mteb 2.1.19__py3-none-any.whl → 2.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -12,6 +12,7 @@ from mteb._create_dataloaders import create_dataloader
12
12
  from mteb.abstasks.task_metadata import TaskMetadata
13
13
  from mteb.models import EncoderProtocol
14
14
  from mteb.similarity_functions import compute_pairwise_similarity
15
+ from mteb.types import PromptType
15
16
 
16
17
  from .evaluator import Evaluator
17
18
 
@@ -42,6 +43,8 @@ class AnySTSEvaluator(Evaluator):
42
43
  task_metadata: TaskMetadata,
43
44
  hf_split: str,
44
45
  hf_subset: str,
46
+ input1_prompt_type: PromptType | None,
47
+ input2_prompt_type: PromptType | None,
45
48
  **kwargs,
46
49
  ) -> None:
47
50
  super().__init__(**kwargs)
@@ -50,6 +53,8 @@ class AnySTSEvaluator(Evaluator):
50
53
  self.task_metadata = task_metadata
51
54
  self.hf_split = hf_split
52
55
  self.hf_subset = hf_subset
56
+ self.input1_prompt_type = input1_prompt_type
57
+ self.input2_prompt_type = input2_prompt_type
53
58
 
54
59
  def __call__(
55
60
  self,
@@ -68,6 +73,7 @@ class AnySTSEvaluator(Evaluator):
68
73
  task_metadata=self.task_metadata,
69
74
  hf_split=self.hf_split,
70
75
  hf_subset=self.hf_subset,
76
+ prompt_type=self.input1_prompt_type,
71
77
  **encode_kwargs,
72
78
  )
73
79
 
@@ -82,6 +88,7 @@ class AnySTSEvaluator(Evaluator):
82
88
  task_metadata=self.task_metadata,
83
89
  hf_split=self.hf_split,
84
90
  hf_subset=self.hf_subset,
91
+ prompt_type=self.input2_prompt_type,
85
92
  **encode_kwargs,
86
93
  )
87
94
 
@@ -14,6 +14,7 @@ from mteb._evaluators.evaluator import Evaluator
14
14
  from mteb.abstasks.task_metadata import TaskMetadata
15
15
  from mteb.models import EncoderProtocol
16
16
  from mteb.similarity_functions import compute_pairwise_similarity
17
+ from mteb.types import PromptType
17
18
 
18
19
  logger = logging.getLogger(__name__)
19
20
 
@@ -60,6 +61,8 @@ class PairClassificationEvaluator(Evaluator):
60
61
  task_metadata: TaskMetadata,
61
62
  hf_split: str,
62
63
  hf_subset: str,
64
+ input1_prompt_type: PromptType | None,
65
+ input2_prompt_type: PromptType | None,
63
66
  **kwargs,
64
67
  ) -> None:
65
68
  super().__init__(**kwargs)
@@ -69,6 +72,8 @@ class PairClassificationEvaluator(Evaluator):
69
72
  self.task_metadata = task_metadata
70
73
  self.hf_split = hf_split
71
74
  self.hf_subset = hf_subset
75
+ self.input1_prompt_type = input1_prompt_type
76
+ self.input2_prompt_type = input2_prompt_type
72
77
 
