44
44
  CoIR,
45
45
  MTEB_code,
46
+ MTEB_MAIN_RU_v1_1,
46
47
  MTEB_multilingual_v1,
47
48
  MTEB_multilingual_v2,
48
49
  RAR_b,
@@ -113,6 +114,7 @@ __all__ = [
113
114
  "VISUAL_DOCUMENT_RETRIEVAL",
114
115
  "VN_MTEB",
115
116
  "CoIR",
117
+ "MTEB_MAIN_RU_v1_1",
116
118
  "MTEB_code",
117
119
  "MTEB_multilingual_v1",
118
120
  "MTEB_multilingual_v2",
@@ -185,7 +185,7 @@ We recommend that you use [MTEB(eng, v2)](http://mteb-leaderboard.hf.space/?benc
185
185
 
186
186
  MTEB_MAIN_RU = Benchmark(
187
187
  name="MTEB(rus, v1)",
188
- display_name="Russian",
188
+ display_name="Russian legacy",
189
189
  icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/ru.svg",
190
190
  tasks=MTEBTasks(
191
191
  get_tasks(
@@ -240,6 +240,67 @@ MTEB_MAIN_RU = Benchmark(
240
240
  year = {2024},
241
241
  }
242
242
  """,
243
+ contacts=["Samoed", "artemsnegirev", "Drozhzhinastya"],
244
+ )
245
+
246
+ MTEB_MAIN_RU_v1_1 = Benchmark(
247
+ name="MTEB(rus, v1.1)",
248
+ display_name="Russian",
249
+ icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/ru.svg",
250
+ tasks=MTEBTasks(
251
+ get_tasks(
252
+ languages=["rus"],
253
+ tasks=[
254
+ # Classification
255
+ "GeoreviewClassification",
256
+ "HeadlineClassification",
257
+ "InappropriatenessClassification",
258
+ "KinopoiskClassification",
259
+ "MassiveIntentClassification",
260
+ "MassiveScenarioClassification",
261
+ "RuReviewsClassification",
262
+ "RuSciBenchGRNTIClassification",
263
+ "RuSciBenchOECDClassification",
264
+ # Clustering
265
+ "GeoreviewClusteringP2P",
266
+ "RuSciBenchGRNTIClusteringP2P",
267
+ "RuSciBenchOECDClusteringP2P",
268
+ # MultiLabelClassification
269
+ "CEDRClassification",
270
+ "SensitiveTopicsClassification",
271
+ # PairClassification
272
+ "TERRa",
273
+ # Reranking
274
+ "MIRACLReranking",
275
+ "RuBQReranking",
276
+ # Retrieval
277
+ "MIRACLRetrievalHardNegatives.v2",
278
+ "RiaNewsRetrievalHardNegatives.v2",
279
+ "RuBQRetrieval",
280
+ # STS
281
+ "RUParaPhraserSTS",
282
+ "STS22",
283
+ ],
284
+ )
285
+ + get_tasks(
286
+ tasks=["RuSTSBenchmarkSTS"],
287
+ eval_splits=["test"],
288
+ )
289
+ ),
290
+ description="A Russian version of the Massive Text Embedding Benchmark covering the task categories of classification, clustering, reranking, pair classification, retrieval, and semantic similarity. In v1.1, MIRACLRetrieval and RiaNewsRetrieval were replaced with their HardNegatives variants for improved time-optimization measurement. MIRACLRetrievalHardNegatives and RiaNewsRetrievalHardNegatives are used in their updated versions (v2), both of which include improved default prompts.",
291
+ reference="https://aclanthology.org/2023.eacl-main.148/",
292
+ citation=r"""
293
+ @misc{snegirev2024russianfocusedembeddersexplorationrumteb,
294
+ archiveprefix = {arXiv},
295
+ author = {Artem Snegirev and Maria Tikhonova and Anna Maksimova and Alena Fenogenova and Alexander Abramov},
296
+ eprint = {2408.12503},
297
+ primaryclass = {cs.CL},
298
+ title = {The Russian-focused embedders' exploration: ruMTEB benchmark and Russian embedding model design},
299
+ url = {https://arxiv.org/abs/2408.12503},
300
+ year = {2024},
301
+ }
302
+ """,
303
+ contacts=["Samoed", "artemsnegirev", "Drozhzhinastya"],
243
304
  )
244
305
 
245
306
 
@@ -0,0 +1,466 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 33489,
4
+ "number_of_characters": 478879013,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 478570118,
7
+ "min_text_length": 37,
