mteb 2.1.7__py3-none-any.whl → 2.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +6 -3
- mteb/_evaluators/any_sts_evaluator.py +14 -12
- mteb/_evaluators/clustering_evaluator.py +1 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +2 -2
- mteb/_evaluators/pair_classification_evaluator.py +3 -1
- mteb/_evaluators/sklearn_evaluator.py +15 -28
- mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
- mteb/_evaluators/text/summarization_evaluator.py +4 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
- mteb/abstasks/clustering.py +1 -1
- mteb/abstasks/multilabel_classification.py +2 -2
- mteb/abstasks/task_metadata.py +1 -0
- mteb/benchmarks/benchmark.py +9 -0
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +40 -1
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/models/cache_wrappers/cache_wrapper.py +1 -1
- mteb/models/model_implementations/align_models.py +6 -0
- mteb/models/model_implementations/ara_models.py +7 -0
- mteb/models/model_implementations/blip2_models.py +9 -0
- mteb/models/model_implementations/blip_models.py +19 -0
- mteb/models/model_implementations/cadet_models.py +8 -0
- mteb/models/model_implementations/cde_models.py +12 -0
- mteb/models/model_implementations/codefuse_models.py +15 -0
- mteb/models/model_implementations/codesage_models.py +12 -0
- mteb/models/model_implementations/misc_models.py +6 -0
- mteb/models/model_implementations/moco_models.py +9 -0
- mteb/models/model_implementations/openclip_models.py +16 -0
- mteb/models/model_implementations/piccolo_models.py +6 -0
- mteb/models/model_implementations/rasgaard_models.py +7 -1
- mteb/models/model_implementations/tarka_models.py +317 -0
- mteb/models/search_wrappers.py +5 -5
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +1 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +1 -2
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +1 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +1 -3
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/__init__.py +22 -0
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- {mteb-2.1.7.dist-info → mteb-2.1.8.dist-info}/METADATA +1 -1
- {mteb-2.1.7.dist-info → mteb-2.1.8.dist-info}/RECORD +239 -228
- {mteb-2.1.7.dist-info → mteb-2.1.8.dist-info}/WHEEL +0 -0
- {mteb-2.1.7.dist-info → mteb-2.1.8.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.7.dist-info → mteb-2.1.8.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.7.dist-info → mteb-2.1.8.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,214 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 16062,
|
|
4
|
+
"number_of_characters": 273516,
|
|
5
|
+
"documents_text_statistics": null,
|
|
6
|
+
"documents_image_statistics": {
|
|
7
|
+
"min_image_width": 1221,
|
|
8
|
+
"average_image_width": 1857.1033290099438,
|
|
9
|
+
"max_image_width": 4000,
|
|
10
|
+
"min_image_height": 1125,
|
|
11
|
+
"average_image_height": 1578.8672719412018,
|
|
12
|
+
"max_image_height": 2250,
|
|
13
|
+
"unique_images": 2298
|
|
14
|
+
},
|
|
15
|
+
"queries_text_statistics": {
|
|
16
|
+
"total_text_length": 273516,
|
|
17
|
+
"min_text_length": 25,
|
|
18
|
+
"average_text_length": 125.23626373626374,
|
|
19
|
+
"max_text_length": 295,
|
|
20
|
+
"unique_texts": 2184
|
|
21
|
+
},
|
|
22
|
+
"queries_image_statistics": null,
|
|
23
|
+
"relevant_docs_statistics": {
|
|
24
|
+
"num_relevant_docs": 62352,
|
|
25
|
+
"min_relevant_docs_per_query": 1,
|
|
26
|
+
"average_relevant_docs_per_query": 4.758241758241758,
