mteb 2.1.19__py3-none-any.whl → 2.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_evaluators/any_sts_evaluator.py +7 -0
- mteb/_evaluators/pair_classification_evaluator.py +29 -39
- mteb/abstasks/pair_classification.py +8 -1
- mteb/abstasks/sts.py +7 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- {mteb-2.1.19.dist-info → mteb-2.2.0.dist-info}/METADATA +1 -1
- {mteb-2.1.19.dist-info → mteb-2.2.0.dist-info}/RECORD +13 -12
- {mteb-2.1.19.dist-info → mteb-2.2.0.dist-info}/WHEEL +0 -0
- {mteb-2.1.19.dist-info → mteb-2.2.0.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.19.dist-info → mteb-2.2.0.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.19.dist-info → mteb-2.2.0.dist-info}/top_level.txt +0 -0
|
@@ -12,6 +12,7 @@ from mteb._create_dataloaders import create_dataloader
|
|
|
12
12
|
from mteb.abstasks.task_metadata import TaskMetadata
|
|
13
13
|
from mteb.models import EncoderProtocol
|
|
14
14
|
from mteb.similarity_functions import compute_pairwise_similarity
|
|
15
|
+
from mteb.types import PromptType
|
|
15
16
|
|
|
16
17
|
from .evaluator import Evaluator
|
|
17
18
|
|
|
@@ -42,6 +43,8 @@ class AnySTSEvaluator(Evaluator):
|
|
|
42
43
|
task_metadata: TaskMetadata,
|
|
43
44
|
hf_split: str,
|
|
44
45
|
hf_subset: str,
|
|
46
|
+
input1_prompt_type: PromptType | None,
|
|
47
|
+
input2_prompt_type: PromptType | None,
|
|
45
48
|
**kwargs,
|
|
46
49
|
) -> None:
|
|
47
50
|
super().__init__(**kwargs)
|
|
@@ -50,6 +53,8 @@ class AnySTSEvaluator(Evaluator):
|
|
|
50
53
|
self.task_metadata = task_metadata
|
|
51
54
|
self.hf_split = hf_split
|
|
52
55
|
self.hf_subset = hf_subset
|
|
56
|
+
self.input1_prompt_type = input1_prompt_type
|
|
57
|
+
self.input2_prompt_type = input2_prompt_type
|
|
53
58
|
|
|
54
59
|
def __call__(
|
|
55
60
|
self,
|
|
@@ -68,6 +73,7 @@ class AnySTSEvaluator(Evaluator):
|
|
|
68
73
|
task_metadata=self.task_metadata,
|
|
69
74
|
hf_split=self.hf_split,
|
|
70
75
|
hf_subset=self.hf_subset,
|
|
76
|
+
prompt_type=self.input1_prompt_type,
|
|
71
77
|
**encode_kwargs,
|
|
72
78
|
)
|
|
73
79
|
|
|
@@ -82,6 +88,7 @@ class AnySTSEvaluator(Evaluator):
|
|
|
82
88
|
task_metadata=self.task_metadata,
|
|
83
89
|
hf_split=self.hf_split,
|
|
84
90
|
hf_subset=self.hf_subset,
|
|
91
|
+
prompt_type=self.input2_prompt_type,
|
|
85
92
|
**encode_kwargs,
|
|
86
93
|
)
|
|
87
94
|
|
|
@@ -14,6 +14,7 @@ from mteb._evaluators.evaluator import Evaluator
|
|
|
14
14
|
from mteb.abstasks.task_metadata import TaskMetadata
|
|
15
15
|
from mteb.models import EncoderProtocol
|
|
16
16
|
from mteb.similarity_functions import compute_pairwise_similarity
|
|
17
|
+
from mteb.types import PromptType
|
|
17
18
|
|
|
18
19
|
logger = logging.getLogger(__name__)
|
|
19
20
|
|
|
@@ -60,6 +61,8 @@ class PairClassificationEvaluator(Evaluator):
|
|
|
60
61
|
task_metadata: TaskMetadata,
|
|
61
62
|
hf_split: str,
|
|
62
63
|
hf_subset: str,
|
|
64
|
+
input1_prompt_type: PromptType | None,
|
|
65
|
+
