mteb 2.3.0__py3-none-any.whl → 2.3.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/evaluate.py +38 -7
- mteb/models/model_implementations/colpali_models.py +4 -4
- mteb/models/model_implementations/colqwen_models.py +206 -2
- mteb/models/model_implementations/euler_models.py +25 -0
- mteb/models/model_implementations/jina_models.py +203 -5
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +8 -9
- mteb/models/model_implementations/vdr_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +57 -0
- mteb/results/model_result.py +2 -1
- mteb/results/task_result.py +12 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- {mteb-2.3.0.dist-info → mteb-2.3.1.dist-info}/METADATA +4 -1
- {mteb-2.3.0.dist-info → mteb-2.3.1.dist-info}/RECORD +21 -17
- {mteb-2.3.0.dist-info → mteb-2.3.1.dist-info}/WHEEL +0 -0
- {mteb-2.3.0.dist-info → mteb-2.3.1.dist-info}/entry_points.txt +0 -0
- {mteb-2.3.0.dist-info → mteb-2.3.1.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.3.0.dist-info → mteb-2.3.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,466 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 33489,
|
|
4
|
+
"number_of_characters": 478879013,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 478570118,
|
|
7
|
+
"min_text_length": 37,
|
|
8
|
+
"average_text_length": 16119.442150291354,
|
|
9
|
+
"max_text_length": 287838,
|
|
10
|
+
"unique_texts": 29689
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 308895,
|
|
15
|
+
"min_text_length": 3,
|
|
16
|
+
"average_text_length": 81.28815789473684,
|
|
17
|
+
"max_text_length": 2589,
|
|
18
|
+
"unique_texts": 3800
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 3800,
|
|
23
|
+
"min_relevant_docs_per_query": 8,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 8,
|
|
26
|
+
"unique_relevant_docs": 29689
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 30400,
|
|
30
|
+
"min_top_ranked_per_query": 8,
|
|
31
|
+
"average_top_ranked_per_query": 8.0,
|
|
32
|
+
"max_top_ranked_per_query": 8
|
|
33
|
+
},
|
|
34
|
+
"hf_subset_descriptive_stats": {
|
|
35
|
+
"ar": {
|
|
36
|
+
"num_samples": 1759,
|
|
37
|
+
"number_of_characters": 17483509,
|
|
38
|
+
"documents_text_statistics": {
|
|
39
|
+
"total_text_length": 17468355,
|
|
40
|
+
"min_text_length": 2467,
|
|
41
|
+
"average_text_length": 11204.846055163567,
|
|
42
|
+
"max_text_length": 115382,
|
|
43
|
+
"unique_texts": 1559
|
|
44
|
+
},
|
|
45
|
+
"documents_image_statistics": null,
|
|
46
|
+
"queries_text_statistics": {
|
|
47
|
+
"total_text_length": 15154,
|
|
48
|
+
"min_text_length": 7,
|
|
49
|
+
"average_text_length": 75.77,
|
|
50
|
+
"max_text_length": 695,
|
|
51
|
+
"unique_texts": 200
|
|
52
|
+
},
|
|
53
|
+
"queries_image_statistics": null,
|
|
54
|
+
"relevant_docs_statistics": {
|
|
55
|
+
"num_relevant_docs": 200,
|
|
56
|
+
"min_relevant_docs_per_query": 8,
|
|
57
|
+
"average_relevant_docs_per_query": 1.0,
|
|
58
|
+
"max_relevant_docs_per_query": 8,
|
|
59
|
+
"unique_relevant_docs": 1559
|
|
60
|
+
},
|
|
61
|
+
