mteb 2.1.6__py3-none-any.whl → 2.1.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +5 -1
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- {mteb-2.1.6.dist-info → mteb-2.1.7.dist-info}/METADATA +1 -1
- {mteb-2.1.6.dist-info → mteb-2.1.7.dist-info}/RECORD +40 -36
- {mteb-2.1.6.dist-info → mteb-2.1.7.dist-info}/WHEEL +0 -0
- {mteb-2.1.6.dist-info → mteb-2.1.7.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.6.dist-info → mteb-2.1.7.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.6.dist-info → mteb-2.1.7.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 10080,
|
|
4
|
+
"number_of_characters": 11742019,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 9897099,
|
|
7
|
+
"min_text_length": 1,
|
|
8
|
+
"average_text_length": 1141.0074936592114,
|
|
9
|
+
"max_text_length": 7337,
|
|
10
|
+
"unique_texts": 8624
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 1844920,
|
|
15
|
+
"min_text_length": 252,
|
|
16
|
+
"average_text_length": 1312.176386913229,
|
|
17
|
+
"max_text_length": 6050,
|
|
18
|
+
"unique_texts": 1298
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 1406,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 1,
|
|
26
|
+
"unique_relevant_docs": 1406
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 3956,
|
|
4
|
+
"number_of_characters": 6345348,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 6337710,
|
|
7
|
+
"min_text_length": 144,
|
|
8
|
+
"average_text_length": 1744.483897605285,
|
|
9
|
+
"max_text_length": 8480,
|
|
10
|
+
"unique_texts": 3593
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 7638,
|
|
15
|
+
"min_text_length": 3,
|
|
16
|
+
"average_text_length": 23.647058823529413,
|
|
17
|
+
"max_text_length": 89,
|
|
18
|
+
"unique_texts": 323
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 12334,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 38.18575851393189,
|
|
25
|
+
"max_relevant_docs_per_query": 475,
|
|
26
|
+
"unique_relevant_docs": 3128
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 26657,
|
|
4
|
+
"number_of_characters": 34261482,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 34181168,
|
|
7
|
+
"min_text_length": 10,
|
|
8
|
+
"average_text_length": 1332.2355692403632,
|
|
9
|
+
"max_text_length": 9275,
|
|
10
|
+
"unique_texts": 25656
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 80314,
|
|
15
|
+
"min_text_length": 17,
|
|
16
|
+
"average_text_length": 80.314,
|
|
17
|
+
"max_text_length": 227,
|
|
18
|
+
"unique_texts": 1000
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 4928,
|
|
23
|
+
"min_relevant_docs_per_query": 27,
|
|
24
|
+
"average_relevant_docs_per_query": 4.928,
|
|
25
|
+
"max_relevant_docs_per_query": 30,
|
|
26
|
+
"unique_relevant_docs": 25657
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 5483,
|
|
4
|
+
"number_of_characters": 8526662,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 8496576,
|
|
7
|
+
"min_text_length": 228,
|
|
8
|
+
"average_text_length": 1639.3162261238665,
|
|
9
|
+
"max_text_length": 9187,
|
|
10
|
+
"unique_texts": 5183
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 30086,
|
|
15
|
+
"min_text_length": 24,
|
|
16
|
+
"average_text_length": 100.28666666666666,
|
|
17
|
+
"max_text_length": 228,
|
|
18
|
+
"unique_texts": 300
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 339,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.13,
|
|
25
|
+
"max_relevant_docs_per_query": 5,
|
|
26
|
+
"unique_relevant_docs": 283
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -49,7 +49,8 @@ class DutchBookReviewSentimentClassificationV2(AbsTaskClassification):
|
|
|
49
49
|
metadata = TaskMetadata(
|
|
50
50
|
name="DutchBookReviewSentimentClassification.v2",
|
|
51
51
|
description="""A Dutch book review for sentiment classification.
|
|
52
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)
|
|
52
|
+
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900).
|
|
53
|
+
Additionally, a Dutch prompt was included.""",
|
|
53
54
|
reference="https://github.com/benjaminvdb/DBRD",
|
|
54
55
|
dataset={
|
|
55
56
|
"path": "mteb/dutch_book_review_sentiment",
|
|
@@ -86,4 +87,7 @@ Suzan, Verberne},
|
|
|
86
87
|
}
|
|
87
88
|
""",
|
|
88
89
|
adapted_from=["DutchBookReviewSentimentClassification"],
|
|
90
|
+
prompt={
|
|
91
|
+
"query": "Classificeer de gegeven boekrecensie als positieve of negatieve sentiment"
|
|
92
|
+
},
|
|
89
93
|
)
|
|
@@ -27,6 +27,9 @@ class DutchSarcasticHeadlinesClassification(AbsTaskClassification):
