mteb 2.1.2__py3-none-any.whl → 2.1.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/descriptive_stats/Retrieval/WinoGrande.json +14 -14
- mteb/evaluate.py +1 -1
- mteb/models/model_implementations/voyage_models.py +6 -7
- mteb/tasks/retrieval/eng/wino_grande_retrieval.py +1 -1
- {mteb-2.1.2.dist-info → mteb-2.1.4.dist-info}/METADATA +1 -1
- {mteb-2.1.2.dist-info → mteb-2.1.4.dist-info}/RECORD +10 -10
- {mteb-2.1.2.dist-info → mteb-2.1.4.dist-info}/WHEEL +0 -0
- {mteb-2.1.2.dist-info → mteb-2.1.4.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.2.dist-info → mteb-2.1.4.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.2.dist-info → mteb-2.1.4.dist-info}/top_level.txt +0 -0
|
@@ -1,29 +1,29 @@
|
|
|
1
1
|
{
|
|
2
2
|
"test": {
|
|
3
|
-
"num_samples":
|
|
4
|
-
"number_of_characters":
|
|
3
|
+
"num_samples": 6362,
|
|
4
|
+
"number_of_characters": 180770,
|
|
5
5
|
"documents_text_statistics": {
|
|
6
|
-
"total_text_length":
|
|
7
|
-
"min_text_length":
|
|
8
|
-
"average_text_length":
|
|
9
|
-
"max_text_length":
|
|
10
|
-
"unique_texts":
|
|
6
|
+
"total_text_length": 39142,
|
|
7
|
+
"min_text_length": 2,
|
|
8
|
+
"average_text_length": 7.68243375858685,
|
|
9
|
+
"max_text_length": 31,
|
|
10
|
+
"unique_texts": 5095
|
|
11
11
|
},
|
|
12
12
|
"documents_image_statistics": null,
|
|
13
13
|
"queries_text_statistics": {
|
|
14
|
-
"total_text_length":
|
|
15
|
-
"min_text_length":
|
|
16
|
-
"average_text_length":
|
|
17
|
-
"max_text_length":
|
|
18
|
-
"unique_texts":
|
|
14
|
+
"total_text_length": 141628,
|
|
15
|
+
"min_text_length": 79,
|
|
16
|
+
"average_text_length": 111.78216258879242,
|
|
17
|
+
"max_text_length": 185,
|
|
18
|
+
"unique_texts": 1267
|
|
19
19
|
},
|
|
20
20
|
"queries_image_statistics": null,
|
|
21
21
|
"relevant_docs_statistics": {
|
|
22
|
-
"num_relevant_docs":
|
|
22
|
+
"num_relevant_docs": 1267,
|
|
23
23
|
"min_relevant_docs_per_query": 1,
|
|
24
24
|
"average_relevant_docs_per_query": 1.0,
|
|
25
25
|
"max_relevant_docs_per_query": 1,
|
|
26
|
-
"unique_relevant_docs":
|
|
26
|
+
"unique_relevant_docs": 478
|
|
27
27
|
},
|
|
28
28
|
"top_ranked_statistics": null
|
|
29
29
|
}
|
mteb/evaluate.py
CHANGED
|
@@ -156,16 +156,15 @@ class VoyageModel(AbsEncoder):
|
|
|
156
156
|
and len(batch) < batch_size
|
|
157
157
|
and batch_tokens < self._max_tokens_per_batch
|
|
158
158
|
):
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
)
|
|
159
|
+
txt = sentences[index] if len(sentences[index]) > 0 else " "
|
|
160
|
+
n_tokens = len(self._client.tokenize([txt], model=self._model_name)[0])
|
|
162
161
|
if (
|
|
163
162
|
batch_tokens + n_tokens > self._max_tokens_per_batch
|
|
164
163
|
and len(batch) > 0
|
|
165
164
|
):
|
|
166
165
|
break
|
|
167
166
|
batch_tokens += n_tokens
|
|
168
|
-
batch.append(
|
|
167
|
+
batch.append(txt)
|
|
169
168
|
index += 1
|
|
170
169
|
|
|
171
170
|
embeddings.extend(
|
|
@@ -249,7 +248,7 @@ voyage_3_5 = ModelMeta(
|
|
|
249
248
|
n_parameters=None,
|
|
250
249
|
memory_usage_mb=None,
|
|
251
250
|
license=None,
|
|
252
|
-