"top_ranked_statistics": {
|
|
62
|
+
"num_top_ranked": 1600,
|
|
63
|
+
"min_top_ranked_per_query": 8,
|
|
64
|
+
"average_top_ranked_per_query": 8.0,
|
|
65
|
+
"max_top_ranked_per_query": 8
|
|
66
|
+
}
|
|
67
|
+
},
|
|
68
|
+
"de": {
|
|
69
|
+
"num_samples": 1800,
|
|
70
|
+
"number_of_characters": 9860028,
|
|
71
|
+
"documents_text_statistics": {
|
|
72
|
+
"total_text_length": 9835298,
|
|
73
|
+
"min_text_length": 107,
|
|
74
|
+
"average_text_length": 6147.06125,
|
|
75
|
+
"max_text_length": 92210,
|
|
76
|
+
"unique_texts": 1600
|
|
77
|
+
},
|
|
78
|
+
"documents_image_statistics": null,
|
|
79
|
+
"queries_text_statistics": {
|
|
80
|
+
"total_text_length": 24730,
|
|
81
|
+
"min_text_length": 10,
|
|
82
|
+
"average_text_length": 123.65,
|
|
83
|
+
"max_text_length": 957,
|
|
84
|
+
"unique_texts": 200
|
|
85
|
+
},
|
|
86
|
+
"queries_image_statistics": null,
|
|
87
|
+
"relevant_docs_statistics": {
|
|
88
|
+
"num_relevant_docs": 200,
|
|
89
|
+
"min_relevant_docs_per_query": 8,
|
|
90
|
+
"average_relevant_docs_per_query": 1.0,
|
|
91
|
+
"max_relevant_docs_per_query": 8,
|
|
92
|
+
"unique_relevant_docs": 1600
|
|
93
|
+
},
|
|
94
|
+
"top_ranked_statistics": {
|
|
95
|
+
"num_top_ranked": 1600,
|
|
96
|
+
"min_top_ranked_per_query": 8,
|
|
97
|
+
"average_top_ranked_per_query": 8.0,
|
|
98
|
+
"max_top_ranked_per_query": 8
|
|
99
|
+
}
|
|
100
|
+
},
|
|
101
|
+
"en": {
|
|
102
|
+
"num_samples": 6878,
|
|
103
|
+
"number_of_characters": 221164232,
|
|
104
|
+
"documents_text_statistics": {
|
|
105
|
+
"total_text_length": 221099168,
|
|
106
|
+
"min_text_length": 12147,
|
|
107
|
+
"average_text_length": 36376.96084238236,
|
|
108
|
+
"max_text_length": 287838,
|
|
109
|
+
"unique_texts": 6078
|
|
110
|
+
},
|
|
111
|
+
"documents_image_statistics": null,
|
|
112
|
+
"queries_text_statistics": {
|
|
113
|
+
"total_text_length": 65064,
|
|
114
|
+
"min_text_length": 18,
|
|
115
|
+
"average_text_length": 81.33,
|
|
116
|
+
"max_text_length": 255,
|
|
117
|
+
"unique_texts": 800
|
|
118
|
+
},
|
|
119
|
+
"queries_image_statistics": null,
|
|
120
|
+
"relevant_docs_statistics": {
|
|
121
|
+
"num_relevant_docs": 800,
|
|
122
|
+
"min_relevant_docs_per_query": 8,
|
|
123
|
+
"average_relevant_docs_per_query": 1.0,
|
|
124
|
+
"max_relevant_docs_per_query": 8,
|
|
125
|
+
"unique_relevant_docs": 6078
|
|
126
|
+
},
|
|
127
|
+
"top_ranked_statistics": {
|
|
128
|
+
"num_top_ranked": 6400,
|
|
129
|
+
"min_top_ranked_per_query": 8,
|
|
130
|
+
"average_top_ranked_per_query": 8.0,
|
|
131
|
+
"max_top_ranked_per_query": 8
|
|
132
|
+
}
|
|
133
|
+
},
|
|
134
|
+
"es": {
|
|
135
|
+
"num_samples": 1780,
|
|
136
|
+
"number_of_characters": 20852843,
|
|
137
|
+
"documents_text_statistics": {
|
|
138
|
+
"total_text_length": 20826446,
|
|
139
|
+
"min_text_length": 2657,
|
|
140
|
+
"average_text_length": 13181.29493670886,
|
|
141
|
+
"max_text_length": 270338,
|
|
142
|
+
"unique_texts": 1580
|
|
143
|
+
},
|
|
144
|
+
"documents_image_statistics": null,
|
|