input2_prompt_type: PromptType | None,
|
|
63
66
|
**kwargs,
|
|
64
67
|
) -> None:
|
|
65
68
|
super().__init__(**kwargs)
|
|
@@ -69,6 +72,8 @@ class PairClassificationEvaluator(Evaluator):
|
|
|
69
72
|
self.task_metadata = task_metadata
|
|
70
73
|
self.hf_split = hf_split
|
|
71
74
|
self.hf_subset = hf_subset
|
|
75
|
+
self.input1_prompt_type = input1_prompt_type
|
|
76
|
+
self.input2_prompt_type = input2_prompt_type
|
|
72
77
|
|
|
73
78
|
if len(self.dataset[self.input1_column_name]) != len(
|
|
74
79
|
self.dataset[self.input2_column_name]
|
|
@@ -82,49 +87,34 @@ class PairClassificationEvaluator(Evaluator):
|
|
|
82
87
|
model: EncoderProtocol,
|
|
83
88
|
encode_kwargs: dict[str, Any],
|
|
84
89
|
) -> PairClassificationDistances:
|
|
85
|
-
logger.info("Running pair classification - Encoding
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
self.dataset[self.input1_column_name][:]
|
|
90
|
-
+ self.dataset[self.input2_column_name][:]
|
|
91
|
-
)
|
|
92
|
-
len_sentences1 = len(self.dataset[self.input1_column_name])
|
|
93
|
-
embeddings = self._encode_unique_texts(
|
|
94
|
-
all_sentences,
|
|
95
|
-
model,
|
|
96
|
-
task_metadata=self.task_metadata,
|
|
97
|
-
hf_split=self.hf_split,
|
|
98
|
-
hf_subset=self.hf_subset,
|
|
99
|
-
**encode_kwargs,
|
|
100
|
-
)
|
|
101
|
-
embeddings1 = embeddings[:len_sentences1]
|
|
102
|
-
embeddings2 = embeddings[len_sentences1:]
|
|
103
|
-
else:
|
|
104
|
-
embeddings1 = model.encode(
|
|
105
|
-
create_dataloader(
|
|
106
|
-
self.dataset,
|
|
107
|
-
task_metadata=self.task_metadata,
|
|
108
|
-
input_column=self.input1_column_name,
|
|
109
|
-
**encode_kwargs,
|
|
110
|
-
),
|
|
90
|
+
logger.info("Running pair classification - Encoding samples (1/2)")
|
|
91
|
+
embeddings1 = model.encode(
|
|
92
|
+
create_dataloader(
|
|
93
|
+
self.dataset,
|
|
111
94
|
task_metadata=self.task_metadata,
|
|
112
|
-
|
|
113
|
-
hf_subset=self.hf_subset,
|
|
95
|
+
input_column=self.input1_column_name,
|
|
114
96
|
**encode_kwargs,
|
|
115
|
-
)
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
97
|
+
),
|
|
98
|
+
task_metadata=self.task_metadata,
|
|
99
|
+
hf_split=self.hf_split,
|
|
100
|
+
hf_subset=self.hf_subset,
|
|
101
|
+
prompt_type=self.input1_prompt_type,
|
|
102
|
+
**encode_kwargs,
|
|
103
|
+
)
|
|
104
|
+
logger.info("Running pair classification - Encoding samples (2/2)")
|
|
105
|
+
embeddings2 = model.encode(
|
|
106
|
+
create_dataloader(
|
|
107
|
+
self.dataset,
|
|
123
108
|
task_metadata=self.task_metadata,
|
|
124
|
-
|
|
125
|
-
hf_subset=self.hf_subset,
|
|
109
|
+
input_column=self.input2_column_name,
|
|
126
110
|
**encode_kwargs,
|
|
127
|
-
)
|
|
111
|
+
),
|
|
112
|
+
task_metadata=self.task_metadata,
|
|
113
|
+
hf_split=self.hf_split,
|
|
114
|
+
hf_subset=self.hf_subset,
|
|
115
|
+
prompt_type=self.input2_prompt_type,
|
|
116
|
+
**encode_kwargs,
|
|
117
|
+
)
|
|
128
118
|
|
|
129
119
|
logger.info("Running pair classification - Evaluating pair similarity...")