reference="https://
|
|
251
|
+
reference="https://blog.voyageai.com/2025/05/20/voyage-3-5/",
|
|
253
252
|
similarity_fn_name="cosine",
|
|
254
253
|
framework=["API"],
|
|
255
254
|
use_instructions=True,
|
|
@@ -274,7 +273,7 @@ voyage_3_5_int8 = ModelMeta(
|
|
|
274
273
|
n_parameters=None,
|
|
275
274
|
memory_usage_mb=None,
|
|
276
275
|
license=None,
|
|
277
|
-
reference="https://
|
|
276
|
+
reference="https://blog.voyageai.com/2025/05/20/voyage-3-5/",
|
|
278
277
|
similarity_fn_name="cosine",
|
|
279
278
|
framework=["API"],
|
|
280
279
|
use_instructions=True,
|
|
@@ -300,7 +299,7 @@ voyage_3_5_binary = ModelMeta(
|
|
|
300
299
|
n_parameters=None,
|
|
301
300
|
memory_usage_mb=None,
|
|
302
301
|
license=None,
|
|
303
|
-
reference="https://
|
|
302
|
+
reference="https://blog.voyageai.com/2025/05/20/voyage-3-5/",
|
|
304
303
|
similarity_fn_name="cosine",
|
|
305
304
|
framework=["API"],
|
|
306
305
|
use_instructions=True,
|
|
@@ -9,7 +9,7 @@ class WinoGrande(AbsTaskRetrieval):
|
|
|
9
9
|
reference="https://winogrande.allenai.org/",
|
|
10
10
|
dataset={
|
|
11
11
|
"path": "mteb/WinoGrande",
|
|
12
|
-
"revision": "
|
|
12
|
+
"revision": "4dec9c5666e9f84702ac614363db6d96a68bc6de",
|
|
13
13
|
},
|
|
14
14
|
type="Retrieval",
|
|
15
15
|
category="t2t",
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.1.
|
|
3
|
+
Version: 2.1.4
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -7,7 +7,7 @@ mteb/_requires_package.py,sha256=eHg_TD9BVZRzNCcQQrUP17d8M1DF_vOd_tVx54AmAnM,301
|
|
|
7
7
|
mteb/_set_seed.py,sha256=HPlPRl__Pe6IG-4UgJqTfplcivJ_wA2kaClbXoHQedM,1178
|
|
8
8
|
mteb/cache.py,sha256=rjpXTo9FTuYNwuZGQxZ1v9Yj8pIeMvwW7WNWM4CI6zA,20010
|
|
9
9
|
mteb/deprecated_evaluator.py,sha256=t13Eluvm5ByVIOqgT7fqiVfLb8Ud3A4bbF2djRfs8iA,26901
|
|
10
|
-
mteb/evaluate.py,sha256=
|
|
10
|
+
mteb/evaluate.py,sha256=a8dE6GtDC8TC4Q9rvJfzPuPNDbuNJSx8TAhR-aFMnLQ,17153
|
|
11
11
|
mteb/filter_tasks.py,sha256=5XE1OYmgDDoJYnXwFf4ma_PIT_Lekzs420sQF_kpCiY,7240
|
|
12
12
|
mteb/get_tasks.py,sha256=6Gc18a2bZoLQV1Ms_qdr2KieAqIXg8TDg4l7ZN8rW2I,14218
|
|
13
13
|
mteb/load_results.py,sha256=Xw2ZX7BToU92WwUTQUQKPAgPhX7ucyRRdoCrxAoPHdI,6414
|
|
@@ -1340,7 +1340,7 @@ mteb/descriptive_stats/Retrieval/VieQuADRetrieval.json,sha256=NHt0U-wJXBOPYOki5Y
|
|
|
1340
1340
|
mteb/descriptive_stats/Retrieval/WebFAQRetrieval.json,sha256=uNkLCfiuVbdNKZ54vYGo8dPaoBlTShexDjl_IwCcT_M,60318
|
|
1341
1341
|
mteb/descriptive_stats/Retrieval/WikiSQLRetrieval.json,sha256=JinCBRnmfMDeIwQtQfD6bD8MYNEpUgedw05A6G-W7u4,985
|
|
1342
1342
|
mteb/descriptive_stats/Retrieval/WikipediaRetrievalMultilingual.json,sha256=v9npJOOJrcBUdRQ8EzAbOrpynAoSAJBaJoSJhS-qkww,20357
|
|
1343
|
-
mteb/descriptive_stats/Retrieval/WinoGrande.json,sha256
|
|
1343
|
+
mteb/descriptive_stats/Retrieval/WinoGrande.json,sha256=czzrnqg24MPfCrlVPLamL4LvMdWWOZC4R4tJYjc1QAA,982
|
|
1344
1344
|
mteb/descriptive_stats/Retrieval/XMarket.json,sha256=s0odo5MWwzgQi0HwqK4APYhWIBR8WEtiC8KKt7wgzOc,4770
|
|
1345
1345
|
mteb/descriptive_stats/Retrieval/XPQARetrieval.json,sha256=qHxeCggIwW1iw5ujbHsCc_7rf_-JIhfYRFGEKvzSTO0,44958