145
|
+
"queries_text_statistics": {
|
|
146
|
+
"total_text_length": 26397,
|
|
147
|
+
"min_text_length": 40,
|
|
148
|
+
"average_text_length": 131.985,
|
|
149
|
+
"max_text_length": 480,
|
|
150
|
+
"unique_texts": 200
|
|
151
|
+
},
|
|
152
|
+
"queries_image_statistics": null,
|
|
153
|
+
"relevant_docs_statistics": {
|
|
154
|
+
"num_relevant_docs": 200,
|
|
155
|
+
"min_relevant_docs_per_query": 8,
|
|
156
|
+
"average_relevant_docs_per_query": 1.0,
|
|
157
|
+
"max_relevant_docs_per_query": 8,
|
|
158
|
+
"unique_relevant_docs": 1580
|
|
159
|
+
},
|
|
160
|
+
"top_ranked_statistics": {
|
|
161
|
+
"num_top_ranked": 1600,
|
|
162
|
+
"min_top_ranked_per_query": 8,
|
|
163
|
+
"average_top_ranked_per_query": 8.0,
|
|
164
|
+
"max_top_ranked_per_query": 8
|
|
165
|
+
}
|
|
166
|
+
},
|
|
167
|
+
"fr": {
|
|
168
|
+
"num_samples": 1762,
|
|
169
|
+
"number_of_characters": 17828712,
|
|
170
|
+
"documents_text_statistics": {
|
|
171
|
+
"total_text_length": 17798753,
|
|
172
|
+
"min_text_length": 2093,
|
|
173
|
+
"average_text_length": 11394.848271446863,
|
|
174
|
+
"max_text_length": 133854,
|
|
175
|
+
"unique_texts": 1562
|
|
176
|
+
},
|
|
177
|
+
"documents_image_statistics": null,
|
|
178
|
+
"queries_text_statistics": {
|
|
179
|
+
"total_text_length": 29959,
|
|
180
|
+
"min_text_length": 33,
|
|
181
|
+
"average_text_length": 149.795,
|
|
182
|
+
"max_text_length": 2589,
|
|
183
|
+
"unique_texts": 200
|
|
184
|
+
},
|
|
185
|
+
"queries_image_statistics": null,
|
|
186
|
+
"relevant_docs_statistics": {
|
|
187
|
+
"num_relevant_docs": 200,
|
|
188
|
+
"min_relevant_docs_per_query": 8,
|
|
189
|
+
"average_relevant_docs_per_query": 1.0,
|
|
190
|
+
"max_relevant_docs_per_query": 8,
|
|
191
|
+
"unique_relevant_docs": 1562
|
|
192
|
+
},
|
|
193
|
+
"top_ranked_statistics": {
|
|
194
|
+
"num_top_ranked": 1600,
|
|
195
|
+
"min_top_ranked_per_query": 8,
|
|
196
|
+
"average_top_ranked_per_query": 8.0,
|
|
197
|
+
"max_top_ranked_per_query": 8
|
|
198
|
+
}
|
|
199
|
+
},
|
|
200
|
+
"hi": {
|
|
201
|
+
"num_samples": 1715,
|
|
202
|
+
"number_of_characters": 18465376,
|
|
203
|
+
"documents_text_statistics": {
|
|
204
|
+
"total_text_length": 18444624,
|
|
205
|
+
"min_text_length": 2426,
|
|
206
|
+
"average_text_length": 12174.669306930693,
|
|
207
|
+
"max_text_length": 227264,
|
|
208
|
+
"unique_texts": 1515
|
|
209
|
+
},
|
|
210
|
+
"documents_image_statistics": null,
|
|
211
|
+
"queries_text_statistics": {
|
|
212
|
+
"total_text_length": 20752,
|
|
213
|
+
"min_text_length": 6,
|
|
214
|
+
"average_text_length": 103.76,
|
|
215
|
+
"max_text_length": 2022,
|
|
216
|
+
"unique_texts": 200
|
|
217
|
+
},
|
|
218
|
+
"queries_image_statistics": null,
|
|
219
|
+
"relevant_docs_statistics": {
|
|
220
|
+
"num_relevant_docs": 200,
|
|
221
|
+
"min_relevant_docs_per_query": 8,
|
|
222
|
+
"average_relevant_docs_per_query": 1.0,
|
|
223
|
+
"max_relevant_docs_per_query": 8,
|
|
224
|
+
"unique_relevant_docs": 1515
|
|
225
|
+
},
|
|
226
|
+