73
78
  if len(self.dataset[self.input1_column_name]) != len(
74
79
  self.dataset[self.input2_column_name]
@@ -82,49 +87,34 @@ class PairClassificationEvaluator(Evaluator):
82
87
  model: EncoderProtocol,
83
88
  encode_kwargs: dict[str, Any],
84
89
  ) -> PairClassificationDistances:
85
- logger.info("Running pair classification - Encoding inputs...")
86
- if self.task_metadata.modalities == ["text"]:
87
- # datasets v4 will pass column objects, so we need to extract the text
88
- all_sentences = (
89
- self.dataset[self.input1_column_name][:]
90
- + self.dataset[self.input2_column_name][:]
91
- )
92
- len_sentences1 = len(self.dataset[self.input1_column_name])
93
- embeddings = self._encode_unique_texts(
94
- all_sentences,
95
- model,
96
- task_metadata=self.task_metadata,
97
- hf_split=self.hf_split,
98
- hf_subset=self.hf_subset,
99
- **encode_kwargs,
100
- )
101
- embeddings1 = embeddings[:len_sentences1]
102
- embeddings2 = embeddings[len_sentences1:]
103
- else:
104
- embeddings1 = model.encode(
105
- create_dataloader(
106
- self.dataset,
107
- task_metadata=self.task_metadata,
108
- input_column=self.input1_column_name,
109
- **encode_kwargs,
110
- ),
90
+ logger.info("Running pair classification - Encoding samples (1/2)")
91
+ embeddings1 = model.encode(
92
+ create_dataloader(
93
+ self.dataset,
111
94
  task_metadata=self.task_metadata,
112
- hf_split=self.hf_split,
113
- hf_subset=self.hf_subset,
95
+ input_column=self.input1_column_name,
114
96
  **encode_kwargs,
115
- )
116
- embeddings2 = model.encode(
117
- create_dataloader(
118
- self.dataset,
119
- task_metadata=self.task_metadata,
120
- input_column=self.input2_column_name,
121
- **encode_kwargs,
122
- ),
97
+ ),
98
+ task_metadata=self.task_metadata,
99
+ hf_split=self.hf_split,
100
+ hf_subset=self.hf_subset,
101
+ prompt_type=self.input1_prompt_type,
102
+ **encode_kwargs,
103
+ )
104
+ logger.info("Running pair classification - Encoding samples (2/2)")
105
+ embeddings2 = model.encode(
106
+ create_dataloader(
107
+ self.dataset,
123
108
  task_metadata=self.task_metadata,
124
- hf_split=self.hf_split,
125
- hf_subset=self.hf_subset,
109
+ input_column=self.input2_column_name,
126
110
  **encode_kwargs,
127
- )
111
+ ),
112
+ task_metadata=self.task_metadata,
113
+ hf_split=self.hf_split,
114
+ hf_subset=self.hf_subset,
115
+ prompt_type=self.input2_prompt_type,
116
+ **encode_kwargs,
117
+ )
128
118
 
129
119
  logger.info("Running pair classification - Evaluating pair similarity...")
130
120
  cosine_scores = 1 - paired_cosine_distances(embeddings1, embeddings2)
@@ -19,6 +19,7 @@ from mteb.abstasks._statistics_calculation import (
19
19
  from mteb.abstasks.abstask import AbsTask
20
20
  from mteb.models.model_meta import ScoringFunction
21
21
  from mteb.models.models_protocols import EncoderProtocol
22
+ from mteb.types import PromptType
22
23
  from mteb.types.statistics import (
23
24
  ImageStatistics,
24
25
  LabelStatistics,
@@ -35,7 +36,7 @@ class PairClassificationDescriptiveStatistics(SplitDescriptiveStatistics):
35
36
  Attributes:
36
37
  num_samples: number of samples in the dataset.
37
38
  number_of_characters: Total number of symbols in the dataset.
38
- unique_text_pairs: Number of unique pairs
39
+ unique_pairs: Number of unique pairs
39
40
 
40
41
  text1_statistics: Statistics for sentence1
41
42
  text2_statistics: Statistics for sentence2
@@ -65,12 +66,16 @@ class AbsTaskPairClassification(AbsTask):
65
66
  input2_column_name: The name of the column containing the second sentence in the pair.
66
67
  label_column_name: The name of the column containing the labels for the pairs. Labels should be 0 or 1.
67
68
  abstask_prompt: Prompt to use for the task for instruction model if not prompt is provided in TaskMetadata.prompt.
69
+ input1_prompt_type: Type of prompt of first input. Used for asymmetric tasks.
70
+ input2_prompt_type: Type of prompt of second input. Used for asymmetric tasks.
68
71
  """
69
72
 