|
|
|
27
27
|
dialect=[],
|
|
28
28
|
sample_creation="found",
|
|
29
29
|
bibtex_citation="""""",
|
|
30
|
+
prompt={
|
|
31
|
+
"query": "Classificeer de gegeven krantenkop als sarcastisch of niet sarcastisch"
|
|
32
|
+
},
|
|
30
33
|
)
|
|
31
34
|
|
|
32
35
|
def dataset_transform(self):
|
|
@@ -28,6 +28,9 @@ class DutchNewsArticlesClusteringP2P(AbsTaskClustering):
|
|
|
28
28
|
dialect=[],
|
|
29
29
|
sample_creation="found",
|
|
30
30
|
bibtex_citation="",
|
|
31
|
+
prompt={
|
|
32
|
+
"query": "Identificeer de hoofdcategorie van nieuwsartikelen op basis van de titels en de inhoud"
|
|
33
|
+
},
|
|
31
34
|
)
|
|
32
35
|
|
|
33
36
|
def dataset_transform(self):
|
|
@@ -28,6 +28,9 @@ class DutchNewsArticlesClusteringS2S(AbsTaskClustering):
|
|
|
28
28
|
dialect=[],
|
|
29
29
|
sample_creation="found",
|
|
30
30
|
bibtex_citation="",
|
|
31
|
+
prompt={
|
|
32
|
+
"query": "Identificeer de hoofdcategorie van nieuwsartikelen op basis van de titels"
|
|
33
|
+
},
|
|
31
34
|
)
|
|
32
35
|
|
|
33
36
|
def dataset_transform(self):
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
from .argu_ana_nl_retrieval import ArguAnaNL
|
|
1
|
+
from .argu_ana_nl_retrieval import ArguAnaNL, ArguAnaNLv2
|
|
2
2
|
from .bbsard_nl_retrieval import BBSARDNLRetrieval
|
|
3
3
|
from .climate_fevernl_retrieval import ClimateFEVERNL
|
|
4
4
|
from .cqa_dupstack_android_nl_retrieval import CQADupstackAndroidNLRetrieval
|
|
@@ -20,12 +20,12 @@ from .fi_qa2018_nl_retrieval import FiQA2018NL
|
|
|
20
20
|
from .hotpot_qanl_retrieval import HotpotQANL
|
|
21
21
|
from .legal_qa_nl_retrieval import LegalQANLRetrieval
|
|
22
22
|
from .mmarconl_retrieval import MMMARCONL
|
|
23
|
-
from .nf_corpus_nl_retrieval import NFCorpusNL
|
|
23
|
+
from .nf_corpus_nl_retrieval import NFCorpusNL, NFCorpusNLv2
|
|
24
24
|
from .nqnl_retrieval import NQNL
|
|
25
25
|
from .open_tender_retrieval import OpenTenderRetrieval
|
|
26
26
|
from .quora_nl_retrieval import QuoraNLRetrieval
|
|
27
|
-
from .sci_fact_nl_retrieval import SciFactNL
|
|
28
|
-
from .scidocsnl_retrieval import SCIDOCSNL
|
|
27
|
+
from .sci_fact_nl_retrieval import SciFactNL, SciFactNLv2
|
|
28
|
+
from .scidocsnl_retrieval import SCIDOCSNL, SCIDOCSNLv2
|
|
29
29
|
from .touche2020_nl_retrieval import Touche2020NL
|
|
30
30
|
from .treccovidnl_retrieval import TRECCOVIDNL
|
|
31
31
|
from .vabb_retrieval import VABBRetrieval
|
|
@@ -37,6 +37,7 @@ __all__ = [
|
|
|
37
37
|
"SCIDOCSNL",
|
|
38
38
|
"TRECCOVIDNL",
|
|
39
39
|
"ArguAnaNL",
|
|
40
|
+
"ArguAnaNLv2",
|
|
40
41
|
"BBSARDNLRetrieval",
|
|
41
42
|
"CQADupstackAndroidNLRetrieval",
|
|
42
43
|
"CQADupstackEnglishNLRetrieval",
|
|
@@ -57,9 +58,12 @@ __all__ = [
|
|
|
57
58
|
"HotpotQANL",
|
|
58
59
|
"LegalQANLRetrieval",
|
|
59
60
|
"NFCorpusNL",
|
|
61
|
+
"NFCorpusNLv2",
|
|
60
62
|
"OpenTenderRetrieval",
|
|
61
63
|
"QuoraNLRetrieval",
|
|
64
|
+
"SCIDOCSNLv2",
|
|
62
65
|
"SciFactNL",
|
|
66
|
+
"SciFactNLv2",
|
|
63
67
|
"Touche2020NL",
|
|
64
68
|
"VABBRetrieval",
|
|
65
69
|
]
|
|
@@ -1,33 +1,26 @@
|
|
|
1
1
|
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
2
|
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
3
|
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
domains=["Written", "Non-fiction"],
|
|
25
|
-
task_subtypes=[],
|
|
26
|
-
license="cc-by-sa-4.0",
|
|
27
|
-
annotations_creators="derived",
|
|
28
|
-
dialect=[],
|
|
29
|
-
sample_creation="machine-translated and verified", # manually checked a small subset
|
|
30
|
-
bibtex_citation=r"""
|
|
4
|
+
_argu_ana_nl_metadata = dict(
|
|
5
|
+
reference="https://huggingface.co/datasets/clips/beir-nl-arguana",
|
|
6
|
+
dataset={
|
|
7
|
+
"path": "clips/beir-nl-arguana",
|
|
8
|
+
"revision": "4cd085d148fe2cac923bb7758d6ef585926170ba",
|
|
9
|
+
},
|
|
10
|
+
type="Retrieval",
|
|
11
|
+
category="t2t",
|
|
12
|
+
modalities=["text"],
|
|
13
|
+
eval_splits=["test"],
|
|
14
|
+
eval_langs=["nld-Latn"],
|
|
15
|
+
main_score="ndcg_at_10",
|
|
16
|
+
date=("2016-03-01", "2016-03-01"), # best guess: based on publication date
|
|
17
|
+
domains=["Written", "Non-fiction"],
|
|
18
|
+
task_subtypes=[],
|
|
19
|
+
license="cc-by-sa-4.0",
|
|
20
|
+
annotations_creators="derived",
|
|
21
|
+
dialect=[],
|
|
22
|
+
sample_creation="machine-translated and verified", # manually checked a small subset
|
|
23
|
+
bibtex_citation=r"""
|
|
31
24
|
@misc{banar2024beirnlzeroshotinformationretrieval,
|
|
32
25
|
archiveprefix = {arXiv},
|
|
33
26
|