8
+ "average_text_length": 16119.442150291354,
9
+ "max_text_length": 287838,
10
+ "unique_texts": 29689
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 308895,
15
+ "min_text_length": 3,
16
+ "average_text_length": 81.28815789473684,
17
+ "max_text_length": 2589,
18
+ "unique_texts": 3800
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 3800,
23
+ "min_relevant_docs_per_query": 8,
24
+ "average_relevant_docs_per_query": 1.0,
25
+ "max_relevant_docs_per_query": 8,
26
+ "unique_relevant_docs": 29689
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 30400,
30
+ "min_top_ranked_per_query": 8,
31
+ "average_top_ranked_per_query": 8.0,
32
+ "max_top_ranked_per_query": 8
33
+ },
34
+ "hf_subset_descriptive_stats": {
35
+ "ar": {
36
+ "num_samples": 1759,
37
+ "number_of_characters": 17483509,
38
+ "documents_text_statistics": {
39
+ "total_text_length": 17468355,
40
+ "min_text_length": 2467,
41
+ "average_text_length": 11204.846055163567,
42
+ "max_text_length": 115382,
43
+ "unique_texts": 1559
44
+ },
45
+ "documents_image_statistics": null,
46
+ "queries_text_statistics": {
47
+ "total_text_length": 15154,
48
+ "min_text_length": 7,
49
+ "average_text_length": 75.77,
50
+ "max_text_length": 695,
51
+ "unique_texts": 200
52
+ },
53
+ "queries_image_statistics": null,
54
+ "relevant_docs_statistics": {
55
+ "num_relevant_docs": 200,
56
+ "min_relevant_docs_per_query": 8,
57
+ "average_relevant_docs_per_query": 1.0,
58
+ "max_relevant_docs_per_query": 8,
59
+ "unique_relevant_docs": 1559
60
+ },
61
+ "top_ranked_statistics": {
62
+ "num_top_ranked": 1600,
63
+ "min_top_ranked_per_query": 8,
64
+ "average_top_ranked_per_query": 8.0,
65
+ "max_top_ranked_per_query": 8
66
+ }
67
+ },
68
+ "de": {
69
+ "num_samples": 1800,
70
+ "number_of_characters": 9860028,
71
+ "documents_text_statistics": {
72
+ "total_text_length": 9835298,
73
+ "min_text_length": 107,
74
+ "average_text_length": 6147.06125,
75
+ "max_text_length": 92210,
76
+ "unique_texts": 1600
77
+ },
78
+ "documents_image_statistics": null,
79
+ "queries_text_statistics": {
80
+ "total_text_length": 24730,
81
+ "min_text_length": 10,
82
+ "average_text_length": 123.65,
83
+ "max_text_length": 957,
84
+ "unique_texts": 200
85
+ },
86
+ "queries_image_statistics": null,
87
+ "relevant_docs_statistics": {
88
+ "num_relevant_docs": 200,
89
+ "min_relevant_docs_per_query": 8,
90
+ "average_relevant_docs_per_query": 1.0,
91
+ "max_relevant_docs_per_query": 8,
92
+ "unique_relevant_docs": 1600
93
+ },
94
+ "top_ranked_statistics": {
95
+ "num_top_ranked": 1600,
96
+ "min_top_ranked_per_query": 8,
97
+ "average_top_ranked_per_query": 8.0,
98
+ "max_top_ranked_per_query": 8
99
+ }
100
+ },
101
+ "en": {
102
+ "num_samples": 6878,
103
+ "number_of_characters": 221164232,
104
+ "documents_text_statistics": {
105
+ "total_text_length": 221099168,
106
+ "min_text_length": 12147,
107
+ "average_text_length": 36376.96084238236,
108
+ "max_text_length": 287838,
109
+ "unique_texts": 6078
110
+ },
111
+ "documents_image_statistics": null,
112
+ "queries_text_statistics": {
113
+ "total_text_length": 65064,
114
+ "min_text_length": 18,
115
+ "average_text_length": 81.33,
116
+ "max_text_length": 255,
117
+ "unique_texts": 800
118
+ },
119
+ "queries_image_statistics": null,
120
+ "relevant_docs_statistics": {
121
+ "num_relevant_docs": 800,
122
+ "min_relevant_docs_per_query": 8,
123
+ "average_relevant_docs_per_query": 1.0,
124
+ "max_relevant_docs_per_query": 8,
125