|
|
27
|
+
"max_relevant_docs_per_query": 26,
|
|
28
|
+
"unique_relevant_docs": 5676
|
|
29
|
+
},
|
|
30
|
+
"top_ranked_statistics": null,
|
|
31
|
+
"hf_subset_descriptive_stats": {
|
|
32
|
+
"french": {
|
|
33
|
+
"num_samples": 2677,
|
|
34
|
+
"number_of_characters": 49632,
|
|
35
|
+
"documents_text_statistics": null,
|
|
36
|
+
"documents_image_statistics": {
|
|
37
|
+
"min_image_width": 1221,
|
|
38
|
+
"average_image_width": 1857.1033290099438,
|
|
39
|
+
"max_image_width": 4000,
|
|
40
|
+
"min_image_height": 1125,
|
|
41
|
+
"average_image_height": 1578.8672719412018,
|
|
42
|
+
"max_image_height": 2250,
|
|
43
|
+
"unique_images": 2298
|
|
44
|
+
},
|
|
45
|
+
"queries_text_statistics": {
|
|
46
|
+
"total_text_length": 49632,
|
|
47
|
+
"min_text_length": 37,
|
|
48
|
+
"average_text_length": 136.35164835164835,
|
|
49
|
+
"max_text_length": 273,
|
|
50
|
+
"unique_texts": 364
|
|
51
|
+
},
|
|
52
|
+
"queries_image_statistics": null,
|
|
53
|
+
"relevant_docs_statistics": {
|
|
54
|
+
"num_relevant_docs": 10392,
|
|
55
|
+
"min_relevant_docs_per_query": 1,
|
|
56
|
+
"average_relevant_docs_per_query": 4.758241758241758,
|
|
57
|
+
"max_relevant_docs_per_query": 26,
|
|
58
|
+
"unique_relevant_docs": 946
|
|
59
|
+
},
|
|
60
|
+
"top_ranked_statistics": null
|
|
61
|
+
},
|
|
62
|
+
"spanish": {
|
|
63
|
+
"num_samples": 2677,
|
|
64
|
+
"number_of_characters": 46902,
|
|
65
|
+
"documents_text_statistics": null,
|
|
66
|
+
"documents_image_statistics": {
|
|
67
|
+
"min_image_width": 1221,
|
|
68
|
+
"average_image_width": 1857.1033290099438,
|
|
69
|
+
"max_image_width": 4000,
|
|
70
|
+
"min_image_height": 1125,
|
|
71
|
+
"average_image_height": 1578.8672719412018,
|
|
72
|
+
"max_image_height": 2250,
|
|
73
|
+
"unique_images": 2298
|
|
74
|
+
},
|
|
75
|
+
"queries_text_statistics": {
|
|
76
|
+
"total_text_length": 46902,
|
|
77
|
+
"min_text_length": 34,
|
|
78
|
+
"average_text_length": 128.85164835164835,
|
|
79
|
+
"max_text_length": 256,
|
|
80
|
+
"unique_texts": 364
|
|
81
|
+
},
|
|
82
|
+
"queries_image_statistics": null,
|
|
83
|
+
"relevant_docs_statistics": {
|
|
84
|
+
"num_relevant_docs": 10392,
|
|
85
|
+
"min_relevant_docs_per_query": 1,
|
|
86
|
+
"average_relevant_docs_per_query": 4.758241758241758,
|
|
87
|
+
"max_relevant_docs_per_query": 26,
|
|
88
|
+
"unique_relevant_docs": 946
|
|
89
|
+
},
|
|
90
|
+
"top_ranked_statistics": null
|
|
91
|
+
},
|
|
92
|
+
"english": {
|
|
93
|
+
"num_samples": 2677,
|
|
94
|
+
"number_of_characters": 39067,
|
|
95
|
+
"documents_text_statistics": null,
|
|
96
|
+
"documents_image_statistics": {
|
|
97
|
+
"min_image_width": 1221,
|
|
98
|
+
"average_image_width": 1857.1033290099438,
|
|
99
|
+
"max_image_width": 4000,
|
|
100
|
+
"min_image_height": 1125,
|
|
101
|
+
"average_image_height": 1578.8672719412018,
|
|
102
|
+
"max_image_height": 2250,
|
|
103
|
+
"unique_images": 2298
|
|
104
|
+
},
|
|
105
|
+
"queries_text_statistics": {
|
|
106
|
+
"total_text_length": 39067,
|
|
107
|
+
"min_text_length": 25,
|
|
108
|
+
"average_text_length": 107.32692307692308,
|
|
109
|
+
"max_text_length": 213,
|
|
110
|
+
"unique_texts": 364
|
|
111
|
+
},
|
|
112
|
+
"queries_image_statistics": null,
|
|
113
|
+
"relevant_docs_statistics": {
|
|
114
|
+
"num_relevant_docs": 10392,
|
|
115
|
+
"min_relevant_docs_per_query": 1,
|
|
116
|
+
"average_relevant_docs_per_query": 4.758241758241758,
|
|