author = {Nikolay Banar and Ehsan Lotfi and Walter Daelemans},
|
|
@@ -38,5 +31,31 @@ class ArguAnaNL(AbsTaskRetrieval):
|
|
|
38
31
|
year = {2024},
|
|
39
32
|
}
|
|
40
33
|
""",
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
class ArguAnaNL(AbsTaskRetrieval):
|
|
38
|
+
ignore_identical_ids = True
|
|
39
|
+
|
|
40
|
+
metadata = TaskMetadata(
|
|
41
|
+
name="ArguAna-NL",
|
|
42
|
+
description="ArguAna involves the task of retrieval of the best counterargument to an argument. ArguAna-NL is "
|
|
43
|
+
"a Dutch translation.",
|
|
41
44
|
adapted_from=["ArguAna"],
|
|
45
|
+
**_argu_ana_nl_metadata,
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
class ArguAnaNLv2(AbsTaskRetrieval):
|
|
50
|
+
ignore_identical_ids = True
|
|
51
|
+
|
|
52
|
+
metadata = TaskMetadata(
|
|
53
|
+
name="ArguAna-NL.v2",
|
|
54
|
+
description="ArguAna involves the task of retrieval of the best counterargument to an argument. ArguAna-NL is "
|
|
55
|
+
"a Dutch translation. This version adds a Dutch prompt to the dataset.",
|
|
56
|
+
prompt={
|
|
57
|
+
"query": "Gegeven een bewering, vind documenten die de bewering weerleggen"
|
|
58
|
+
},
|
|
59
|
+
adapted_from=["ArguAna-NL"],
|
|
60
|
+
**_argu_ana_nl_metadata,
|
|
42
61
|
)
|
|
@@ -1,31 +1,26 @@
|
|
|
1
1
|
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
2
|
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
3
|
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
license="cc-by-4.0",
|
|
25
|
-
annotations_creators="derived",
|
|
26
|
-
dialect=[],
|
|
27
|
-
sample_creation="machine-translated and verified", # manually checked a small subset
|
|
28
|
-
bibtex_citation=r"""
|
|
4
|
+
_nf_corpus_metadata = dict(
|
|
5
|
+
dataset={
|
|
6
|
+
"path": "clips/beir-nl-nfcorpus",
|
|
7
|
+
"revision": "942953e674fd0f619ff89897abb806dc3df5dd39",
|
|
8
|
+
},
|
|
9
|
+
reference="https://huggingface.co/datasets/clips/beir-nl-nfcorpus",
|
|
10
|
+
type="Retrieval",
|
|
11
|
+
category="t2t",
|
|
12
|
+
modalities=["text"],
|
|
13
|
+
eval_splits=["test"],
|
|
14
|
+
eval_langs=["nld-Latn"],
|
|
15
|
+
main_score="ndcg_at_10",
|
|
16
|
+
date=("2016-03-01", "2016-03-01"), # best guess: based on publication date
|
|
17
|
+
domains=["Medical", "Academic", "Written"],
|
|
18
|
+
task_subtypes=[],
|
|
19
|
+
license="cc-by-4.0",
|
|
20
|
+
annotations_creators="derived",
|
|
21
|
+
dialect=[],
|
|
22
|
+
sample_creation="machine-translated and verified", # manually checked a small subset
|
|
23
|
+
bibtex_citation=r"""
|
|
29
24
|
@misc{banar2024beirnlzeroshotinformationretrieval,
|
|
30
25
|
archiveprefix = {arXiv},
|
|
31
26
|
author = {Nikolay Banar and Ehsan Lotfi and Walter Daelemans},
|
|
@@ -36,5 +31,27 @@ class NFCorpusNL(AbsTaskRetrieval):
|
|
|
36
31
|
year = {2024},
|
|
37
32
|
}
|
|
38
33
|
""",
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
class NFCorpusNL(AbsTaskRetrieval):
|
|
38
|
+
metadata = TaskMetadata(
|
|
39
|
+
name="NFCorpus-NL",
|
|
40
|
+
description="NFCorpus: A Full-Text Learning to Rank Dataset for Medical Information Retrieval. NFCorpus-NL is "
|
|
41
|
+
"a Dutch translation.",
|
|
39
42
|
adapted_from=["NFCorpus"],
|
|
43
|
+
**_nf_corpus_metadata,
|
|
44
|
+
)
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
class NFCorpusNLv2(AbsTaskRetrieval):
|
|
48
|
+
metadata = TaskMetadata(
|
|
49
|
+
name="NFCorpus-NL.v2",
|
|
50
|
+
description="NFCorpus: A Full-Text Learning to Rank Dataset for Medical Information Retrieval. NFCorpus-NL is "
|
|
51
|
+
"a Dutch translation. This version adds a Dutch prompt to the dataset.",
|
|
52
|
+
adapted_from=["NFCorpus-NL"],
|
|
53
|
+
prompt={
|
|
54
|
+
"query": "Gegeven een vraag, haal relevante documenten op die de vraag het beste beantwoorden"
|
|
55
|
+
},
|
|
56
|
+
**_nf_corpus_metadata,
|
|
40
57
|
)
|
|
@@ -1,30 +1,26 @@
|
|
|
1
1
|
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
2
|
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
3
|
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
annotations_creators="derived",
|
|
25
|
-
dialect=[],
|
|
26
|
-
sample_creation="machine-translated and verified", # manually checked a small subset
|
|
27
|
-
bibtex_citation=r"""
|
|
4
|
+
_sci_fact_nl_metadata = dict(
|
|
5
|
+
dataset={
|
|
6
|
+
"path": "clips/beir-nl-scifact",
|
|
7
|
+
"revision": "856d8dfc294b138856bbf3042450e3782321e44e",
|
|
8
|
+
},
|
|
9
|
+
reference="https://huggingface.co/datasets/clips/beir-nl-scifact",
|
|
10
|
+
type="Retrieval",
|
|
11
|
+