|
|
1346
1346
|
mteb/descriptive_stats/Retrieval/XQuADRetrieval.json,sha256=NjNvrloDl561L_WTWBg6fQ31yBTZInYWL-SW0q35SfA,15462
|
|
@@ -1528,7 +1528,7 @@ mteb/models/model_implementations/vdr_models.py,sha256=lMm43BBPjZU5lxZcpmPZ8hn0P
|
|
|
1528
1528
|
mteb/models/model_implementations/vi_vn_models.py,sha256=quWmd3JT2J6SlAsFrV2gcnc67M9zr58mEF2zLUF8-uw,4795
|
|
1529
1529
|
mteb/models/model_implementations/vista_models.py,sha256=Q3I01kRtIPaoke0iMIcH4CLcCDTnMSIBFNCof7LPTX4,10832
|
|
1530
1530
|
mteb/models/model_implementations/vlm2vec_models.py,sha256=HGGy_-z9Wc99xOKum71rBNipCPqWcM1efmmXgy5Rvxc,11724
|
|
1531
|
-
mteb/models/model_implementations/voyage_models.py,sha256=
|
|
1531
|
+
mteb/models/model_implementations/voyage_models.py,sha256=dOCccOQlloGrg0q44PxMQzx8dHuQ8VgkDUD01EydpJ0,19824
|
|
1532
1532
|
mteb/models/model_implementations/voyage_v.py,sha256=6i-oFnaY2D2qR1Dgb0B98ougnD1ujW9aNG9QoWyvwwY,8041
|
|
1533
1533
|
mteb/models/model_implementations/xyz_models.py,sha256=TePlrH6EHwRPO87U_J3Yce9-XHCn_X7I2cJ_6BZ2fUY,1296
|
|
1534
1534
|
mteb/models/model_implementations/youtu_models.py,sha256=NB74E6z-_36HyXb8GXKn8CrmRLN68uX9eH4xcS57zl0,5938
|
|
@@ -2283,7 +2283,7 @@ mteb/tasks/retrieval/eng/viz_wiz_it2t_retrieval.py,sha256=jE70T5If62lkKnbF-CMAgR
|
|
|
2283
2283
|
mteb/tasks/retrieval/eng/vqa2_it2t_retrieval.py,sha256=M_g6Y6OrNRByD52-JxuO8iIO8aFUg8HHg5BxQ31-m1I,1403
|
|
2284
2284
|
mteb/tasks/retrieval/eng/web_qa_t2it_retrieval.py,sha256=c7pJja_ii4ku9pfd-Gd3FqO6cF-0IIEb_H0FRY2A69w,1477
|
|
2285
2285
|
mteb/tasks/retrieval/eng/web_qa_t2t_retrieval.py,sha256=rx6uoqc8yduGhuvdv2K5v2oFiQI8jP-BEt5nmaKrsac,1517
|
|
2286
|
-
mteb/tasks/retrieval/eng/wino_grande_retrieval.py,sha256=
|
|
2286
|
+
mteb/tasks/retrieval/eng/wino_grande_retrieval.py,sha256=ou8TlZ-JPS1nh7NS7OeerUsB2WRZWWwKTuygpJNLb2A,1714
|
|
2287
2287
|
mteb/tasks/retrieval/est/__init__.py,sha256=uNkOSKfZsO1F-xC4twL8ukxtfrI4A4eIU-oAs3Hi5Dg,46
|
|
2288
2288
|
mteb/tasks/retrieval/est/estqa.py,sha256=sORL3KI47yXOy8GXptBtCuryOdDShdRDFpCdnnIaaCI,1418
|
|
2289
2289
|
mteb/tasks/retrieval/fas/__init__.py,sha256=DUq1CTC_nj-201dbUNqlmqN-oR-YKjeW3O8DhtMX9rk,2213
|
|
@@ -2536,9 +2536,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
|
|
|
2536
2536
|
mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
|
|
2537
2537
|
mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
|
|
2538
2538
|
mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
|
|
2539
|
-
mteb-2.1.
|
|
2540
|
-
mteb-2.1.
|
|
2541
|
-
mteb-2.1.
|
|
2542
|
-
mteb-2.1.
|
|
2543
|
-
mteb-2.1.
|
|
2544
|
-
mteb-2.1.
|
|
2539
|
+
mteb-2.1.4.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
2540
|
+
mteb-2.1.4.dist-info/METADATA,sha256=3HJ0LwqN5B9zLnqA4j5PsmVknk75iAHG-qwtZqJdKW0,13573
|
|
2541
|
+
mteb-2.1.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
2542
|
+
mteb-2.1.4.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
|
|
2543
|
+
mteb-2.1.4.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
|
|
2544
|
+
mteb-2.1.4.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|