117
|
+
"max_relevant_docs_per_query": 26,
|
|
118
|
+
"unique_relevant_docs": 946
|
|
119
|
+
},
|
|
120
|
+
"top_ranked_statistics": null
|
|
121
|
+
},
|
|
122
|
+
"german": {
|
|
123
|
+
"num_samples": 2677,
|
|
124
|
+
"number_of_characters": 47757,
|
|
125
|
+
"documents_text_statistics": null,
|
|
126
|
+
"documents_image_statistics": {
|
|
127
|
+
"min_image_width": 1221,
|
|
128
|
+
"average_image_width": 1857.1033290099438,
|
|
129
|
+
"max_image_width": 4000,
|
|
130
|
+
"min_image_height": 1125,
|
|
131
|
+
"average_image_height": 1578.8672719412018,
|
|
132
|
+
"max_image_height": 2250,
|
|
133
|
+
"unique_images": 2298
|
|
134
|
+
},
|
|
135
|
+
"queries_text_statistics": {
|
|
136
|
+
"total_text_length": 47757,
|
|
137
|
+
"min_text_length": 36,
|
|
138
|
+
"average_text_length": 131.20054945054946,
|
|
139
|
+
"max_text_length": 295,
|
|
140
|
+
"unique_texts": 364
|
|
141
|
+
},
|
|
142
|
+
"queries_image_statistics": null,
|
|
143
|
+
"relevant_docs_statistics": {
|
|
144
|
+
"num_relevant_docs": 10392,
|
|
145
|
+
"min_relevant_docs_per_query": 1,
|
|
146
|
+
"average_relevant_docs_per_query": 4.758241758241758,
|
|
147
|
+
"max_relevant_docs_per_query": 26,
|
|
148
|
+
"unique_relevant_docs": 946
|
|
149
|
+
},
|
|
150
|
+
"top_ranked_statistics": null
|
|
151
|
+
},
|
|
152
|
+
"italian": {
|
|
153
|
+
"num_samples": 2677,
|
|
154
|
+
"number_of_characters": 46246,
|
|
155
|
+
"documents_text_statistics": null,
|
|
156
|
+
"documents_image_statistics": {
|
|
157
|
+
"min_image_width": 1221,
|
|
158
|
+
"average_image_width": 1857.1033290099438,
|
|
159
|
+
"max_image_width": 4000,
|
|
160
|
+
"min_image_height": 1125,
|
|
161
|
+
"average_image_height": 1578.8672719412018,
|
|
162
|
+
"max_image_height": 2250,
|
|
163
|
+
"unique_images": 2298
|
|
164
|
+
},
|
|
165
|
+
"queries_text_statistics": {
|
|
166
|
+
"total_text_length": 46246,
|
|
167
|
+
"min_text_length": 31,
|
|
168
|
+
"average_text_length": 127.04945054945055,
|
|
169
|
+
"max_text_length": 280,
|
|
170
|
+
"unique_texts": 364
|
|
171
|
+
},
|
|
172
|
+
"queries_image_statistics": null,
|
|
173
|
+
"relevant_docs_statistics": {
|
|
174
|
+
"num_relevant_docs": 10392,
|
|
175
|
+
"min_relevant_docs_per_query": 1,
|
|
176
|
+
"average_relevant_docs_per_query": 4.758241758241758,
|
|
177
|
+
"max_relevant_docs_per_query": 26,
|
|
178
|
+
"unique_relevant_docs": 946
|
|
179
|
+
},
|
|
180
|
+
"top_ranked_statistics": null
|
|
181
|
+
},
|
|
182
|
+
"portuguese": {
|
|
183
|
+
"num_samples": 2677,
|
|
184
|
+
"number_of_characters": 43912,
|
|
185
|
+
"documents_text_statistics": null,
|
|
186
|
+
"documents_image_statistics": {
|
|
187
|
+
"min_image_width": 1221,
|
|
188
|
+
"average_image_width": 1857.1033290099438,
|
|
189
|
+
"max_image_width": 4000,
|
|
190
|
+
"min_image_height": 1125,
|
|
191
|
+
"average_image_height": 1578.8672719412018,
|
|
192
|
+
"max_image_height": 2250,
|
|
193
|
+
"unique_images": 2298
|
|
194
|
+
},
|
|
195
|
+
"queries_text_statistics": {
|
|
196
|
+
"total_text_length": 43912,
|
|
197
|
+
"min_text_length": 36,
|
|
198
|
+
"average_text_length": 120.63736263736264,
|
|
199
|
+
"max_text_length": 252,
|
|
200
|
+
"unique_texts": 364
|
|
201
|
+
},
|
|
202
|
+
"queries_image_statistics": null,
|
|
203
|
+
"relevant_docs_statistics": {
|
|
204
|
+
"num_relevant_docs": 10392,
|
|
205
|
+
"min_relevant_docs_per_query": 1,
|
|
206
|
+
"average_relevant_docs_per_query": 4.758241758241758,