+ "unique_relevant_docs": 6078
126
+ },
127
+ "top_ranked_statistics": {
128
+ "num_top_ranked": 6400,
129
+ "min_top_ranked_per_query": 8,
130
+ "average_top_ranked_per_query": 8.0,
131
+ "max_top_ranked_per_query": 8
132
+ }
133
+ },
134
+ "es": {
135
+ "num_samples": 1780,
136
+ "number_of_characters": 20852843,
137
+ "documents_text_statistics": {
138
+ "total_text_length": 20826446,
139
+ "min_text_length": 2657,
140
+ "average_text_length": 13181.29493670886,
141
+ "max_text_length": 270338,
142
+ "unique_texts": 1580
143
+ },
144
+ "documents_image_statistics": null,
145
+ "queries_text_statistics": {
146
+ "total_text_length": 26397,
147
+ "min_text_length": 40,
148
+ "average_text_length": 131.985,
149
+ "max_text_length": 480,
150
+ "unique_texts": 200
151
+ },
152
+ "queries_image_statistics": null,
153
+ "relevant_docs_statistics": {
154
+ "num_relevant_docs": 200,
155
+ "min_relevant_docs_per_query": 8,
156
+ "average_relevant_docs_per_query": 1.0,
157
+ "max_relevant_docs_per_query": 8,
158
+ "unique_relevant_docs": 1580
159
+ },
160
+ "top_ranked_statistics": {
161
+ "num_top_ranked": 1600,
162
+ "min_top_ranked_per_query": 8,
163
+ "average_top_ranked_per_query": 8.0,
164
+ "max_top_ranked_per_query": 8
165
+ }
166
+ },
167
+ "fr": {
168
+ "num_samples": 1762,
169
+ "number_of_characters": 17828712,
170
+ "documents_text_statistics": {
171
+ "total_text_length": 17798753,
172
+ "min_text_length": 2093,
173
+ "average_text_length": 11394.848271446863,
174
+ "max_text_length": 133854,
175
+ "unique_texts": 1562
176
+ },
177
+ "documents_image_statistics": null,
178
+ "queries_text_statistics": {
179
+ "total_text_length": 29959,
180
+ "min_text_length": 33,
181
+ "average_text_length": 149.795,
182
+ "max_text_length": 2589,
183
+ "unique_texts": 200
184
+ },
185
+ "queries_image_statistics": null,
186
+ "relevant_docs_statistics": {
187
+ "num_relevant_docs": 200,
188
+ "min_relevant_docs_per_query": 8,
189
+ "average_relevant_docs_per_query": 1.0,
190
+ "max_relevant_docs_per_query": 8,
191
+ "unique_relevant_docs": 1562
192
+ },
193
+ "top_ranked_statistics": {
194
+ "num_top_ranked": 1600,
195
+ "min_top_ranked_per_query": 8,
196
+ "average_top_ranked_per_query": 8.0,
197
+ "max_top_ranked_per_query": 8
198
+ }
199
+ },
200
+ "hi": {
201
+ "num_samples": 1715,
202
+ "number_of_characters": 18465376,
203
+ "documents_text_statistics": {
204
+ "total_text_length": 18444624,
205
+ "min_text_length": 2426,
206
+ "average_text_length": 12174.669306930693,
207
+ "max_text_length": 227264,
208
+ "unique_texts": 1515
209
+ },
210
+ "documents_image_statistics": null,
211
+ "queries_text_statistics": {
212
+ "total_text_length": 20752,
213
+ "min_text_length": 6,
214
+ "average_text_length": 103.76,
215
+ "max_text_length": 2022,
216
+ "unique_texts": 200
217
+ },
218
+ "queries_image_statistics": null,
219
+ "relevant_docs_statistics": {
220
+ "num_relevant_docs": 200,
221
+ "min_relevant_docs_per_query": 8,
222
+ "average_relevant_docs_per_query": 1.0,
223
+ "max_relevant_docs_per_query": 8,
224
+ "unique_relevant_docs": 1515
225
+ },
226
+ "top_ranked_statistics": {
227
+ "num_top_ranked": 1600,
228
+ "min_top_ranked_per_query": 8,
229
+ "average_top_ranked_per_query": 8.0,
230
+ "max_top_ranked_per_query": 8
231
+ }
232
+ },
233
+ "it": {
234
+ "num_samples": 1780,
235
+ "number_of_characters": 22616410,
236
+ "documents_text_statistics": {
237
+ "total_text_length": 22593491,
238
+ "min_text_length": 2518,