70
73
  abstask_prompt = "Retrieve text that are semantically similar to the given text."
71
74
  input1_column_name: str = "sentence1"
72
75
  input2_column_name: str = "sentence2"
73
76
  label_column_name: str = "labels"
77
+ input1_prompt_type: PromptType | None = None
78
+ input2_prompt_type: PromptType | None = None
74
79
 
75
80
  def _evaluate_subset(
76
81
  self,
@@ -93,6 +98,8 @@ class AbsTaskPairClassification(AbsTask):
93
98
  task_metadata=self.metadata,
94
99
  hf_split=hf_split,
95
100
  hf_subset=hf_subset,
101
+ input1_prompt_type=self.input1_prompt_type,
102
+ input2_prompt_type=self.input2_prompt_type,
96
103
  **kwargs,
97
104
  )
98
105
  similarity_scores = evaluator(model, encode_kwargs=encode_kwargs)
mteb/abstasks/sts.py CHANGED
@@ -8,6 +8,7 @@ from scipy.stats import pearsonr, spearmanr
8
8
  from mteb._evaluators import AnySTSEvaluator
9
9
  from mteb._evaluators.any_sts_evaluator import STSEvaluatorScores
10
10
  from mteb.models import EncoderProtocol
11
+ from mteb.types import PromptType
11
12
  from mteb.types.statistics import (
12
13
  ImageStatistics,
13
14
  ScoreStatistics,
@@ -89,12 +90,16 @@ class AbsTaskSTS(AbsTask):
89
90
  min_score: Minimum possible score in the dataset.
90
91
  max_score: Maximum possible score in the dataset.
91
92
  abstask_prompt: Prompt to use for the task for instruction model if not prompt is provided in TaskMetadata.prompt.
93
+ input1_prompt_type: Type of prompt of first input. Used for asymmetric tasks.
94
+ input2_prompt_type: Type of prompt of second input. Used for asymmetric tasks.
92
95
  """
93
96
 
94
97
  abstask_prompt = "Retrieve semantically similar text."
95
98
  column_names: tuple[str, str] = ("sentence1", "sentence2")
96
99
  min_score: int = 0
97
100
  max_score: int = 5
101
+ input1_prompt_type: PromptType | None = None
102
+ input2_prompt_type: PromptType | None = None
98
103
 
99
104
  def _evaluate_subset(
100
105
  self,
@@ -115,6 +120,8 @@ class AbsTaskSTS(AbsTask):
115
120
  task_metadata=self.metadata,
116
121
  hf_split=hf_split,
117
122
  hf_subset=hf_subset,
123
+ input1_prompt_type=self.input1_prompt_type,
124
+ input2_prompt_type=self.input2_prompt_type,
118
125
  **kwargs,
119
126
  )
120
127
  scores = evaluator(model, encode_kwargs=encode_kwargs)
@@ -0,0 +1,35 @@
1
+ {
2
+ "dev": {
3
+ "num_samples": 307,
4
+ "number_of_characters": 84848,
5
+ "unique_pairs": 307,
6
+ "text1_statistics": {
7
+ "total_text_length": 70844,
8
+ "min_text_length": 39,
9
+ "average_text_length": 230.76221498371336,
10
+ "max_text_length": 717,
11
+ "unique_texts": 282
12
+ },
13
+ "text2_statistics": {
14
+ "total_text_length": 14004,
15
+ "min_text_length": 12,
16
+ "average_text_length": 45.615635179153095,
17
+ "max_text_length": 129,
18
+ "unique_texts": 307
19
+ },
20
+ "labels_statistics": {
21
+ "min_labels_per_text": 1,
22
+ "average_label_per_text": 1.0,
23
+ "max_labels_per_text": 1,
24
+ "unique_labels": 2,
25
+ "labels": {
26
+ "1": {
27
+ "count": 153
28
+ },
29
+ "0": {
30
+ "count": 154
31
+ }
32
+ }
33
+ }
34
+ }
35
+ }
@@ -147,7 +147,7 @@ class SearchEncoderWrapper:
147
147
  top_k: int,
148
148
  encode_kwargs: dict[str, Any],
149
149
  ) -> dict[str, list[tuple[float, str]]]:
150
- logger.info("Encoding Corpus in batches... Warning: This might take a while!")
150
+ logger.info("Encoding Corpus in batches (this might take a while)...")
151
151
  itr = range(0, len(self.task_corpus), self.corpus_chunk_size)
152
152
 