|
|
207
|
+
"max_relevant_docs_per_query": 26,
|
|
208
|
+
"unique_relevant_docs": 946
|
|
209
|
+
},
|
|
210
|
+
"top_ranked_statistics": null
|
|
211
|
+
}
|
|
212
|
+
}
|
|
213
|
+
}
|
|
214
|
+
}
|
|
@@ -0,0 +1,214 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 11856,
|
|
4
|
+
"number_of_characters": 220508,
|
|
5
|
+
"documents_text_statistics": null,
|
|
6
|
+
"documents_image_statistics": {
|
|
7
|
+
"min_image_width": 2667,
|
|
8
|
+
"average_image_width": 2667.0,
|
|
9
|
+
"max_image_width": 2667,
|
|
10
|
+
"min_image_height": 1500,
|
|
11
|
+
"average_image_height": 1500.0,
|
|
12
|
+
"max_image_height": 1500,
|
|
13
|
+
"unique_images": 1674
|
|
14
|
+
},
|
|
15
|
+
"queries_text_statistics": {
|
|
16
|
+
"total_text_length": 220508,
|
|
17
|
+
"min_text_length": 37,
|
|
18
|
+
"average_text_length": 121.69315673289184,
|
|
19
|
+
"max_text_length": 286,
|
|
20
|
+
"unique_texts": 1812
|
|
21
|
+
},
|
|
22
|
+
"queries_image_statistics": null,
|
|
23
|
+
"relevant_docs_statistics": {
|
|
24
|
+
"num_relevant_docs": 78408,
|
|
25
|
+
"min_relevant_docs_per_query": 1,
|
|
26
|
+
"average_relevant_docs_per_query": 7.211920529801325,
|
|
27
|
+
"max_relevant_docs_per_query": 28,
|
|
28
|
+
"unique_relevant_docs": 5772
|
|
29
|
+
},
|
|
30
|
+
"top_ranked_statistics": null,
|
|
31
|
+
"hf_subset_descriptive_stats": {
|
|
32
|
+
"french": {
|
|
33
|
+
"num_samples": 1976,
|
|
34
|
+
"number_of_characters": 38216,
|
|
35
|
+
"documents_text_statistics": null,
|
|
36
|
+
"documents_image_statistics": {
|
|
37
|
+
"min_image_width": 2667,
|
|
38
|
+
"average_image_width": 2667.0,
|
|
39
|
+
"max_image_width": 2667,
|
|
40
|
+
"min_image_height": 1500,
|
|
41
|
+
"average_image_height": 1500.0,
|
|
42
|
+
"max_image_height": 1500,
|
|
43
|
+
"unique_images": 1674
|
|
44
|
+
},
|
|
45
|
+
"queries_text_statistics": {
|
|
46
|
+
"total_text_length": 38216,
|
|
47
|
+
"min_text_length": 40,
|
|
48
|
+
"average_text_length": 126.54304635761589,
|
|
49
|
+
"max_text_length": 267,
|
|
50
|
+
"unique_texts": 302
|
|
51
|
+
},
|
|
52
|
+
"queries_image_statistics": null,
|
|
53
|
+
"relevant_docs_statistics": {
|
|
54
|
+
"num_relevant_docs": 13068,
|
|
55
|
+
"min_relevant_docs_per_query": 1,
|
|
56
|
+
"average_relevant_docs_per_query": 7.211920529801325,
|
|
57
|
+
"max_relevant_docs_per_query": 28,
|
|
58
|
+
"unique_relevant_docs": 962
|
|
59
|
+
},
|
|
60
|
+
"top_ranked_statistics": null
|
|
61
|
+
},
|
|
62
|
+
"spanish": {
|
|
63
|
+
"num_samples": 1976,
|
|
64
|
+
"number_of_characters": 37169,
|
|
65
|
+
"documents_text_statistics": null,
|
|
66
|
+
"documents_image_statistics": {
|
|
67
|
+
"min_image_width": 2667,
|
|
68
|
+
"average_image_width": 2667.0,
|
|
69
|
+
"max_image_width": 2667,
|
|
70
|
+
"min_image_height": 1500,
|
|
71
|
+
"average_image_height": 1500.0,
|
|
72
|
+
"max_image_height": 1500,
|
|
73
|
+
"unique_images": 1674
|
|
74
|
+
},
|
|
75
|
+
"queries_text_statistics": {
|
|
76
|
+
"total_text_length": 37169,
|
|
77
|
+
"min_text_length": 39,
|
|
78
|
+
"average_text_length": 123.07615894039735,
|
|
79
|
+
"max_text_length": 263,
|
|
80
|
+
"unique_texts": 302
|
|
81
|
+
},
|
|
82
|
+
"queries_image_statistics": null,
|
|
83
|
+
"relevant_docs_statistics": {
|
|
84
|
+
"num_relevant_docs": 13068,
|
|
85
|
+
"min_relevant_docs_per_query": 1,
|
|
86
|
+
"average_relevant_docs_per_query": 7.211920529801325,
|
|
87
|
+
"max_relevant_docs_per_query": 28,