|
|
130
120
|
cosine_scores = 1 - paired_cosine_distances(embeddings1, embeddings2)
|
|
@@ -19,6 +19,7 @@ from mteb.abstasks._statistics_calculation import (
|
|
|
19
19
|
from mteb.abstasks.abstask import AbsTask
|
|
20
20
|
from mteb.models.model_meta import ScoringFunction
|
|
21
21
|
from mteb.models.models_protocols import EncoderProtocol
|
|
22
|
+
from mteb.types import PromptType
|
|
22
23
|
from mteb.types.statistics import (
|
|
23
24
|
ImageStatistics,
|
|
24
25
|
LabelStatistics,
|
|
@@ -35,7 +36,7 @@ class PairClassificationDescriptiveStatistics(SplitDescriptiveStatistics):
|
|
|
35
36
|
Attributes:
|
|
36
37
|
num_samples: number of samples in the dataset.
|
|
37
38
|
number_of_characters: Total number of symbols in the dataset.
|
|
38
|
-
|
|
39
|
+
unique_pairs: Number of unique pairs
|
|
39
40
|
|
|
40
41
|
text1_statistics: Statistics for sentence1
|
|
41
42
|
text2_statistics: Statistics for sentence2
|
|
@@ -65,12 +66,16 @@ class AbsTaskPairClassification(AbsTask):
|
|
|
65
66
|
input2_column_name: The name of the column containing the second sentence in the pair.
|
|
66
67
|
label_column_name: The name of the column containing the labels for the pairs. Labels should be 0 or 1.
|
|
67
68
|
abstask_prompt: Prompt to use for the task for instruction model if not prompt is provided in TaskMetadata.prompt.
|
|
69
|
+
input1_prompt_type: Type of prompt of first input. Used for asymmetric tasks.
|
|
70
|
+
input2_prompt_type: Type of prompt of second input. Used for asymmetric tasks.
|
|
68
71
|
"""
|
|
69
72
|
|
|
70
73
|
abstask_prompt = "Retrieve text that are semantically similar to the given text."
|
|
71
74
|
input1_column_name: str = "sentence1"
|
|
72
75
|
input2_column_name: str = "sentence2"
|
|
73
76
|
label_column_name: str = "labels"
|
|
77
|
+
input1_prompt_type: PromptType | None = None
|
|
78
|
+
input2_prompt_type: PromptType | None = None
|
|
74
79
|
|
|
75
80
|
def _evaluate_subset(
|
|
76
81
|
self,
|
|
@@ -93,6 +98,8 @@ class AbsTaskPairClassification(AbsTask):
|
|
|
93
98
|
task_metadata=self.metadata,
|
|
94
99
|
hf_split=hf_split,
|
|
95
100
|
hf_subset=hf_subset,
|
|
101
|
+
input1_prompt_type=self.input1_prompt_type,
|
|
102
|
+
input2_prompt_type=self.input2_prompt_type,
|
|
96
103
|
**kwargs,
|
|
97
104
|
)
|
|
98
105
|
similarity_scores = evaluator(model, encode_kwargs=encode_kwargs)
|
mteb/abstasks/sts.py
CHANGED
|
@@ -8,6 +8,7 @@ from scipy.stats import pearsonr, spearmanr
|
|
|
8
8
|
from mteb._evaluators import AnySTSEvaluator
|
|
9
9
|
from mteb._evaluators.any_sts_evaluator import STSEvaluatorScores
|
|
10
10
|
from mteb.models import EncoderProtocol
|
|
11
|
+
from mteb.types import PromptType
|
|
11
12
|
from mteb.types.statistics import (
|
|
12
13
|
ImageStatistics,
|
|
13
14
|
ScoreStatistics,
|
|
@@ -89,12 +90,16 @@ class AbsTaskSTS(AbsTask):
|
|
|
89
90
|
min_score: Minimum possible score in the dataset.
|
|
90
91
|
max_score: Maximum possible score in the dataset.
|
|
91
92
|
abstask_prompt: Prompt to use for the task for instruction model if not prompt is provided in TaskMetadata.prompt.
|
|
93
|
+
input1_prompt_type: Type of prompt of first input. Used for asymmetric tasks.
|
|
94
|
+
input2_prompt_type: Type of prompt of second input. Used for asymmetric tasks.
|
|
92
95
|
"""
|
|
93
96
|
|
|
94
97
|
abstask_prompt = "Retrieve semantically similar text."