153
153
  result_heaps = {qid: [] for qid in query_idx_to_id.values()}
@@ -1,3 +1,3 @@
1
- from .terra import TERRa
1
+ from .terra import TERRa, TERRaV2
2
2
 
3
- __all__ = ["TERRa"]
3
+ __all__ = ["TERRa", "TERRaV2"]
@@ -1,31 +1,27 @@
1
1
  from mteb.abstasks.pair_classification import AbsTaskPairClassification
2
2
  from mteb.abstasks.task_metadata import TaskMetadata
3
+ from mteb.types import PromptType
3
4
 
4
-
5
- class TERRa(AbsTaskPairClassification):
6
- metadata = TaskMetadata(
7
- name="TERRa",
8
- dataset={
9
- "path": "ai-forever/terra-pairclassification",
10
- "revision": "7b58f24536063837d644aab9a023c62199b2a612",
11
- },
12
- description="Textual Entailment Recognition for Russian. This task requires to recognize, given two text fragments, "
13
- + "whether the meaning of one text is entailed (can be inferred) from the other text.",
14
- reference="https://arxiv.org/pdf/2010.15925",
15
- type="PairClassification",
16
- category="t2t",
17
- modalities=["text"],
18
- eval_splits=["dev"],
19
- eval_langs=["rus-Cyrl"],
20
- main_score="max_ap",
21
- date=("2000-01-01", "2018-01-01"),
22
- domains=["News", "Web", "Written"],
23
- task_subtypes=[],
24
- license="mit",
25
- annotations_creators="human-annotated",
26
- dialect=[],
27
- sample_creation="found",
28
- bibtex_citation=r"""
5
+ _terra_metadata = dict(
6
+ dataset={
7
+ "path": "ai-forever/terra-pairclassification",
8
+ "revision": "7b58f24536063837d644aab9a023c62199b2a612",
9
+ },
10
+ reference="https://arxiv.org/pdf/2010.15925",
11
+ type="PairClassification",
12
+ category="t2t",
13
+ modalities=["text"],
14
+ eval_splits=["dev"],
15
+ eval_langs=["rus-Cyrl"],
16
+ main_score="max_ap",
17
+ date=("2000-01-01", "2018-01-01"),
18
+ domains=["News", "Web", "Written"],
19
+ task_subtypes=[],
20
+ license="mit",
21
+ annotations_creators="human-annotated",
22
+ dialect=[],
23
+ sample_creation="found",
24
+ bibtex_citation=r"""
29
25
  @article{shavrina2020russiansuperglue,
30
26
  author = {Shavrina, Tatiana
31
27
  and Fenogenova, Alena
@@ -42,7 +38,37 @@ and Evlampiev, Andrey},
42
38
  year = {2020},
43
39
  }
44
40
  """,
41
+ )
42
+
43
+
44
+ class TERRa(AbsTaskPairClassification):
45
+ metadata = TaskMetadata(
46
+ name="TERRa",
47
+ description="Textual Entailment Recognition for Russian. This task requires to recognize, given two text fragments, "
48
+ + "whether the meaning of one text is entailed (can be inferred) from the other text.",
45
49
  prompt="Given a premise, retrieve a hypothesis that is entailed by the premise",
50
+ **_terra_metadata,
51
+ )
52
+
53
+ def dataset_transform(self):
54
+ self.dataset = self.dataset.rename_column("sent1", "sentence1")
55
+ self.dataset = self.dataset.rename_column("sent2", "sentence2")
56
+
57
+
58
+ class TERRaV2(AbsTaskPairClassification):
59
+ input1_prompt_type = PromptType.document
60
+ input2_prompt_type = PromptType.query
61
+
62
+ metadata = TaskMetadata(
63
+ name="TERRa.V2",
64
+ description="Textual Entailment Recognition for Russian. This task requires to recognize, given two text fragments, "
65
+ + "whether the meaning of one text is entailed (can be inferred) from the other text."
66
+ + " Version 2 uses different prompt types for the two inputs.",
67
+ adapted_from=["TERRa"],
68
+ prompt={
69
+ PromptType.query.value: "Given a premise, retrieve a hypothesis that is entailed by the premise"
70
+ },
71
+ **_terra_metadata,
46
72
  )
47
73
 