|
|
88
|
+
"unique_relevant_docs": 962
|
|
89
|
+
},
|
|
90
|
+
"top_ranked_statistics": null
|
|
91
|
+
},
|
|
92
|
+
"english": {
|
|
93
|
+
"num_samples": 1976,
|
|
94
|
+
"number_of_characters": 34092,
|
|
95
|
+
"documents_text_statistics": null,
|
|
96
|
+
"documents_image_statistics": {
|
|
97
|
+
"min_image_width": 2667,
|
|
98
|
+
"average_image_width": 2667.0,
|
|
99
|
+
"max_image_width": 2667,
|
|
100
|
+
"min_image_height": 1500,
|
|
101
|
+
"average_image_height": 1500.0,
|
|
102
|
+
"max_image_height": 1500,
|
|
103
|
+
"unique_images": 1674
|
|
104
|
+
},
|
|
105
|
+
"queries_text_statistics": {
|
|
106
|
+
"total_text_length": 34092,
|
|
107
|
+
"min_text_length": 38,
|
|
108
|
+
"average_text_length": 112.88741721854305,
|
|
109
|
+
"max_text_length": 244,
|
|
110
|
+
"unique_texts": 302
|
|
111
|
+
},
|
|
112
|
+
"queries_image_statistics": null,
|
|
113
|
+
"relevant_docs_statistics": {
|
|
114
|
+
"num_relevant_docs": 13068,
|
|
115
|
+
"min_relevant_docs_per_query": 1,
|
|
116
|
+
"average_relevant_docs_per_query": 7.211920529801325,
|
|
117
|
+
"max_relevant_docs_per_query": 28,
|
|
118
|
+
"unique_relevant_docs": 962
|
|
119
|
+
},
|
|
120
|
+
"top_ranked_statistics": null
|
|
121
|
+
},
|
|
122
|
+
"german": {
|
|
123
|
+
"num_samples": 1976,
|
|
124
|
+
"number_of_characters": 39603,
|
|
125
|
+
"documents_text_statistics": null,
|
|
126
|
+
"documents_image_statistics": {
|
|
127
|
+
"min_image_width": 2667,
|
|
128
|
+
"average_image_width": 2667.0,
|
|
129
|
+
"max_image_width": 2667,
|
|
130
|
+
"min_image_height": 1500,
|
|
131
|
+
"average_image_height": 1500.0,
|
|
132
|
+
"max_image_height": 1500,
|
|
133
|
+
"unique_images": 1674
|
|
134
|
+
},
|
|
135
|
+
"queries_text_statistics": {
|
|
136
|
+
"total_text_length": 39603,
|
|
137
|
+
"min_text_length": 37,
|
|
138
|
+
"average_text_length": 131.13576158940398,
|
|
139
|
+
"max_text_length": 286,
|
|
140
|
+
"unique_texts": 302
|
|
141
|
+
},
|
|
142
|
+
"queries_image_statistics": null,
|
|
143
|
+
"relevant_docs_statistics": {
|
|
144
|
+
"num_relevant_docs": 13068,
|
|
145
|
+
"min_relevant_docs_per_query": 1,
|
|
146
|
+
"average_relevant_docs_per_query": 7.211920529801325,
|
|
147
|
+
"max_relevant_docs_per_query": 28,
|
|
148
|
+
"unique_relevant_docs": 962
|
|
149
|
+
},
|
|
150
|
+
"top_ranked_statistics": null
|
|
151
|
+
},
|
|
152
|
+
"italian": {
|
|
153
|
+
"num_samples": 1976,
|
|
154
|
+
"number_of_characters": 36485,
|
|
155
|
+
"documents_text_statistics": null,
|
|
156
|
+
"documents_image_statistics": {
|
|
157
|
+
"min_image_width": 2667,
|
|
158
|
+
"average_image_width": 2667.0,
|
|
159
|
+
"max_image_width": 2667,
|
|
160
|
+
"min_image_height": 1500,
|
|
161
|
+
"average_image_height": 1500.0,
|
|
162
|
+
"max_image_height": 1500,
|
|
163
|
+
"unique_images": 1674
|
|
164
|
+
},
|
|
165
|
+
"queries_text_statistics": {
|
|
166
|
+
"total_text_length": 36485,
|
|
167
|
+
"min_text_length": 39,
|
|
168
|
+
"average_text_length": 120.8112582781457,
|
|
169
|
+
"max_text_length": 253,
|
|
170
|
+
"unique_texts": 302
|
|
171
|
+
},
|
|
172
|
+
"queries_image_statistics": null,
|
|
173
|
+
"relevant_docs_statistics": {
|
|
174
|
+
"num_relevant_docs": 13068,
|
|
175
|
+
"min_relevant_docs_per_query": 1,
|
|
176
|
+
"average_relevant_docs_per_query": 7.211920529801325,
|
|
177
|
+
"max_relevant_docs_per_query": 28,
|
|
178
|
+
"unique_relevant_docs": 962
|
|
179
|
+
},
|
|
180