239
+ "average_text_length": 14299.677848101266,
240
+ "max_text_length": 117197,
241
+ "unique_texts": 1580
242
+ },
243
+ "documents_image_statistics": null,
244
+ "queries_text_statistics": {
245
+ "total_text_length": 22919,
246
+ "min_text_length": 12,
247
+ "average_text_length": 114.595,
248
+ "max_text_length": 1899,
249
+ "unique_texts": 200
250
+ },
251
+ "queries_image_statistics": null,
252
+ "relevant_docs_statistics": {
253
+ "num_relevant_docs": 200,
254
+ "min_relevant_docs_per_query": 8,
255
+ "average_relevant_docs_per_query": 1.0,
256
+ "max_relevant_docs_per_query": 8,
257
+ "unique_relevant_docs": 1580
258
+ },
259
+ "top_ranked_statistics": {
260
+ "num_top_ranked": 1600,
261
+ "min_top_ranked_per_query": 8,
262
+ "average_top_ranked_per_query": 8.0,
263
+ "max_top_ranked_per_query": 8
264
+ }
265
+ },
266
+ "ja": {
267
+ "num_samples": 1781,
268
+ "number_of_characters": 8562074,
269
+ "documents_text_statistics": {
270
+ "total_text_length": 8550928,
271
+ "min_text_length": 1244,
272
+ "average_text_length": 5408.556609740671,
273
+ "max_text_length": 97242,
274
+ "unique_texts": 1581
275
+ },
276
+ "documents_image_statistics": null,
277
+ "queries_text_statistics": {
278
+ "total_text_length": 11146,
279
+ "min_text_length": 6,
280
+ "average_text_length": 55.73,
281
+ "max_text_length": 416,
282
+ "unique_texts": 200
283
+ },
284
+ "queries_image_statistics": null,
285
+ "relevant_docs_statistics": {
286
+ "num_relevant_docs": 200,
287
+ "min_relevant_docs_per_query": 8,
288
+ "average_relevant_docs_per_query": 1.0,
289
+ "max_relevant_docs_per_query": 8,
290
+ "unique_relevant_docs": 1581
291
+ },
292
+ "top_ranked_statistics": {
293
+ "num_top_ranked": 1600,
294
+ "min_top_ranked_per_query": 8,
295
+ "average_top_ranked_per_query": 8.0,
296
+ "max_top_ranked_per_query": 8
297
+ }
298
+ },
299
+ "ko": {
300
+ "num_samples": 1770,
301
+ "number_of_characters": 9773349,
302
+ "documents_text_statistics": {
303
+ "total_text_length": 9761605,
304
+ "min_text_length": 1490,
305
+ "average_text_length": 6217.58280254777,
306
+ "max_text_length": 76949,
307
+ "unique_texts": 1570
308
+ },
309
+ "documents_image_statistics": null,
310
+ "queries_text_statistics": {
311
+ "total_text_length": 11744,
312
+ "min_text_length": 8,
313
+ "average_text_length": 58.72,
314
+ "max_text_length": 330,
315
+ "unique_texts": 200
316
+ },
317
+ "queries_image_statistics": null,
318
+ "relevant_docs_statistics": {
319
+ "num_relevant_docs": 200,
320
+ "min_relevant_docs_per_query": 8,
321
+ "average_relevant_docs_per_query": 1.0,
322
+ "max_relevant_docs_per_query": 8,
323
+ "unique_relevant_docs": 1570
324
+ },
325
+ "top_ranked_statistics": {
326
+ "num_top_ranked": 1600,
327
+ "min_top_ranked_per_query": 8,
328
+ "average_top_ranked_per_query": 8.0,
329
+ "max_top_ranked_per_query": 8
330
+ }
331
+ },
332
+ "pt": {
333
+ "num_samples": 1764,
334
+ "number_of_characters": 23152911,
335
+ "documents_text_statistics": {
336
+ "total_text_length": 23130220,
337
+ "min_text_length": 3473,
338
+ "average_text_length": 14789.143222506395,
339
+ "max_text_length": 108535,
340
+ "unique_texts": 1564
341
+ },
342
+ "documents_image_statistics": null,
343
+ "queries_text_statistics": {
344
+ "total_text_length": 22691,
345
+ "min_text_length": 4,
346
+ "average_text_length": 113.455,
347
+ "max_text_length": 511,
348
+ "unique_texts": 200
349
+ },
350
+ "queries_image_statistics": null,
351
+ "relevant_docs_statistics": {