"top_ranked_statistics": {
|
|
227
|
+
"num_top_ranked": 1600,
|
|
228
|
+
"min_top_ranked_per_query": 8,
|
|
229
|
+
"average_top_ranked_per_query": 8.0,
|
|
230
|
+
"max_top_ranked_per_query": 8
|
|
231
|
+
}
|
|
232
|
+
},
|
|
233
|
+
"it": {
|
|
234
|
+
"num_samples": 1780,
|
|
235
|
+
"number_of_characters": 22616410,
|
|
236
|
+
"documents_text_statistics": {
|
|
237
|
+
"total_text_length": 22593491,
|
|
238
|
+
"min_text_length": 2518,
|
|
239
|
+
"average_text_length": 14299.677848101266,
|
|
240
|
+
"max_text_length": 117197,
|
|
241
|
+
"unique_texts": 1580
|
|
242
|
+
},
|
|
243
|
+
"documents_image_statistics": null,
|
|
244
|
+
"queries_text_statistics": {
|
|
245
|
+
"total_text_length": 22919,
|
|
246
|
+
"min_text_length": 12,
|
|
247
|
+
"average_text_length": 114.595,
|
|
248
|
+
"max_text_length": 1899,
|
|
249
|
+
"unique_texts": 200
|
|
250
|
+
},
|
|
251
|
+
"queries_image_statistics": null,
|
|
252
|
+
"relevant_docs_statistics": {
|
|
253
|
+
"num_relevant_docs": 200,
|
|
254
|
+
"min_relevant_docs_per_query": 8,
|
|
255
|
+
"average_relevant_docs_per_query": 1.0,
|
|
256
|
+
"max_relevant_docs_per_query": 8,
|
|
257
|
+
"unique_relevant_docs": 1580
|
|
258
|
+
},
|
|
259
|
+
"top_ranked_statistics": {
|
|
260
|
+
"num_top_ranked": 1600,
|
|
261
|
+
"min_top_ranked_per_query": 8,
|
|
262
|
+
"average_top_ranked_per_query": 8.0,
|
|
263
|
+
"max_top_ranked_per_query": 8
|
|
264
|
+
}
|
|
265
|
+
},
|
|
266
|
+
"ja": {
|
|
267
|
+
"num_samples": 1781,
|
|
268
|
+
"number_of_characters": 8562074,
|
|
269
|
+
"documents_text_statistics": {
|
|
270
|
+
"total_text_length": 8550928,
|
|
271
|
+
"min_text_length": 1244,
|
|
272
|
+
"average_text_length": 5408.556609740671,
|
|
273
|
+
"max_text_length": 97242,
|
|
274
|
+
"unique_texts": 1581
|
|
275
|
+
},
|
|
276
|
+
"documents_image_statistics": null,
|
|
277
|
+
"queries_text_statistics": {
|
|
278
|
+
"total_text_length": 11146,
|
|
279
|
+
"min_text_length": 6,
|
|
280
|
+
"average_text_length": 55.73,
|
|
281
|
+
"max_text_length": 416,
|
|
282
|
+
"unique_texts": 200
|
|
283
|
+
},
|
|
284
|
+
"queries_image_statistics": null,
|
|
285
|
+
"relevant_docs_statistics": {
|
|
286
|
+
"num_relevant_docs": 200,
|
|
287
|
+
"min_relevant_docs_per_query": 8,
|
|
288
|
+
"average_relevant_docs_per_query": 1.0,
|
|
289
|
+
"max_relevant_docs_per_query": 8,
|
|
290
|
+
"unique_relevant_docs": 1581
|
|
291
|
+
},
|
|
292
|
+
"top_ranked_statistics": {
|
|
293
|
+
"num_top_ranked": 1600,
|
|
294
|
+
"min_top_ranked_per_query": 8,
|
|
295
|
+
"average_top_ranked_per_query": 8.0,
|
|
296
|
+
"max_top_ranked_per_query": 8
|
|
297
|
+
}
|
|
298
|
+
},
|
|
299
|
+
"ko": {
|
|
300
|
+
"num_samples": 1770,
|
|
301
|
+
"number_of_characters": 9773349,
|
|
302
|
+
"documents_text_statistics": {
|
|
303
|
+
"total_text_length": 9761605,
|
|
304
|
+
"min_text_length": 1490,
|
|
305
|
+
"average_text_length": 6217.58280254777,
|
|
306
|
+
"max_text_length": 76949,
|
|
307
|
+
"unique_texts": 1570
|
|
308
|
+
},
|
|
309
|
+