category="t2t",
|
|
12
|
+
modalities=["text"],
|
|
13
|
+
eval_splits=["test"],
|
|
14
|
+
eval_langs=["nld-Latn"],
|
|
15
|
+
main_score="ndcg_at_10",
|
|
16
|
+
date=("2020-05-01", "2020-05-01"), # best guess: based on submission date
|
|
17
|
+
domains=["Academic", "Medical", "Written"],
|
|
18
|
+
task_subtypes=[],
|
|
19
|
+
license="cc-by-4.0",
|
|
20
|
+
annotations_creators="derived",
|
|
21
|
+
dialect=[],
|
|
22
|
+
sample_creation="machine-translated and verified", # manually checked a small subset
|
|
23
|
+
bibtex_citation=r"""
|
|
28
24
|
@misc{banar2024beirnlzeroshotinformationretrieval,
|
|
29
25
|
archiveprefix = {arXiv},
|
|
30
26
|
author = {Nikolay Banar and Ehsan Lotfi and Walter Daelemans},
|
|
@@ -35,5 +31,27 @@ class SciFactNL(AbsTaskRetrieval):
|
|
|
35
31
|
year = {2024},
|
|
36
32
|
}
|
|
37
33
|
""",
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
class SciFactNL(AbsTaskRetrieval):
|
|
38
|
+
metadata = TaskMetadata(
|
|
39
|
+
name="SciFact-NL",
|
|
40
|
+
description="SciFactNL verifies scientific claims in Dutch using evidence from the research literature "
|
|
41
|
+
"containing scientific paper abstracts.",
|
|
38
42
|
adapted_from=["SciFact"],
|
|
43
|
+
**_sci_fact_nl_metadata,
|
|
44
|
+
)
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
class SciFactNLv2(AbsTaskRetrieval):
|
|
48
|
+
metadata = TaskMetadata(
|
|
49
|
+
name="SciFact-NL.v2",
|
|
50
|
+
description="SciFactNL verifies scientific claims in Dutch using evidence from the research literature "
|
|
51
|
+
"containing scientific paper abstracts. This version adds a Dutch prompt to the dataset.",
|
|
52
|
+
adapted_from=["SciFact-NL"],
|
|
53
|
+
prompt={
|
|
54
|
+
"query": "Given a scientific claim, retrieve documents that support or refute the claim"
|
|
55
|
+
},
|
|
56
|
+
**_sci_fact_nl_metadata,
|
|
39
57
|
)
|
|
@@ -1,33 +1,26 @@
|
|
|
1
1
|
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
2
|
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
3
|
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
domains=["Academic", "Written", "Non-fiction"],
|
|
25
|
-
task_subtypes=[],
|
|
26
|
-
license="cc-by-sa-4.0",
|
|
27
|
-
annotations_creators="derived",
|
|
28
|
-
dialect=[],
|
|
29
|
-
sample_creation="machine-translated and verified", # manually checked a small subset
|
|
30
|
-
bibtex_citation=r"""
|
|
4
|
+
_scidocsnl_metadata = dict(
|
|
5
|
+
dataset={
|
|
6
|
+
"path": "clips/beir-nl-scidocs",
|
|
7
|
+
"revision": "4e018aa220029f9d1bd5a31de3650e322e32ea38",
|
|
8
|
+
},
|
|
9
|
+
reference="https://huggingface.co/datasets/clips/beir-nl-scidocs",
|
|
10
|
+
type="Retrieval",
|
|
11
|
+
category="t2t",
|
|
12
|
+
modalities=["text"],
|
|
13
|
+
eval_splits=["test"],
|
|
14
|
+
eval_langs=["nld-Latn"],
|
|
15
|
+
main_score="ndcg_at_10",
|
|
16
|
+
date=("2020-05-01", "2020-05-01"), # best guess: based on submission date
|
|
17
|
+
domains=["Academic", "Written", "Non-fiction"],
|
|
18
|
+
task_subtypes=[],
|
|
19
|
+
license="cc-by-sa-4.0",
|
|
20
|
+
annotations_creators="derived",
|
|
21
|
+
dialect=[],
|
|
22
|
+
sample_creation="machine-translated and verified", # manually checked a small subset
|
|
23
|
+
bibtex_citation=r"""
|
|
31
24
|
@misc{banar2024beirnlzeroshotinformationretrieval,
|
|
32
25
|
archiveprefix = {arXiv},
|
|
33
26
|
author = {Nikolay Banar and Ehsan Lotfi and Walter Daelemans},
|
|
@@ -38,5 +31,29 @@ class SCIDOCSNL(AbsTaskRetrieval):
|
|
|
38
31
|
year = {2024},
|
|
39
32
|
}
|
|
40
33
|
""",
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
class SCIDOCSNL(AbsTaskRetrieval):
|
|
38
|
+
metadata = TaskMetadata(
|
|
39
|
+
name="SCIDOCS-NL",
|
|
40
|
+
description="SciDocs, a new evaluation benchmark consisting of seven document-level tasks ranging from "
|
|
41
|
+
"citation prediction, to document classification and recommendation. SciDocs-NL is a Dutch "
|
|
42
|
+
"translation.",
|
|
41
43
|
adapted_from=["SCIDOCS"],
|
|
44
|
+
**_scidocsnl_metadata,
|
|
45
|
+
)
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
class SCIDOCSNLv2(AbsTaskRetrieval):
|
|
49
|
+
metadata = TaskMetadata(
|
|
50
|
+
name="SCIDOCS-NL.v2",
|
|
51
|
+
description="SciDocs, a new evaluation benchmark consisting of seven document-level tasks ranging from "
|
|
52
|
+
"citation prediction, to document classification and recommendation. SciDocs-NL is a Dutch "
|
|
53
|
+
"translation. This version adds a Dutch prompt to the dataset.",
|
|
54
|
+
adapted_from=["SCIDOCS-NL"],