|
|
95
98
|
column_names: tuple[str, str] = ("sentence1", "sentence2")
|
|
96
99
|
min_score: int = 0
|
|
97
100
|
max_score: int = 5
|
|
101
|
+
input1_prompt_type: PromptType | None = None
|
|
102
|
+
input2_prompt_type: PromptType | None = None
|
|
98
103
|
|
|
99
104
|
def _evaluate_subset(
|
|
100
105
|
self,
|
|
@@ -115,6 +120,8 @@ class AbsTaskSTS(AbsTask):
|
|
|
115
120
|
task_metadata=self.metadata,
|
|
116
121
|
hf_split=hf_split,
|
|
117
122
|
hf_subset=hf_subset,
|
|
123
|
+
input1_prompt_type=self.input1_prompt_type,
|
|
124
|
+
input2_prompt_type=self.input2_prompt_type,
|
|
118
125
|
**kwargs,
|
|
119
126
|
)
|
|
120
127
|
scores = evaluator(model, encode_kwargs=encode_kwargs)
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"dev": {
|
|
3
|
+
"num_samples": 307,
|
|
4
|
+
"number_of_characters": 84848,
|
|
5
|
+
"unique_pairs": 307,
|
|
6
|
+
"text1_statistics": {
|
|
7
|
+
"total_text_length": 70844,
|
|
8
|
+
"min_text_length": 39,
|
|
9
|
+
"average_text_length": 230.76221498371336,
|
|
10
|
+
"max_text_length": 717,
|
|
11
|
+
"unique_texts": 282
|
|
12
|
+
},
|
|
13
|
+
"text2_statistics": {
|
|
14
|
+
"total_text_length": 14004,
|
|
15
|
+
"min_text_length": 12,
|
|
16
|
+
"average_text_length": 45.615635179153095,
|
|
17
|
+
"max_text_length": 129,
|
|
18
|
+
"unique_texts": 307
|
|
19
|
+
},
|
|
20
|
+
"labels_statistics": {
|
|
21
|
+
"min_labels_per_text": 1,
|
|
22
|
+
"average_label_per_text": 1.0,
|
|
23
|
+
"max_labels_per_text": 1,
|
|
24
|
+
"unique_labels": 2,
|
|
25
|
+
"labels": {
|
|
26
|
+
"1": {
|
|
27
|
+
"count": 153
|
|
28
|
+
},
|
|
29
|
+
"0": {
|
|
30
|
+
"count": 154
|
|
31
|
+
}
|
|
32
|
+
}
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -1,3 +1,3 @@
|
|
|
1
|
-
from .terra import TERRa
|
|
1
|
+
from .terra import TERRa, TERRaV2
|
|
2
2
|
|
|
3
|
-
__all__ = ["TERRa"]
|
|
3
|
+
__all__ = ["TERRa", "TERRaV2"]
|
|
@@ -1,31 +1,27 @@
|
|
|
1
1
|
from mteb.abstasks.pair_classification import AbsTaskPairClassification
|
|
2
2
|
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
from mteb.types import PromptType
|
|
3
4
|
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
license="mit",
|
|
25
|
-
annotations_creators="human-annotated",
|
|
26
|
-
dialect=[],
|
|
27
|
-
sample_creation="found",
|
|
28
|
-
bibtex_citation=r"""
|
|
5
|
+
_terra_metadata = dict(
|
|
6
|
+
dataset={
|
|
7
|
+
"path": "ai-forever/terra-pairclassification",
|
|
8
|
+
"revision": "7b58f24536063837d644aab9a023c62199b2a612",
|
|
9
|
+
},
|
|
10
|
+
reference="https://arxiv.org/pdf/2010.15925",
|
|
11
|
+
type="PairClassification",
|
|
12
|
+
category="t2t",
|
|
13
|
+
modalities=["text"],
|
|
14
|
+
eval_splits=["dev"],
|
|
15
|
+
eval_langs=["rus-Cyrl"],
|
|
16
|
+
main_score="max_ap",
|
|
17
|
+
date=("2000-01-01", "2018-01-01"),
|
|
18
|
+
domains=["News", "Web", "Written"],
|
|
19
|
+
task_subtypes=[],
|
|
20
|
+
license="mit",
|
|
21
|
+
annotations_creators="human-annotated",
|
|
22
|
+
dialect=[],
|
|
23
|
+
sample_creation="found",
|
|
24
|
+
bibtex_citation=r"""
|
|
29
25
|