352
+ "num_relevant_docs": 200,
353
+ "min_relevant_docs_per_query": 8,
354
+ "average_relevant_docs_per_query": 1.0,
355
+ "max_relevant_docs_per_query": 8,
356
+ "unique_relevant_docs": 1564
357
+ },
358
+ "top_ranked_statistics": {
359
+ "num_top_ranked": 1600,
360
+ "min_top_ranked_per_query": 8,
361
+ "average_top_ranked_per_query": 8.0,
362
+ "max_top_ranked_per_query": 8
363
+ }
364
+ },
365
+ "ru": {
366
+ "num_samples": 1779,
367
+ "number_of_characters": 22994826,
368
+ "documents_text_statistics": {
369
+ "total_text_length": 22975852,
370
+ "min_text_length": 2914,
371
+ "average_text_length": 14550.887903736542,
372
+ "max_text_length": 151133,
373
+ "unique_texts": 1579
374
+ },
375
+ "documents_image_statistics": null,
376
+ "queries_text_statistics": {
377
+ "total_text_length": 18974,
378
+ "min_text_length": 12,
379
+ "average_text_length": 94.87,
380
+ "max_text_length": 413,
381
+ "unique_texts": 200
382
+ },
383
+ "queries_image_statistics": null,
384
+ "relevant_docs_statistics": {
385
+ "num_relevant_docs": 200,
386
+ "min_relevant_docs_per_query": 8,
387
+ "average_relevant_docs_per_query": 1.0,
388
+ "max_relevant_docs_per_query": 8,
389
+ "unique_relevant_docs": 1579
390
+ },
391
+ "top_ranked_statistics": {
392
+ "num_top_ranked": 1600,
393
+ "min_top_ranked_per_query": 8,
394
+ "average_top_ranked_per_query": 8.0,
395
+ "max_top_ranked_per_query": 8
396
+ }
397
+ },
398
+ "th": {
399
+ "num_samples": 1800,
400
+ "number_of_characters": 8022609,
401
+ "documents_text_statistics": {
402
+ "total_text_length": 8003011,
403
+ "min_text_length": 37,
404
+ "average_text_length": 5001.881875,
405
+ "max_text_length": 44872,
406
+ "unique_texts": 1600
407
+ },
408
+ "documents_image_statistics": null,
409
+ "queries_text_statistics": {
410
+ "total_text_length": 19598,
411
+ "min_text_length": 11,
412
+ "average_text_length": 97.99,
413
+ "max_text_length": 309,
414
+ "unique_texts": 200
415
+ },
416
+ "queries_image_statistics": null,
417
+ "relevant_docs_statistics": {
418
+ "num_relevant_docs": 200,
419
+ "min_relevant_docs_per_query": 8,
420
+ "average_relevant_docs_per_query": 1.0,
421
+ "max_relevant_docs_per_query": 8,
422
+ "unique_relevant_docs": 1600
423
+ },
424
+ "top_ranked_statistics": {
425
+ "num_top_ranked": 1600,
426
+ "min_top_ranked_per_query": 8,
427
+ "average_top_ranked_per_query": 8.0,
428
+ "max_top_ranked_per_query": 8
429
+ }
430
+ },
431
+ "zh": {
432
+ "num_samples": 7121,
433
+ "number_of_characters": 78102134,
434
+ "documents_text_statistics": {
435
+ "total_text_length": 78082367,
436
+ "min_text_length": 6268,
437
+ "average_text_length": 12352.850340136054,
438
+ "max_text_length": 278468,
439
+ "unique_texts": 6321
440
+ },
441
+ "documents_image_statistics": null,
442
+ "queries_text_statistics": {
443
+ "total_text_length": 19767,
444
+ "min_text_length": 3,
445
+ "average_text_length": 24.70875,
446
+ "max_text_length": 646,
447
+ "unique_texts": 800
448
+ },
449
+ "queries_image_statistics": null,
450
+ "relevant_docs_statistics": {
451
+ "num_relevant_docs": 800,
452
+ "min_relevant_docs_per_query": 8,
453
+ "average_relevant_docs_per_query": 1.0,
454
+ "max_relevant_docs_per_query": 8,
455
+ "unique_relevant_docs": 6321
456
+ },
457
+ "top_ranked_statistics": {
458
+ "num_top_ranked": 6400,
459
+ "min_top_ranked_per_query": 8,
460
+ "average_top_ranked_per_query": 8.0,
461
+ "max_top_ranked_per_query": 8
462
+ }
463
+ }
464
+ }
465
+ }
466
+ }