"documents_image_statistics": null,
|
|
310
|
+
"queries_text_statistics": {
|
|
311
|
+
"total_text_length": 11744,
|
|
312
|
+
"min_text_length": 8,
|
|
313
|
+
"average_text_length": 58.72,
|
|
314
|
+
"max_text_length": 330,
|
|
315
|
+
"unique_texts": 200
|
|
316
|
+
},
|
|
317
|
+
"queries_image_statistics": null,
|
|
318
|
+
"relevant_docs_statistics": {
|
|
319
|
+
"num_relevant_docs": 200,
|
|
320
|
+
"min_relevant_docs_per_query": 8,
|
|
321
|
+
"average_relevant_docs_per_query": 1.0,
|
|
322
|
+
"max_relevant_docs_per_query": 8,
|
|
323
|
+
"unique_relevant_docs": 1570
|
|
324
|
+
},
|
|
325
|
+
"top_ranked_statistics": {
|
|
326
|
+
"num_top_ranked": 1600,
|
|
327
|
+
"min_top_ranked_per_query": 8,
|
|
328
|
+
"average_top_ranked_per_query": 8.0,
|
|
329
|
+
"max_top_ranked_per_query": 8
|
|
330
|
+
}
|
|
331
|
+
},
|
|
332
|
+
"pt": {
|
|
333
|
+
"num_samples": 1764,
|
|
334
|
+
"number_of_characters": 23152911,
|
|
335
|
+
"documents_text_statistics": {
|
|
336
|
+
"total_text_length": 23130220,
|
|
337
|
+
"min_text_length": 3473,
|
|
338
|
+
"average_text_length": 14789.143222506395,
|
|
339
|
+
"max_text_length": 108535,
|
|
340
|
+
"unique_texts": 1564
|
|
341
|
+
},
|
|
342
|
+
"documents_image_statistics": null,
|
|
343
|
+
"queries_text_statistics": {
|
|
344
|
+
"total_text_length": 22691,
|
|
345
|
+
"min_text_length": 4,
|
|
346
|
+
"average_text_length": 113.455,
|
|
347
|
+
"max_text_length": 511,
|
|
348
|
+
"unique_texts": 200
|
|
349
|
+
},
|
|
350
|
+
"queries_image_statistics": null,
|
|
351
|
+
"relevant_docs_statistics": {
|
|
352
|
+
"num_relevant_docs": 200,
|
|
353
|
+
"min_relevant_docs_per_query": 8,
|
|
354
|
+
"average_relevant_docs_per_query": 1.0,
|
|
355
|
+
"max_relevant_docs_per_query": 8,
|
|
356
|
+
"unique_relevant_docs": 1564
|
|
357
|
+
},
|
|
358
|
+
"top_ranked_statistics": {
|
|
359
|
+
"num_top_ranked": 1600,
|
|
360
|
+
"min_top_ranked_per_query": 8,
|
|
361
|
+
"average_top_ranked_per_query": 8.0,
|
|
362
|
+
"max_top_ranked_per_query": 8
|
|
363
|
+
}
|
|
364
|
+
},
|
|
365
|
+
"ru": {
|
|
366
|
+
"num_samples": 1779,
|
|
367
|
+
"number_of_characters": 22994826,
|
|
368
|
+
"documents_text_statistics": {
|
|
369
|
+
"total_text_length": 22975852,
|
|
370
|
+
"min_text_length": 2914,
|
|
371
|
+
"average_text_length": 14550.887903736542,
|
|
372
|
+
"max_text_length": 151133,
|
|
373
|
+
"unique_texts": 1579
|
|
374
|
+
},
|
|
375
|
+
"documents_image_statistics": null,
|
|
376
|
+
"queries_text_statistics": {
|
|
377
|
+
"total_text_length": 18974,
|
|
378
|
+
"min_text_length": 12,
|
|
379
|
+
"average_text_length": 94.87,
|
|
380
|
+
"max_text_length": 413,
|
|
381
|
+
"unique_texts": 200
|
|
382
|
+
},
|
|
383
|
+
"queries_image_statistics": null,
|
|
384
|
+
"relevant_docs_statistics": {
|
|
385
|
+
"num_relevant_docs": 200,
|
|
386
|
+
"min_relevant_docs_per_query": 8,
|
|
387
|
+
"average_relevant_docs_per_query": 1.0,
|
|
388
|
+
"max_relevant_docs_per_query": 8,
|
|
389
|
+
"unique_relevant_docs": 1579
|
|