|
+
"top_ranked_statistics": null
|
|
181
|
+
},
|
|
182
|
+
"portuguese": {
|
|
183
|
+
"num_samples": 1976,
|
|
184
|
+
"number_of_characters": 34943,
|
|
185
|
+
"documents_text_statistics": null,
|
|
186
|
+
"documents_image_statistics": {
|
|
187
|
+
"min_image_width": 2667,
|
|
188
|
+
"average_image_width": 2667.0,
|
|
189
|
+
"max_image_width": 2667,
|
|
190
|
+
"min_image_height": 1500,
|
|
191
|
+
"average_image_height": 1500.0,
|
|
192
|
+
"max_image_height": 1500,
|
|
193
|
+
"unique_images": 1674
|
|
194
|
+
},
|
|
195
|
+
"queries_text_statistics": {
|
|
196
|
+
"total_text_length": 34943,
|
|
197
|
+
"min_text_length": 38,
|
|
198
|
+
"average_text_length": 115.70529801324503,
|
|
199
|
+
"max_text_length": 240,
|
|
200
|
+
"unique_texts": 302
|
|
201
|
+
},
|
|
202
|
+
"queries_image_statistics": null,
|
|
203
|
+
"relevant_docs_statistics": {
|
|
204
|
+
"num_relevant_docs": 13068,
|
|
205
|
+
"min_relevant_docs_per_query": 1,
|
|
206
|
+
"average_relevant_docs_per_query": 7.211920529801325,
|
|
207
|
+
"max_relevant_docs_per_query": 28,
|
|
208
|
+
"unique_relevant_docs": 962
|
|
209
|
+
},
|
|
210
|
+
"top_ranked_statistics": null
|
|
211
|
+
}
|
|
212
|
+
}
|
|
213
|
+
}
|
|
214
|
+
}
|
|
@@ -0,0 +1,214 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 29850,
|
|
4
|
+
"number_of_characters": 259999,
|
|
5
|
+
"documents_text_statistics": null,
|
|
6
|
+
"documents_image_statistics": {
|
|
7
|
+
"min_image_width": 1653,
|
|
8
|
+
"average_image_width": 1692.308839420791,
|
|
9
|
+
"max_image_width": 1700,
|
|
10
|
+
"min_image_height": 2197,
|
|
11
|
+
"average_image_height": 2222.7112599956777,
|
|
12
|
+
"max_image_height": 2339,
|
|
13
|
+
"unique_images": 4624
|
|
14
|
+
},
|
|
15
|
+
"queries_text_statistics": {
|
|
16
|
+
"total_text_length": 259999,
|
|
17
|
+
"min_text_length": 17,
|
|
18
|
+
"average_text_length": 124.5205938697318,
|
|
19
|
+
"max_text_length": 326,
|
|
20
|
+
"unique_texts": 2088
|
|
21
|
+
},
|
|
22
|
+
"queries_image_statistics": null,
|
|
23
|
+
"relevant_docs_statistics": {
|
|
24
|
+
"num_relevant_docs": 56196,
|
|
25
|
+
"min_relevant_docs_per_query": 1,
|
|
26
|
+
"average_relevant_docs_per_query": 4.485632183908046,
|
|
27
|
+
"max_relevant_docs_per_query": 24,
|
|
28
|
+
"unique_relevant_docs": 6510
|
|
29
|
+
},
|
|
30
|
+
"top_ranked_statistics": null,
|
|
31
|
+
"hf_subset_descriptive_stats": {
|
|
32
|
+
"french": {
|
|
33
|
+
"num_samples": 4975,
|
|
34
|
+
"number_of_characters": 46656,
|
|
35
|
+
"documents_text_statistics": null,
|
|
36
|
+
"documents_image_statistics": {
|
|
37
|
+
"min_image_width": 1653,
|
|
38
|
+
"average_image_width": 1692.308839420791,
|
|
39
|
+
"max_image_width": 1700,
|
|
40
|
+
"min_image_height": 2197,
|
|
41
|
+
"average_image_height": 2222.7112599956777,
|
|
42
|
+
"max_image_height": 2339,
|
|
43
|
+
"unique_images": 4624
|
|
44
|
+
},
|
|
45
|
+
"queries_text_statistics": {
|
|
46
|
+
"total_text_length": 46656,
|
|
47
|
+
"min_text_length": 20,
|
|
48
|
+
"average_text_length": 134.06896551724137,
|
|
49
|
+
"max_text_length": 323,
|
|
50
|
+
"unique_texts": 348
|
|
51
|
+
},
|
|
52
|
+
"queries_image_statistics": null,
|
|
53
|
+
"relevant_docs_statistics": {
|
|
54
|
+
"num_relevant_docs": 9366,
|
|
55
|
+
"min_relevant_docs_per_query": 1,
|
|
56
|
+
"average_relevant_docs_per_query": 4.485632183908046,
|
|
57
|
+
"max_relevant_docs_per_query": 24,
|
|
58
|
+
"unique_relevant_docs": 1085