48
74
  def dataset_transform(self):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.1.19
3
+ Version: 2.2.1
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -14,10 +14,10 @@ mteb/load_results.py,sha256=Xw2ZX7BToU92WwUTQUQKPAgPhX7ucyRRdoCrxAoPHdI,6414
14
14
  mteb/similarity_functions.py,sha256=ZkBapSGDXKE5ipTG2FpeFnAC1iWwiVkrAidmKK_I4bI,8799
15
15
  mteb/_evaluators/__init__.py,sha256=Ag1_RWpxBGMpujzd3FZjI40gY_KQKIpY31tJPuk-hFg,1013
16
16
  mteb/_evaluators/_download.py,sha256=jntlcURbJxcxUjTmn2D9Tu6ZnWgDc9t5bY8p9CZCqv4,586
17
- mteb/_evaluators/any_sts_evaluator.py,sha256=Xbmxb01eR3qs86LbXLQd_powdvZAmyWu7FVB3ZZEhvo,3430
17
+ mteb/_evaluators/any_sts_evaluator.py,sha256=f0V3NDP5Bfp8qEeBwP8E-Enj5F5NbFze-kGmzlkObQA,3762
18
18
  mteb/_evaluators/clustering_evaluator.py,sha256=5XoKHl5LcG9jQ9oBzNAWYVpZWWUxrars3t7TdIV7xS0,2052
19
19
  mteb/_evaluators/evaluator.py,sha256=gwaeftcAKoGcIQs8jIaafynbcYrYErj6AitHBxgjn2w,807
20
- mteb/_evaluators/pair_classification_evaluator.py,sha256=Rd9OLBMJr27WzUVKbzLH4SdsBOgpId0PiKbca0AesYk,6861
20
+ mteb/_evaluators/pair_classification_evaluator.py,sha256=6lgDI9wRfEK937YTS4l0W1OL1IQpHYZ4l34-Lxi9KdA,6401
21
21
  mteb/_evaluators/retrieval_evaluator.py,sha256=HsowKZkqRCNzTwM7EcsHX18KhVKAjrm0sa_wFrreCb8,3031
22
22
  mteb/_evaluators/retrieval_metrics.py,sha256=we0damQCJrdaRUD6JlU2MM7Ls9xERP_OBS5gHt53u9Q,23588
23
23
  mteb/_evaluators/sklearn_evaluator.py,sha256=f9SgBbvgCrkltdTebQTixT7KmIagGkjQ_cNnKuHTb3w,3772
@@ -38,11 +38,11 @@ mteb/abstasks/clustering.py,sha256=4KcaU8_sNLmLvMhwDpNmcY2nD3BNyx_LcM-ddSv-wtY,1
38
38
  mteb/abstasks/clustering_legacy.py,sha256=HZY8zgBgqqs5urF_to9wzqm3MnjFivs59hU6P3NrzcI,8684
39
39
  mteb/abstasks/dataset_card_template.md,sha256=aD6l8qc3_jxwoIGJNYLzse-jpRa8hu92AxpnUtNgges,5122
40
40
  mteb/abstasks/multilabel_classification.py,sha256=feLlpSKoe3b_Sb58N-9cx_5hzti1a2iA8QxcSBWSfjE,8922
41
- mteb/abstasks/pair_classification.py,sha256=cmXfQmzmbTiHDWgPKy21Iddh_q_PwCqhv8Lz6rAwe5U,12851
41
+ mteb/abstasks/pair_classification.py,sha256=ToOBFDiokZOz9ea-klMLj_37slbVFR3lSuihP81x9Lc,13263
42
42
  mteb/abstasks/regression.py,sha256=SeacOErZUXGLGOcwqAvht6BlbD8fcsn9QhNiFIuJGyc,8832
43
43
  mteb/abstasks/retrieval.py,sha256=7QTKYlGaGvF1lOQkB_B4qj8Vm2FxxFXNVTHhfwZO8Bw,26439
44
44
  mteb/abstasks/retrieval_dataset_loaders.py,sha256=WukcFAn54rUpXULCG43eysHozXHAxo2CaPhQyL_2Yg8,9401
45