390
|
+
},
|
|
391
|
+
"top_ranked_statistics": {
|
|
392
|
+
"num_top_ranked": 1600,
|
|
393
|
+
"min_top_ranked_per_query": 8,
|
|
394
|
+
"average_top_ranked_per_query": 8.0,
|
|
395
|
+
"max_top_ranked_per_query": 8
|
|
396
|
+
}
|
|
397
|
+
},
|
|
398
|
+
"th": {
|
|
399
|
+
"num_samples": 1800,
|
|
400
|
+
"number_of_characters": 8022609,
|
|
401
|
+
"documents_text_statistics": {
|
|
402
|
+
"total_text_length": 8003011,
|
|
403
|
+
"min_text_length": 37,
|
|
404
|
+
"average_text_length": 5001.881875,
|
|
405
|
+
"max_text_length": 44872,
|
|
406
|
+
"unique_texts": 1600
|
|
407
|
+
},
|
|
408
|
+
"documents_image_statistics": null,
|
|
409
|
+
"queries_text_statistics": {
|
|
410
|
+
"total_text_length": 19598,
|
|
411
|
+
"min_text_length": 11,
|
|
412
|
+
"average_text_length": 97.99,
|
|
413
|
+
"max_text_length": 309,
|
|
414
|
+
"unique_texts": 200
|
|
415
|
+
},
|
|
416
|
+
"queries_image_statistics": null,
|
|
417
|
+
"relevant_docs_statistics": {
|
|
418
|
+
"num_relevant_docs": 200,
|
|
419
|
+
"min_relevant_docs_per_query": 8,
|
|
420
|
+
"average_relevant_docs_per_query": 1.0,
|
|
421
|
+
"max_relevant_docs_per_query": 8,
|
|
422
|
+
"unique_relevant_docs": 1600
|
|
423
|
+
},
|
|
424
|
+
"top_ranked_statistics": {
|
|
425
|
+
"num_top_ranked": 1600,
|
|
426
|
+
"min_top_ranked_per_query": 8,
|
|
427
|
+
"average_top_ranked_per_query": 8.0,
|
|
428
|
+
"max_top_ranked_per_query": 8
|
|
429
|
+
}
|
|
430
|
+
},
|
|
431
|
+
"zh": {
|
|
432
|
+
"num_samples": 7121,
|
|
433
|
+
"number_of_characters": 78102134,
|
|
434
|
+
"documents_text_statistics": {
|
|
435
|
+
"total_text_length": 78082367,
|
|
436
|
+
"min_text_length": 6268,
|
|
437
|
+
"average_text_length": 12352.850340136054,
|
|
438
|
+
"max_text_length": 278468,
|
|
439
|
+
"unique_texts": 6321
|
|
440
|
+
},
|
|
441
|
+
"documents_image_statistics": null,
|
|
442
|
+
"queries_text_statistics": {
|
|
443
|
+
"total_text_length": 19767,
|
|
444
|
+
"min_text_length": 3,
|
|
445
|
+
"average_text_length": 24.70875,
|
|
446
|
+
"max_text_length": 646,
|
|
447
|
+
"unique_texts": 800
|
|
448
|
+
},
|
|
449
|
+
"queries_image_statistics": null,
|
|
450
|
+
"relevant_docs_statistics": {
|
|
451
|
+
"num_relevant_docs": 800,
|
|
452
|
+
"min_relevant_docs_per_query": 8,
|
|
453
|
+
"average_relevant_docs_per_query": 1.0,
|
|
454
|
+
"max_relevant_docs_per_query": 8,
|
|
455
|
+
"unique_relevant_docs": 6321
|
|
456
|
+
},
|
|
457
|
+
"top_ranked_statistics": {
|
|
458
|
+
"num_top_ranked": 6400,
|
|
459
|
+
"min_top_ranked_per_query": 8,
|
|
460
|
+
"average_top_ranked_per_query": 8.0,
|
|
461
|
+
"max_top_ranked_per_query": 8
|
|
462
|
+
}
|
|
463
|
+
}
|
|
464
|
+
}
|
|
465
|
+
}
|
|
466
|
+
}
|
mteb/evaluate.py
CHANGED
|
@@ -7,6 +7,7 @@ from pathlib import Path
|
|
|
7
7
|
from time import time
|
|
8
8
|
from typing import TYPE_CHECKING, Any, cast
|
|
9
9
|
|
|
10
|
+
from datasets.exceptions import DatasetNotFoundError
|
|
10
11
|
from tqdm.auto import tqdm
|
|
11
12
|
|
|
12
13
|