|
|
59
|
+
},
|
|
60
|
+
"top_ranked_statistics": null
|
|
61
|
+
},
|
|
62
|
+
"spanish": {
|
|
63
|
+
"num_samples": 4975,
|
|
64
|
+
"number_of_characters": 44339,
|
|
65
|
+
"documents_text_statistics": null,
|
|
66
|
+
"documents_image_statistics": {
|
|
67
|
+
"min_image_width": 1653,
|
|
68
|
+
"average_image_width": 1692.308839420791,
|
|
69
|
+
"max_image_width": 1700,
|
|
70
|
+
"min_image_height": 2197,
|
|
71
|
+
"average_image_height": 2222.7112599956777,
|
|
72
|
+
"max_image_height": 2339,
|
|
73
|
+
"unique_images": 4624
|
|
74
|
+
},
|
|
75
|
+
"queries_text_statistics": {
|
|
76
|
+
"total_text_length": 44339,
|
|
77
|
+
"min_text_length": 21,
|
|
78
|
+
"average_text_length": 127.41091954022988,
|
|
79
|
+
"max_text_length": 301,
|
|
80
|
+
"unique_texts": 348
|
|
81
|
+
},
|
|
82
|
+
"queries_image_statistics": null,
|
|
83
|
+
"relevant_docs_statistics": {
|
|
84
|
+
"num_relevant_docs": 9366,
|
|
85
|
+
"min_relevant_docs_per_query": 1,
|
|
86
|
+
"average_relevant_docs_per_query": 4.485632183908046,
|
|
87
|
+
"max_relevant_docs_per_query": 24,
|
|
88
|
+
"unique_relevant_docs": 1085
|
|
89
|
+
},
|
|
90
|
+
"top_ranked_statistics": null
|
|
91
|
+
},
|
|
92
|
+
"english": {
|
|
93
|
+
"num_samples": 4975,
|
|
94
|
+
"number_of_characters": 38411,
|
|
95
|
+
"documents_text_statistics": null,
|
|
96
|
+
"documents_image_statistics": {
|
|
97
|
+
"min_image_width": 1653,
|
|
98
|
+
"average_image_width": 1692.308839420791,
|
|
99
|
+
"max_image_width": 1700,
|
|
100
|
+
"min_image_height": 2197,
|
|
101
|
+
"average_image_height": 2222.7112599956777,
|
|
102
|
+
"max_image_height": 2339,
|
|
103
|
+
"unique_images": 4624
|
|
104
|
+
},
|
|
105
|
+
"queries_text_statistics": {
|
|
106
|
+
"total_text_length": 38411,
|
|
107
|
+
"min_text_length": 18,
|
|
108
|
+
"average_text_length": 110.3764367816092,
|
|
109
|
+
"max_text_length": 252,
|
|
110
|
+
"unique_texts": 348
|
|
111
|
+
},
|
|
112
|
+
"queries_image_statistics": null,
|
|
113
|
+
"relevant_docs_statistics": {
|
|
114
|
+
"num_relevant_docs": 9366,
|
|
115
|
+
"min_relevant_docs_per_query": 1,
|
|
116
|
+
"average_relevant_docs_per_query": 4.485632183908046,
|
|
117
|
+
"max_relevant_docs_per_query": 24,
|
|
118
|
+
"unique_relevant_docs": 1085
|
|
119
|
+
},
|
|
120
|
+
"top_ranked_statistics": null
|
|
121
|
+
},
|
|
122
|
+
"german": {
|
|
123
|
+
"num_samples": 4975,
|
|
124
|
+
"number_of_characters": 44640,
|
|
125
|
+
"documents_text_statistics": null,
|
|
126
|
+
"documents_image_statistics": {
|
|
127
|
+
"min_image_width": 1653,
|
|
128
|
+
"average_image_width": 1692.308839420791,
|
|
129
|
+
"max_image_width": 1700,
|
|
130
|
+
"min_image_height": 2197,
|
|
131
|
+
"average_image_height": 2222.7112599956777,
|
|
132
|
+
"max_image_height": 2339,
|
|
133
|
+
"unique_images": 4624
|
|
134
|
+
},
|
|
135
|
+
"queries_text_statistics": {
|
|
136
|
+
"total_text_length": 44640,
|
|
137
|
+
"min_text_length": 17,
|
|
138
|
+
"average_text_length": 128.27586206896552,
|
|
139
|
+
"max_text_length": 326,
|
|
140
|
+
"unique_texts": 348
|
|
141
|
+
},
|
|
142
|
+
"queries_image_statistics": null,
|
|
143
|
+
"relevant_docs_statistics": {
|
|
144
|
+
"num_relevant_docs": 9366,
|
|
145
|
+
"min_relevant_docs_per_query": 1,
|
|
146
|
+
"average_relevant_docs_per_query": 4.485632183908046,
|
|
147
|
+
"max_relevant_docs_per_query": 24,
|
|
148
|
+
"unique_relevant_docs": 1085
|
|
149
|
+
},
|
|
150
|
+