- mteb/abstasks/sts.py,sha256=rv611-rFNgaGFD8Hmsgwsbxgjt7dNZritL9pMFMjzLk,8660
45
+ mteb/abstasks/sts.py,sha256=aKTivjvDtAaoYb1hz1NBv2o3UpDR-3AaeHgkDFHMBGI,9077
46
46
  mteb/abstasks/task_metadata.py,sha256=7CzYK1y-vwLUiWaEGPgU3HiolpW3UCul8Y2KJ-WSpeE,26892
47
47
  mteb/abstasks/zeroshot_classification.py,sha256=4UxBIZ1e1iRK8PRAhCWnnSDirK2vi5-w2N5ZomCnaIM,5882
48
48
  mteb/abstasks/image/__init__.py,sha256=NgvMJnp1g2mUv27RL-TvzA7s1BOdMG-EB1CrZfdbWdg,136
@@ -923,6 +923,7 @@ mteb/descriptive_stats/PairClassification/SprintDuplicateQuestions.json,sha256=S
923
923
  mteb/descriptive_stats/PairClassification/SynPerChatbotRAGFAQPC.json,sha256=tH_5-4r-BtbpuPmR-dy_HDZ2-XoDtY5BUN2OS3pKUIQ,988
924
924
  mteb/descriptive_stats/PairClassification/SynPerQAPC.json,sha256=_oV9WyPr3O93S0yd4PKnxVfEGZjkQ8eFGAyXnrgO4BY,995
925
925
  mteb/descriptive_stats/PairClassification/SynPerTextKeywordsPC.json,sha256=X3syICEpIKwT__cEUqafPEEb5IbHKPe4o8qXfQJffKQ,987
926
+ mteb/descriptive_stats/PairClassification/TERRa.V2.json,sha256=ZN6JfpkVsay8rqp7SmgkP9TgjXx3_tN9pimu2W6APZw,976
926
927
  mteb/descriptive_stats/PairClassification/TERRa.json,sha256=ZN6JfpkVsay8rqp7SmgkP9TgjXx3_tN9pimu2W6APZw,976
927
928
  mteb/descriptive_stats/PairClassification/TalemaaderPC.json,sha256=2NE271xQXD7ZPvgmxRLB12eKmDPI51R7ODDVlLor6wU,960
928
929
  mteb/descriptive_stats/PairClassification/TwitterSemEval2015-VN.json,sha256=moqTs9Pdns2c4ya1UqwOw3yuNk-Enx7zZ1cvDh83-2Q,985
@@ -1433,7 +1434,7 @@ mteb/models/get_model_meta.py,sha256=VpZZNINk-QrNeVpPZnlqzlLhtBs8G84eRwTzAb_gRD4
1433
1434
  mteb/models/instruct_wrapper.py,sha256=Ty4nfEvioycL_uATkhd0PGuyeB5Xc9xrRd6HOGgb-tc,9005
1434
1435
  mteb/models/model_meta.py,sha256=b-Nel9nX5bJk4cgJnqkBzEKyMY7uXvxlCBSxmmH1Ios,14769
1435
1436
  mteb/models/models_protocols.py,sha256=D2hYWn_UBGMaKtRwBx3u0B0ni6lHJjSzTxX21XFNwIc,8917
1436
- mteb/models/search_wrappers.py,sha256=qe2APunvRfPREdrq1moSi44mFXV6uaHvGHcLnaza-Sc,15483
1437
+ mteb/models/search_wrappers.py,sha256=9PrS12afZInQKnmky2zdDrY_tVaC-Lwx__3zmoFIgn0,15475
1437
1438
  mteb/models/sentence_transformer_wrapper.py,sha256=n5CMsM6Lpg_CFHH0NkpJusMsaLUTt-L9vRmFINQ961k,12338
1438
1439
  mteb/models/cache_wrappers/__init__.py,sha256=j3JBHN73Tr7uMUO92FEvKXstnybxrPpGWmKXU2lAoIE,88
1439
1440
  mteb/models/cache_wrappers/cache_backend_protocol.py,sha256=TR7kD7KbN1J4piszIecpegtLZYGy7sRHZt3SDWlImKk,1665