from mteb._helpful_enum import HelpfulStrEnum
|
|
@@ -25,6 +26,7 @@ from mteb.models.sentence_transformer_wrapper import (
|
|
|
25
26
|
SentenceTransformerEncoderWrapper,
|
|
26
27
|
)
|
|
27
28
|
from mteb.results import ModelResult, TaskResult
|
|
29
|
+
from mteb.results.task_result import TaskError
|
|
28
30
|
from mteb.types import HFSubset, PromptType, SplitName
|
|
29
31
|
from mteb.types._metadata import ModelName, Revision
|
|
30
32
|
|
|
@@ -117,7 +119,8 @@ def _evaluate_task(
|
|
|
117
119
|
co2_tracker: bool | None,
|
|
118
120
|
encode_kwargs: dict[str, Any],
|
|
119
121
|
prediction_folder: Path | None,
|
|
120
|
-
|
|
122
|
+
public_only: bool | None,
|
|
123
|
+
) -> TaskResult | TaskError:
|
|
121
124
|
"""The core logic to run a model on a given task. See `evaluate` for more details.
|
|
122
125
|
|
|
123
126
|
Returns:
|
|
@@ -149,6 +152,7 @@ def _evaluate_task(
|
|
|
149
152
|
encode_kwargs=encode_kwargs,
|
|
150
153
|
co2_tracker=False,
|
|
151
154
|
prediction_folder=prediction_folder,
|
|
155
|
+
public_only=public_only,
|
|
152
156
|
)
|
|
153
157
|
result.kg_co2_emissions = tracker.final_emissions
|
|
154
158
|
return result
|
|
@@ -159,7 +163,20 @@ def _evaluate_task(
|
|
|
159
163
|
|
|
160
164
|
data_loaded = task.data_loaded
|
|
161
165
|
if not data_loaded:
|
|
162
|
-
|
|
166
|
+
try:
|
|
167
|
+
task.load_data()
|
|
168
|
+
except DatasetNotFoundError as e:
|
|
169
|
+
if not task.metadata.is_public and public_only is None:
|
|
170
|
+
logger.warning(
|
|
171
|
+
f"Dataset for private task '{task.metadata.name}' not found. "
|
|
172
|
+
"Make sure you have access to the dataset and that you have set up the authentication correctly. To disable this warning set `public_only=False`"
|
|
173
|
+
)
|
|
174
|
+
return TaskError(
|
|
175
|
+
task_name=task.metadata.name,
|
|
176
|
+
exception=str(e),
|
|
177
|
+
)
|
|
178
|
+
if public_only is False:
|
|
179
|
+
raise e
|
|
163
180
|
|
|
164
181
|
evaluation_time = 0
|
|
165
182
|
|
|
@@ -281,6 +298,7 @@ def evaluate(
|
|
|
281
298
|
overwrite_strategy: str | OverwriteStrategy = "only-missing",
|
|
282
299
|
prediction_folder: Path | str | None = None,
|
|
283
300
|
show_progress_bar: bool = True,
|
|
301
|
+
public_only: bool | None = None,
|
|
284
302
|
) -> ModelResult:
|
|
285
303
|
"""This function runs a model on a given task and returns the results.
|
|
286
304
|
|
|
@@ -304,6 +322,7 @@ def evaluate(
|
|
|
304
322
|
prediction_folder: Optional folder in which to save model predictions for the task. Predictions of the tasks will be sabed in `prediction_folder/{task_name}_predictions.json`
|
|
305
323
|
show_progress_bar: Whether to show a progress bar when running the evaluation. Default is True. Setting this to False will also set the
|
|
306
324
|
`encode_kwargs['show_progress_bar']` to False if encode_kwargs is unspecified.
|
|
325
|
+
public_only: Run only public tasks. If None, it will attempt to run the private task.
|
|
307
326
|
|
|
308
327
|
Returns:
|
|
309
328
|
The results of the evaluation.