|
|
55
|
+
**_scidocsnl_metadata,
|
|
56
|
+
prompt={
|
|
57
|
+
"query": "Gegeven de titel van een wetenschappelijk artikel, haal de abstracts op van artikelen die door het gegeven artikel worden geciteerd"
|
|
58
|
+
},
|
|
42
59
|
)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.1.
|
|
3
|
+
Version: 2.1.7
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -974,6 +974,7 @@ mteb/descriptive_stats/Retrieval/AppsRetrieval.json,sha256=aDBlI0xzeOIFUn6a7ylFI
|
|
|
974
974
|
mteb/descriptive_stats/Retrieval/ArguAna-Fa.json,sha256=0Nug1fXP5u4mue6aLgHHilOoUbmI9s4491NTTbkqLsw,993
|
|
975
975
|
mteb/descriptive_stats/Retrieval/ArguAna-Fa.v2.json,sha256=NNCJfL5SpqUn5JHdWr4QiIKAnm6qEIdh9kDEIHp-37U,993
|
|
976
976
|
mteb/descriptive_stats/Retrieval/ArguAna-NL.json,sha256=MJfSGq8QAqbL_mjQXqtYGoxV2u0O_sIvc0ywHdlhO1c,994
|
|
977
|
+
mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json,sha256=MJfSGq8QAqbL_mjQXqtYGoxV2u0O_sIvc0ywHdlhO1c,994
|
|
977
978
|
mteb/descriptive_stats/Retrieval/ArguAna-PL.json,sha256=WtaqLTUsMBoobvdwyqmTEMB2FFc9ULgrdLX7wufn7DU,994
|
|
978
979
|
mteb/descriptive_stats/Retrieval/ArguAna-VN.json,sha256=BAAAPBe_vwIKGFbmy_pVaKSiaAtsHP_UdeVB8lhzxMU,994
|
|
979
980
|
mteb/descriptive_stats/Retrieval/ArguAna.json,sha256=pX57RjspcrVBDsf4iHDI5zJcQpoqfPQutSGtwkLmPW0,995
|
|
@@ -1206,6 +1207,7 @@ mteb/descriptive_stats/Retrieval/MrTidyRetrieval.json,sha256=X2Jp5nByCv_UNmeeHOp
|
|
|
1206
1207
|
mteb/descriptive_stats/Retrieval/MultiLongDocRetrieval.json,sha256=MGBeQevI03sxAK3qldfye3yRxQ7O5URV90NFyCNUr_k,33239
|
|
1207
1208
|
mteb/descriptive_stats/Retrieval/NFCorpus-Fa.json,sha256=rqHqn43MBaA4cni5FbCD5CK_TmQ5z3SiXDmfGx7GIUg,1002
|
|
1208
1209
|
mteb/descriptive_stats/Retrieval/NFCorpus-NL.json,sha256=x5eYhzWMKToA0ayxP3h10FyegCrbirrCywRQCzMI9SM,1003
|
|
1210
|
+
mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json,sha256=x5eYhzWMKToA0ayxP3h10FyegCrbirrCywRQCzMI9SM,1003
|
|
1209
1211
|
mteb/descriptive_stats/Retrieval/NFCorpus-PL.json,sha256=gY7QM-fjnAnaMdfdRtHaMLzugzUDKMGM-xMomtuq2Qg,1005
|
|
1210
1212
|
mteb/descriptive_stats/Retrieval/NFCorpus-VN.json,sha256=S-oi9KTAmpfqWbN7aAfh6_E2QP34l9FT8c6x-UOKi4I,1002
|
|
1211
1213
|
mteb/descriptive_stats/Retrieval/NFCorpus.json,sha256=bRUA4qS0L3UekskKHRRVHsV28EPMQJ3i5CuCY6FA0J8,1004
|
|
@@ -1278,6 +1280,7 @@ mteb/descriptive_stats/Retrieval/RuSciBenchCociteRetrieval.json,sha256=_Op8mcXjv
|
|
|
1278
1280
|
mteb/descriptive_stats/Retrieval/SCIDOCS-Fa.json,sha256=CAXjSpSoy3V3TQM2PKtZtumi3fCUizc8Dlb89VEa620,986
|
|
1279
1281
|
mteb/descriptive_stats/Retrieval/SCIDOCS-Fa.v2.json,sha256=G7sucOO-wWsSV0oP_jhf3AKrv5MItE9P7Xauq0M4-_I,987
|
|
1280
1282
|
mteb/descriptive_stats/Retrieval/SCIDOCS-NL.json,sha256=qYFAgsJ7FT-qDLUStkHTmAu46PxesfIVEGU-DxEpf3c,987
|
|
1283
|
+
mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json,sha256=qYFAgsJ7FT-qDLUStkHTmAu46PxesfIVEGU-DxEpf3c,987
|
|
1281
1284
|
mteb/descriptive_stats/Retrieval/SCIDOCS-PL.json,sha256=-N7x2MkyRMCbN2fa3D0cnNbhZftGQt1BdiZezYo7fm0,988
|
|
1282
1285
|
mteb/descriptive_stats/Retrieval/SCIDOCS-VN.json,sha256=mzaXUR3KxBZBZoJ-hImEz9x6XEX-cu_WyKlb0ccx2mQ,988
|
|
1283
1286
|
mteb/descriptive_stats/Retrieval/SCIDOCS.json,sha256=Xa2HtyeuWVV9xJOT1YwhrM32RubiMql1lkz-d1moKSc,988
|
|
@@ -1288,6 +1291,7 @@ mteb/descriptive_stats/Retrieval/SadeemQuestionRetrieval.json,sha256=xvMLI0XiyWb
|
|
|
1288
1291
|
mteb/descriptive_stats/Retrieval/SciFact-Fa.json,sha256=BZHK8KUj5ShBzfomQxUbH8GBVpWYpepwdNaOZ1DHUE0,988
|
|
1289
1292
|
mteb/descriptive_stats/Retrieval/SciFact-Fa.v2.json,sha256=1U8zTDU24TBaZ2cVX6puKT_oQx_vdLBeVz6MRswOrJE,976
|
|
1290
1293
|
mteb/descriptive_stats/Retrieval/SciFact-NL.json,sha256=ncSxx1APRy-i0Sh_x7uEmJAPCSm9cRgLBbyUd02t0QI,989
|
|
1294
|
+
mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json,sha256=ncSxx1APRy-i0Sh_x7uEmJAPCSm9cRgLBbyUd02t0QI,989
|
|
1291
1295
|
mteb/descriptive_stats/Retrieval/SciFact-PL.json,sha256=UwPs1wwErZcNU6y5sNbKpuOOTnvXSGhgQY8IUKvjsas,977
|
|
1292
1296
|
mteb/descriptive_stats/Retrieval/SciFact-VN.json,sha256=iUldliZZHxc3sEbMVqmjWk9Z36-WhMJSvIk9Ep57DH0,1002
|
|
1293
1297
|
mteb/descriptive_stats/Retrieval/SciFact.json,sha256=1Gh0ph7_m5oc5hjlKw7KvslEd4qgJL8NgxtEkERTNXw,987
|
|
@@ -1769,14 +1773,14 @@ mteb/tasks/classification/mya/myanmar_news.py,sha256=fRDQBaSnNSLGIDU7HBz8xlHkIcc
|
|
|
1769
1773
|
mteb/tasks/classification/nep/__init__.py,sha256=Sj3bPg2KXOui4nwgVhSdz6JUpjadQJ1ZJjxxpMyMLfQ,176
|
|
1770
1774
|