"top_ranked_statistics": null
|
|
151
|
+
},
|
|
152
|
+
"italian": {
|
|
153
|
+
"num_samples": 4975,
|
|
154
|
+
"number_of_characters": 44058,
|
|
155
|
+
"documents_text_statistics": null,
|
|
156
|
+
"documents_image_statistics": {
|
|
157
|
+
"min_image_width": 1653,
|
|
158
|
+
"average_image_width": 1692.308839420791,
|
|
159
|
+
"max_image_width": 1700,
|
|
160
|
+
"min_image_height": 2197,
|
|
161
|
+
"average_image_height": 2222.7112599956777,
|
|
162
|
+
"max_image_height": 2339,
|
|
163
|
+
"unique_images": 4624
|
|
164
|
+
},
|
|
165
|
+
"queries_text_statistics": {
|
|
166
|
+
"total_text_length": 44058,
|
|
167
|
+
"min_text_length": 17,
|
|
168
|
+
"average_text_length": 126.60344827586206,
|
|
169
|
+
"max_text_length": 290,
|
|
170
|
+
"unique_texts": 348
|
|
171
|
+
},
|
|
172
|
+
"queries_image_statistics": null,
|
|
173
|
+
"relevant_docs_statistics": {
|
|
174
|
+
"num_relevant_docs": 9366,
|
|
175
|
+
"min_relevant_docs_per_query": 1,
|
|
176
|
+
"average_relevant_docs_per_query": 4.485632183908046,
|
|
177
|
+
"max_relevant_docs_per_query": 24,
|
|
178
|
+
"unique_relevant_docs": 1085
|
|
179
|
+
},
|
|
180
|
+
"top_ranked_statistics": null
|
|
181
|
+
},
|
|
182
|
+
"portuguese": {
|
|
183
|
+
"num_samples": 4975,
|
|
184
|
+
"number_of_characters": 41895,
|
|
185
|
+
"documents_text_statistics": null,
|
|
186
|
+
"documents_image_statistics": {
|
|
187
|
+
"min_image_width": 1653,
|
|
188
|
+
"average_image_width": 1692.308839420791,
|
|
189
|
+
"max_image_width": 1700,
|
|
190
|
+
"min_image_height": 2197,
|
|
191
|
+
"average_image_height": 2222.7112599956777,
|
|
192
|
+
"max_image_height": 2339,
|
|
193
|
+
"unique_images": 4624
|
|
194
|
+
},
|
|
195
|
+
"queries_text_statistics": {
|
|
196
|
+
"total_text_length": 41895,
|
|
197
|
+
"min_text_length": 21,
|
|
198
|
+
"average_text_length": 120.38793103448276,
|
|
199
|
+
"max_text_length": 283,
|
|
200
|
+
"unique_texts": 348
|
|
201
|
+
},
|
|
202
|
+
"queries_image_statistics": null,
|
|
203
|
+
"relevant_docs_statistics": {
|
|
204
|
+
"num_relevant_docs": 9366,
|
|
205
|
+
"min_relevant_docs_per_query": 1,
|
|
206
|
+
"average_relevant_docs_per_query": 4.485632183908046,
|
|
207
|
+
"max_relevant_docs_per_query": 24,
|
|
208
|
+
"unique_relevant_docs": 1085
|
|
209
|
+
},
|
|
210
|
+
"top_ranked_statistics": null
|
|
211
|
+
}
|
|
212
|
+
}
|
|
213
|
+
}
|
|
214
|
+
}
|
|
@@ -124,4 +124,10 @@ align_base = ModelMeta(
|
|
|
124
124
|
training_datasets=set(
|
|
125
125
|
# COYO-700M
|
|
126
126
|
),
|
|
127
|
+
citation="""@misc{kakaobrain2022coyo-align,
|
|
128
|
+
title = {COYO-ALIGN},
|
|
129
|
+
author = {Yoon, Boogeo and Lee, Youhan and Baek, Woonhyuk},
|
|
130
|
+
year = {2022},
|
|
131
|
+
howpublished = {https://github.com/kakaobrain/coyo-align},
|
|
132
|
+
}""",
|
|
127
133
|
)
|
|
@@ -23,4 +23,11 @@ arabic_triplet_matryoshka = ModelMeta(
|
|
|
23
23
|
training_datasets=set(
|
|
24
24
|
# "akhooli/arabic-triplets-1m-curated-sims-len"
|
|
25
25
|
),
|
|
26
|
+
citation="""
|
|
27
|
+
@article{nacar2025gate,
|
|
28
|
+
title={GATE: General Arabic Text Embedding for Enhanced Semantic Textual Similarity with Matryoshka Representation Learning and Hybrid Loss Training},
|
|
29
|
+
author={Nacar, Omer and Koubaa, Anis and Sibaee, Serry and Al-Habashi, Yasser and Ammar, Adel and Boulila, Wadii},
|
|
30
|
+
journal={arXiv preprint arXiv:2505.24581},
|
|
31
|
+
year={2025}
|
|
32
|
+
}""",
|
|
26
33
|
)
|