@@ -2062,8 +2063,8 @@ mteb/tasks/pair_classification/pol/polish_pc.py,sha256=vUkkYqewzNcRQkZ_wLM63xH21
2062
2063
  mteb/tasks/pair_classification/por/__init__.py,sha256=E_dD1BZfjS0gBjzmkhUnl8SrqiGegLRfPhcItUAn6b8,104
2063
2064
  mteb/tasks/pair_classification/por/assin2_rte.py,sha256=4k--kU2r3LS05TXdtVo4991Y6ayGbsOc--UL-bkW2Yo,2011
2064
2065
  mteb/tasks/pair_classification/por/sick_br_pc.py,sha256=aGsDQFyTQr0vI6GOoZ6fO4npB8gT8zYrjwKymEcm6bQ,2734
2065
- mteb/tasks/pair_classification/rus/__init__.py,sha256=7XbamCA01GY91cj6gjObhT2YRAKSJ7bEw7k1hoc-8hw,46
2066
- mteb/tasks/pair_classification/rus/terra.py,sha256=MyQNKdKy3DBduORfdBwsnIj8OcSiOjQhUTa1vK3tunA,1791
2066
+ mteb/tasks/pair_classification/rus/__init__.py,sha256=Y6Rl-zlzdtOnEX_Gb_k_NlJ_HuRMvz5IsVvnavBEE7M,66
2067
+ mteb/tasks/pair_classification/rus/terra.py,sha256=HYFiSD1h1S9-9OotPrDm7oVoODXGDyHKtFEJGze1naQ,2662
2067
2068
  mteb/tasks/pair_classification/vie/__init__.py,sha256=_sAoiOFXvdGjKGP1FU6Bex0OFuje9Um6QfOIlMStTzE,299
2068
2069
  mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py,sha256=5g6yusxcWwwkapo7Abov7QEzZWJHhBLjOGWox0SvdAk,2037
2069
2070
  mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py,sha256=2Ms_1qIK5GQd7RpV3fi-_u8wJhVQs_6bZncYkvP5i-o,1982
@@ -2557,9 +2558,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2557
2558
  mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
2558
2559
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2559
2560
  mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
2560
- mteb-2.1.19.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2561
- mteb-2.1.19.dist-info/METADATA,sha256=SgPdhsHwYrRQFJ5IJh8IWBwxynwEPd4wAfzLnGw-Lxg,13574
2562
- mteb-2.1.19.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2563
- mteb-2.1.19.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2564
- mteb-2.1.19.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2565
- mteb-2.1.19.dist-info/RECORD,,
2561
+ mteb-2.2.1.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2562
+ mteb-2.2.1.dist-info/METADATA,sha256=0o9W1431q71D-h6_mUMwyuEhk9wbFC-31DyDA0vFDhY,13573
2563
+ mteb-2.2.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2564
+ mteb-2.2.1.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2565
+ mteb-2.2.1.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2566
+ mteb-2.2.1.dist-info/RECORD,,
File without changes