mteb/tasks/classification/nep/nepali_news_classification.py,sha256=FL6IJTixczeO4xTCswSNdW2OLvqY3d7syEBo8BugN9s,3661
|
|
1771
1775
|
mteb/tasks/classification/nld/__init__.py,sha256=a_YlxI4tL8joDa1RF-ctbA4kw_8kHhM0sWBNtX1FTcQ,1037
|
|
1772
|
-
mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py,sha256=
|
|
1773
|
-
mteb/tasks/classification/nld/dutch_cola_classification.py,sha256=
|
|
1774
|
-
mteb/tasks/classification/nld/dutch_government_bias_classification.py,sha256=
|
|
1775
|
-
mteb/tasks/classification/nld/dutch_news_articles_classification.py,sha256=
|
|
1776
|
-
mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py,sha256=
|
|
1777
|
-
mteb/tasks/classification/nld/iconclass_classification.py,sha256=
|
|
1778
|
-
mteb/tasks/classification/nld/open_tender_classification.py,sha256=
|
|
1779
|
-
mteb/tasks/classification/nld/vaccin_chat_nl_classification.py,sha256=
|
|
1776
|
+
mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py,sha256=eFCFFSUfRwXvXVaf6C-ntPs_DiXa-6P4uuoB_3ZEb00,3566
|
|
1777
|
+
mteb/tasks/classification/nld/dutch_cola_classification.py,sha256=_mRNluXpo91ChJXIOGwRNsimQqotmhnk0dwW4DZjEX0,1601
|
|
1778
|
+
mteb/tasks/classification/nld/dutch_government_bias_classification.py,sha256=pDU6zS7u69Pz1AiEAT0na-3haUAJtvMqywFgDoqKImU,1594
|
|
1779
|
+
mteb/tasks/classification/nld/dutch_news_articles_classification.py,sha256=OU0C_k06iIP3EZ_8PMEeRk29q_Fp0G64j1jRwHNGFXs,1343
|
|
1780
|
+
mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py,sha256=_uSrF4qTwiiPq0x3eJ3puaF0RbzqVwPwGAtKLywBB38,1569
|
|
1781
|
+
mteb/tasks/classification/nld/iconclass_classification.py,sha256=YlrA74ePG5ijAAj-wwIU-Gom5j5cyWDSCPYbVYLspd8,1655
|
|
1782
|
+
mteb/tasks/classification/nld/open_tender_classification.py,sha256=ObtvxZjMhzJkaSOLniyWFtHgVdIOFBq7C84_VTRLT50,1525
|
|
1783
|
+
mteb/tasks/classification/nld/vaccin_chat_nl_classification.py,sha256=QjYdEFbDMGCM5PhKR1ydpErTj35ttnOjg0Q7sg3vlo0,1921
|
|
1780
1784
|
mteb/tasks/classification/nob/__init__.py,sha256=axgfxU9oueXuBJgbnyb0B5coAqxiCv543SsMEYcQm7o,366
|
|
1781
1785
|
mteb/tasks/classification/nob/no_rec_classification.py,sha256=xXetGpPz_juq31cSsJnO6RZ5oyCfi080c_jjmPQRxFM,4186
|
|
1782
1786
|
mteb/tasks/classification/nob/norwegian_parliament_classification.py,sha256=ztJSIufWm3WCwg3Is00NN4tIOuRVBFkiTFYM7bsxlb8,4007
|
|
@@ -1913,13 +1917,13 @@ mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py,sha256=4UfRF82DLNLLvD
|
|
|
1913
1917
|
mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py,sha256=a8uu1Eiq4_M-U28eBC511Y3UNCHZVK64oZtVmAuk7Wo,8574
|
|
1914
1918
|
mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py,sha256=XgMqPZ74tWjxU169qN8ri_aZVQ_kaR6xFVNJYyWBt4E,4384
|
|
1915
1919
|
mteb/tasks/clustering/nld/__init__.py,sha256=_KwG_aTmQpSAek4clgtkV7MQ5dpUOmbgIQWZoux5T-w,682
|
|
1916
|
-
mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py,sha256=
|
|
1917
|
-
mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py,sha256=
|
|
1918
|
-
mteb/tasks/clustering/nld/iconclass_clustering_s2s.py,sha256=
|
|
1919
|
-
mteb/tasks/clustering/nld/open_tender_clustering_p2p.py,sha256=
|
|
1920
|
-
mteb/tasks/clustering/nld/open_tender_clustering_s2s.py,sha256=
|
|
1921
|
-
mteb/tasks/clustering/nld/vabb_clustering_p2p.py,sha256=
|
|
1922
|
-
mteb/tasks/clustering/nld/vabb_clustering_s2s.py,sha256=
|
|
1920
|
+
mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py,sha256=xFiTQPZosUR8iYwHG3T1-SGwtMReMg5ofQvkrvIHjiE,1580
|
|
1921
|
+
mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py,sha256=07i07z9-Iu6d_PGtS4uFBNGte0PXqWmif-x_B5PxndE,1568
|
|
1922
|
+
mteb/tasks/clustering/nld/iconclass_clustering_s2s.py,sha256=k1S7Cx3n9kYg2jmQGydaYFC6zbb-D--S6hbxYQ6bIVg,1865
|
|
1923
|
+
mteb/tasks/clustering/nld/open_tender_clustering_p2p.py,sha256=Yek6Y9ITCJ95Yhg48ryItfxx0e_Um2s8OtBvv2zZ0YU,2052
|
|
1924
|
+
mteb/tasks/clustering/nld/open_tender_clustering_s2s.py,sha256=9DlFx_VQHFrRR5Gi6zDg0OYnmxeXYSPMlFKpFhjFvco,1715
|
|
1925
|
+
mteb/tasks/clustering/nld/vabb_clustering_p2p.py,sha256=TDGBUwN6AAQ8U0S0Whp5OiU0_XAsNsonrCeqxNnYFCg,2191
|
|
1926
|
+
mteb/tasks/clustering/nld/vabb_clustering_s2s.py,sha256=2UXW5pk95meD5FNHuMY4S1mhlaPl0NfrKDAV9N4_uCY,2193
|
|
1923
1927
|
mteb/tasks/clustering/nob/__init__.py,sha256=de-t3amIyZAo0iPjy33xVMFKCQlcDNmS4M8dgfWsr1U,503
|
|
1924
1928
|
mteb/tasks/clustering/nob/snl_clustering.py,sha256=n4-cHyAgJUEckqvEO1fk-o4rdXeIALNe2-enpvW4M9o,3580
|
|
1925
1929
|
mteb/tasks/clustering/nob/snl_hierarchical_clustering.py,sha256=OfdGmodK0eHTQMLo22SMI4FxM47wUCJmYYL8OOPqrCg,3328
|
|