|
|
@@ -355,6 +374,7 @@ def evaluate(
|
|
|
355
374
|
overwrite_strategy=overwrite_strategy,
|
|
356
375
|
prediction_folder=prediction_folder,
|
|
357
376
|
show_progress_bar=show_progress_bar,
|
|
377
|
+
public_only=public_only,
|
|
358
378
|
)
|
|
359
379
|
result = task.combine_task_results(results.task_results)
|
|
360
380
|
return ModelResult(
|
|
@@ -367,6 +387,7 @@ def evaluate(
|
|
|
367
387
|
task = tasks
|
|
368
388
|
else:
|
|
369
389
|
results = []
|
|
390
|
+
exceptions = []
|
|
370
391
|
tasks_tqdm = tqdm(
|
|
371
392
|
tasks,
|
|
372
393
|
desc="Evaluating tasks",
|
|
@@ -384,12 +405,16 @@ def evaluate(
|
|
|
384
405
|
overwrite_strategy=overwrite_strategy,
|
|
385
406
|
prediction_folder=prediction_folder,
|
|
386
407
|
show_progress_bar=False,
|
|
408
|
+
public_only=public_only,
|
|
387
409
|
)
|
|
388
410
|
results.extend(_res.task_results)
|
|
411
|
+
if _res.exceptions:
|
|
412
|
+
exceptions.extend(_res.exceptions)
|
|
389
413
|
return ModelResult(
|
|
390
414
|
model_name=_res.model_name,
|
|
391
415
|
model_revision=_res.model_revision,
|
|
392
416
|
task_results=results,
|
|
417
|
+
exceptions=exceptions,
|
|
393
418
|
)
|
|
394
419
|
|
|
395
420
|
overwrite_strategy = OverwriteStrategy.from_str(overwrite_strategy)
|
|
@@ -459,16 +484,13 @@ def evaluate(
|
|
|
459
484
|
co2_tracker=co2_tracker,
|
|
460
485
|
encode_kwargs=encode_kwargs,
|
|
461
486
|
prediction_folder=prediction_folder,
|
|
487
|
+
public_only=public_only,
|
|
462
488
|
)
|
|
463
489
|
except Exception as e:
|
|
464
490
|
logger.error(
|
|
465
491
|
f"Error while running task {task.metadata.name} on splits {list(missing_eval.keys())}: {e}"
|
|
466
492
|
)
|
|
467
|
-
|
|
468
|
-
model_name=model_name,
|
|
469
|
-
model_revision=model_revision,
|
|
470
|
-
task_results=[],
|
|
471
|
-
)
|
|
493
|
+
result = TaskError(task_name=task.metadata.name, exception=str(e))
|
|
472
494
|
else:
|
|
473
495
|
result = _evaluate_task(
|
|
474
496
|
model=model,
|
|
@@ -477,9 +499,18 @@ def evaluate(
|
|
|
477
499
|
co2_tracker=False,
|
|
478
500
|
encode_kwargs=encode_kwargs,
|
|
479
501
|
prediction_folder=prediction_folder,
|
|
502
|
+
public_only=public_only,
|
|
480
503
|
)
|
|
481
504
|
logger.info(f"✓ Finished evaluation for {task.metadata.name}")
|
|
482
505
|
|
|
506
|
+
if isinstance(result, TaskError):
|
|
507
|
+
return ModelResult(
|
|
508
|
+
model_name=model_name,
|
|
509
|
+
model_revision=model_revision,
|
|
510
|
+
task_results=[],
|
|
511
|
+
exceptions=[result],
|
|
512
|
+
)
|
|
513
|
+
|
|
483
514
|
if existing_results:
|
|
484
515
|
result = result.merge(existing_results)
|
|
485
516
|
|
|
@@ -196,10 +196,10 @@ COLPALI_CITATION = """
|
|
|
196
196
|
|
|
197
197
|
COLPALI_TRAINING_DATA = {
|
|
198
198
|
# from https://huggingface.co/datasets/vidore/colpali_train_set
|
|
199
|
-
"
|
|
200
|
-
"
|
|
201
|
-
"
|
|
202
|
-
"
|
|
199
|
+
"VidoreDocVQARetrieval",
|
|
200
|
+
"VidoreInfoVQARetrieval",
|
|
201
|
+
"VidoreTatdqaRetrieval",
|
|
202
|
+
"VidoreArxivQARetrieval",
|
|
203
203
|
}
|
|
204
204
|
|
|
205
205
|
colpali_v1_1 = ModelMeta(
|