@@ -1988,8 +1992,8 @@ mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py,sha256=s
|
|
|
1988
1992
|
mteb/tasks/multilabel_classification/multilingual/__init__.py,sha256=gYOJftJq07gP6SH5QMn-SZQ83MQINfWlz1fvFRDdqmI,139
|
|
1989
1993
|
mteb/tasks/multilabel_classification/multilingual/multi_eurlex_multilabel_classification.py,sha256=vfnIfW_oOy8dnrXd2zKBNmhTfg8ydVtYIJqZxRMsqr0,2405
|
|
1990
1994
|
mteb/tasks/multilabel_classification/nld/__init__.py,sha256=84hVtfQAZNYt1lGzf0Oc_Hrx6vBKHjN2L_h2ilcIKRk,297
|
|
1991
|
-
mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py,sha256=
|
|
1992
|
-
mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py,sha256=
|
|
1995
|
+
mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py,sha256=LgRBPVW6gMHtlpfYDs4TTl7E1QJYNOKeuH1kszFjNrM,3085
|
|
1996
|
+
mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py,sha256=_eapD0SUYG8ZUhnc3-NmN86Qer8qkTGRnrSn_T-Ch5Y,1939
|
|
1993
1997
|
mteb/tasks/multilabel_classification/por/__init__.py,sha256=mJW70APO6ofl6XiPEbsRgL1qVi_RMsWpJwHrdx5_wmw,136
|
|
1994
1998
|
mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py,sha256=m1jA33p_MVNoYRptNuVfd-YEPTc1G3EcCFB836YFlMk,1975
|
|
1995
1999
|
mteb/tasks/multilabel_classification/rus/__init__.py,sha256=skzrIGJ4giqi0tIiwCZux3JAYDlmu_vYZWrEBlusC6Q,355
|
|
@@ -2037,8 +2041,8 @@ mteb/tasks/pair_classification/multilingual/rte3.py,sha256=ZR3kpz8Y2AxyLe0uIYORo
|
|
|
2037
2041
|
mteb/tasks/pair_classification/multilingual/x_stance.py,sha256=NPLzF8j_d_Y8kLocfIr8qaeJzJBwWE-1uveXxmGYI8M,1536
|
|
2038
2042
|
mteb/tasks/pair_classification/multilingual/xnli.py,sha256=q7erc3tCbamua46CuhJc36jPKOoIs4KCzD91zBPG-Y4,4677
|
|
2039
2043
|
mteb/tasks/pair_classification/nld/__init__.py,sha256=H65VNZnmBDsyupF4PtYVz-PwYD9b0xXb-9e6ODK2-DM,214
|
|
2040
|
-
mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py,sha256=
|
|
2041
|
-
mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py,sha256=
|
|
2044
|
+
mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py,sha256=l420srn-nm1wbo361ogCU-Fq2B0Gv97FiN9UXSUrElY,1459
|
|
2045
|
+
mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py,sha256=YZ9yG4Lyh9jd7DgbBzo0sd7QNmjZZ64eR7rMiA0STxE,2006
|
|
2042
2046
|
mteb/tasks/pair_classification/pol/__init__.py,sha256=3bEzEe4yom2SL3XaqNwSs_0eCv6LKFEAoOOoD9FK-gk,110
|
|
2043
2047
|
mteb/tasks/pair_classification/pol/polish_pc.py,sha256=vUkkYqewzNcRQkZ_wLM63xH21PKtBGhiVGLPas5XN6o,6782
|
|
2044
2048
|
mteb/tasks/pair_classification/por/__init__.py,sha256=E_dD1BZfjS0gBjzmkhUnl8SrqiGegLRfPhcItUAn6b8,104
|
|
@@ -2344,9 +2348,9 @@ mteb/tasks/retrieval/multilingual/x_market_retrieval.py,sha256=vp1Q5al9swuoChpbm
|
|
|
2344
2348
|
mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py,sha256=o5rhMeRf9HCZQxDKU9SIibqQSR5pw4bmYV8I5nALmQ4,3971
|
|
2345
2349
|
mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py,sha256=IUMlMB1G1MbYOg9q81FPTk1pKnnLGS-WLgypehOOXqQ,5123
|
|
2346
2350
|
mteb/tasks/retrieval/multilingual/xpqa_retrieval.py,sha256=7ZL1cDK8OLvRwqC5r1dJKiQUkJP27RvuA_XX_Oaa--E,3029
|
|
2347
|
-
mteb/tasks/retrieval/nld/__init__.py,sha256=
|
|
2348
|
-
mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py,sha256=
|
|
2349
|
-
mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py,sha256=
|
|
2351
|
+
mteb/tasks/retrieval/nld/__init__.py,sha256=kQ7eR-n63XTBnzK1lHexfsCPjJWeg2OpLi5i6M3HSDc,2798
|
|
2352
|
+
mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py,sha256=c3O3PWvv-XpHE3YNv0EGzPbR71VnSq9RhOsT57z5iRY,2048
|
|
2353
|
+
mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py,sha256=4QUFjAer2WapzLZUNOUTnjZwgsKoCFi7rqX1UJnneOU,1669
|
|
2350
2354
|
mteb/tasks/retrieval/nld/climate_fevernl_retrieval.py,sha256=VQ7Z3GpmIdhM47e5Vz3p7bSzJaYBKvVf8SX9VvvLlEw,1577
|
|
2351
2355
|
mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py,sha256=A6bTYkteMZWUSf_ocJ8bL_4PyCMeq34vavvNGuIWt-Q,2618
|
|
2352
2356
|
mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py,sha256=6q7yzUe4Tw-BGi_lQPXMBgMMO5tqZ-y7n0NdzQ0Pm-c,2618
|
|
@@ -2361,21 +2365,21 @@ mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py,sha256=JgQsDdqTth9EFR
|
|
|
2361
2365
|
mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py,sha256=A_eHnC2bgmNOM_QfJJYh_salrHENYlwjmZ4A1hFmzJ4,2600
|
|
2362
2366
|
mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py,sha256=Yo0NBvNn8BJWuoNWAGvAI-2khVSreqa4XXX0r5LZ7wo,2596
|
|
2363
2367
|
mteb/tasks/retrieval/nld/db_pedia_nl_retrieval.py,sha256=bhd2ESL-roRgvDDB4cAKDmusYmOEJaJGfMfuMzFLVcw,1633
|
|
2364
|
-
mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py,sha256=
|
|
2368
|
+
mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py,sha256=RfQXg-GNSeL6ZklO3YKJ2dKG8BOCht-3mfCg94Q2iU0,1323
|
|
2365
2369
|
mteb/tasks/retrieval/nld/fevernl_retrieval.py,sha256=LZ8xofhy8xINPWdV8QYvmY1sQPtb8taHLIQ8iKJ34Iw,1694
|
|
2366
2370
|
mteb/tasks/retrieval/nld/fi_qa2018_nl_retrieval.py,sha256=Qfd2Wdnmq99Onb4iCShAc0jPQ_bTreSkRShhQWqfkJA,1503
|
|
2367
2371
|
mteb/tasks/retrieval/nld/hotpot_qanl_retrieval.py,sha256=xNPApN1CZzkhpvU4ZRf-rSSmljpSnFUQDVoqraW93X0,1635
|
|
2368
|
-
mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py,sha256=
|
|
2372
|
+
mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py,sha256=w5FL9aZB3HzoZcnNwR4GdYrUoJ2nCH9UrzBCjig4RLQ,1572
|
|
2369
2373
|
mteb/tasks/retrieval/nld/mmarconl_retrieval.py,sha256=iColk0qI_Ga3KHL_4aIGKK2X0S-WvqFXqDJqujzJaIA,1683
|
|
2370
|
-
mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py,sha256=
|
|
2374
|
+
mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py,sha256=6kLUAvs7w5_aximrHC93fDh_thTXppr15BnBzPH5P_E,2008
|
|
2371
2375
|
mteb/tasks/retrieval/nld/nqnl_retrieval.py,sha256=M4olYlutXu2VZUA5uMF-uga7V53GivPupyTKs4jy_bw,1394
|
|
2372
|
-
mteb/tasks/retrieval/nld/open_tender_retrieval.py,sha256=
|
|
2376
|
+
mteb/tasks/retrieval/nld/open_tender_retrieval.py,sha256=lwlGFoFkyxw7EI6tvV2RqBWGU1R6Syt-0FiRg8Qdz7c,1522
|
|
2373
2377
|
mteb/tasks/retrieval/nld/quora_nl_retrieval.py,sha256=u7v-huChD-HymugAzG0fawTVUntVOyiDdmmRxC0d0Pw,1600
|
|
2374
|
-
mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py,sha256=
|
|
2375
|
-
mteb/tasks/retrieval/nld/scidocsnl_retrieval.py,sha256=
|
|
2378
|
+
mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py,sha256=uRE-Fcfmu8BJxKgYu0p8UL58Kdue9Vv9Yove3ZeIzl4,2021
|
|
2379
|
+
mteb/tasks/retrieval/nld/scidocsnl_retrieval.py,sha256=JhQYZX-DthiYprxyzJNMETRGvRtAQwWnR0qfmC2FPJo,2226
|
|
2376
2380
|
mteb/tasks/retrieval/nld/touche2020_nl_retrieval.py,sha256=nPLZxNvhTDWkIJU6i2EPY3mp0SbLn8rZEL-7GP-XwGY,1481
|
|
2377
2381
|
mteb/tasks/retrieval/nld/treccovidnl_retrieval.py,sha256=d9rL10YNTUBVubdFxIVxqEhkf8tx9Iuxsp1BZ-Ctoyk,1671
|
|
2378
|
-
mteb/tasks/retrieval/nld/vabb_retrieval.py,sha256=
|
|
2382
|
+
mteb/tasks/retrieval/nld/vabb_retrieval.py,sha256=FoudYkcY4IY0PNHCvx87bjoUnJJolWVwNhq6xH9HE84,1834
|
|
2379
2383
|
mteb/tasks/retrieval/nob/__init__.py,sha256=6PYJtnMhN5OtRwXWLAMu5V-3JnZnbHrLxMOk8Ir-b9w,126
|
|
2380
2384
|
mteb/tasks/retrieval/nob/norquad.py,sha256=sqQLt3ajBrui2TnwvuPny5tU-aijiRUHA1kzXmF7cN8,3779
|
|
2381
2385
|
mteb/tasks/retrieval/nob/snl_retrieval.py,sha256=VXouYjek_U8jCdpuvIzQ00YRIq0gJM_5lorgVFzlI6g,3143
|
|
@@ -2483,7 +2487,7 @@ mteb/tasks/sts/multilingual/sts22_crosslingual_sts.py,sha256=zf50mdAKKZZN_sU5Ga8
|
|
|
2483
2487
|
mteb/tasks/sts/multilingual/sts_benchmark_multilingual_sts.py,sha256=QXenk9v8Mg5pNdkTmEO1X4JFp-3OCUfhHOPO3BE32OQ,1806
|
|
2484
2488
|
mteb/tasks/sts/multilingual/sts_benchmark_multilingual_visual_sts.py,sha256=yH4DLkgrBk6Qg7LHLfAyyclynN_XrichBraNDbxRWl8,1855
|
|
2485
2489
|
mteb/tasks/sts/nld/__init__.py,sha256=NdpfPHekoMIo9sw75Gahm_YCn8hzcVHixEStny107fk,67
|
|
2486
|
-
mteb/tasks/sts/nld/sick_nl_sts.py,sha256=
|
|
2490
|
+
mteb/tasks/sts/nld/sick_nl_sts.py,sha256=rnZ9KeM4Id_eeJJrqcYYdxoH7f6-2lr9obgiuxtHnGY,1557
|
|
2487
2491
|
mteb/tasks/sts/pol/__init__.py,sha256=Ob56PuMH_-J3gH9Pygg0fdEisWYKRT_fy_D0iE2zIpo,83
|
|
2488
2492
|
mteb/tasks/sts/pol/polish_sts.py,sha256=qJCw-28dZ-o3epx44Zz-u6ZLE8HIu4ocJaJRyD0JQkc,3418
|
|
2489
2493
|
mteb/tasks/sts/por/__init__.py,sha256=mUc8zOCeFl456-AEqKqgLQ4_sLnt_eUqD-cbcowRu0U,107
|
|
@@ -2538,9 +2542,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
|
|
|
2538
2542
|
mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
|
|
2539
2543
|
mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
|
|
2540
2544
|
mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
|
|
2541
|
-
mteb-2.1.
|
|
2542
|
-
mteb-2.1.
|
|
2543
|
-
mteb-2.1.
|
|
2544
|
-
mteb-2.1.
|
|
2545
|
-
mteb-2.1.
|
|
2546
|
-
mteb-2.1.
|
|
2545
|
+
mteb-2.1.7.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
2546
|
+
mteb-2.1.7.dist-info/METADATA,sha256=1h_yON1NtxXblqwMqsRrXSNF-ySHQ714gfDzZfNiuLE,13573
|
|
2547
|
+
mteb-2.1.7.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
2548
|
+
mteb-2.1.7.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
|
|
2549
|
+
mteb-2.1.7.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
|
|
2550
|
+
mteb-2.1.7.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|