@article{shavrina2020russiansuperglue,
|
|
30
26
|
author = {Shavrina, Tatiana
|
|
31
27
|
and Fenogenova, Alena
|
|
@@ -42,7 +38,37 @@ and Evlampiev, Andrey},
|
|
|
42
38
|
year = {2020},
|
|
43
39
|
}
|
|
44
40
|
""",
|
|
41
|
+
)
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
class TERRa(AbsTaskPairClassification):
|
|
45
|
+
metadata = TaskMetadata(
|
|
46
|
+
name="TERRa",
|
|
47
|
+
description="Textual Entailment Recognition for Russian. This task requires to recognize, given two text fragments, "
|
|
48
|
+
+ "whether the meaning of one text is entailed (can be inferred) from the other text.",
|
|
45
49
|
prompt="Given a premise, retrieve a hypothesis that is entailed by the premise",
|
|
50
|
+
**_terra_metadata,
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
def dataset_transform(self):
|
|
54
|
+
self.dataset = self.dataset.rename_column("sent1", "sentence1")
|
|
55
|
+
self.dataset = self.dataset.rename_column("sent2", "sentence2")
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
class TERRaV2(AbsTaskPairClassification):
|
|
59
|
+
input1_prompt_type = PromptType.document
|
|
60
|
+
input2_prompt_type = PromptType.query
|
|
61
|
+
|
|
62
|
+
metadata = TaskMetadata(
|
|
63
|
+
name="TERRa.V2",
|
|
64
|
+
description="Textual Entailment Recognition for Russian. This task requires to recognize, given two text fragments, "
|
|
65
|
+
+ "whether the meaning of one text is entailed (can be inferred) from the other text."
|
|
66
|
+
+ " Version 2 uses different prompt types for the two inputs.",
|
|
67
|
+
adapted_from=["TERRa"],
|
|
68
|
+
prompt={
|
|
69
|
+
PromptType.query.value: "Given a premise, retrieve a hypothesis that is entailed by the premise"
|
|
70
|
+
},
|
|
71
|
+
**_terra_metadata,
|
|
46
72
|
)
|
|
47
73
|
|
|
48
74
|
def dataset_transform(self):
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.
|
|
3
|
+
Version: 2.2.0
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -14,10 +14,10 @@ mteb/load_results.py,sha256=Xw2ZX7BToU92WwUTQUQKPAgPhX7ucyRRdoCrxAoPHdI,6414
|
|
|
14
14
|
mteb/similarity_functions.py,sha256=ZkBapSGDXKE5ipTG2FpeFnAC1iWwiVkrAidmKK_I4bI,8799
|
|
15
15
|
mteb/_evaluators/__init__.py,sha256=Ag1_RWpxBGMpujzd3FZjI40gY_KQKIpY31tJPuk-hFg,1013
|
|
16
16
|
mteb/_evaluators/_download.py,sha256=jntlcURbJxcxUjTmn2D9Tu6ZnWgDc9t5bY8p9CZCqv4,586
|
|
17
|
-
mteb/_evaluators/any_sts_evaluator.py,sha256=
|
|
17
|
+
mteb/_evaluators/any_sts_evaluator.py,sha256=f0V3NDP5Bfp8qEeBwP8E-Enj5F5NbFze-kGmzlkObQA,3762
|
|
18
18
|
mteb/_evaluators/clustering_evaluator.py,sha256=5XoKHl5LcG9jQ9oBzNAWYVpZWWUxrars3t7TdIV7xS0,2052
|
|
19
19
|
mteb/_evaluators/evaluator.py,sha256=gwaeftcAKoGcIQs8jIaafynbcYrYErj6AitHBxgjn2w,807
|
|
20
|
-
mteb/_evaluators/pair_classification_evaluator.py,sha256=
|
|
20
|
+
mteb/_evaluators/pair_classification_evaluator.py,sha256=6lgDI9wRfEK937YTS4l0W1OL1IQpHYZ4l34-Lxi9KdA,6401
|
|
21
21
|
mteb/_evaluators/retrieval_evaluator.py,sha256=HsowKZkqRCNzTwM7EcsHX18KhVKAjrm0sa_wFrreCb8,3031
|
|
22
22
|
mteb/_evaluators/retrieval_metrics.py,sha256=we0damQCJrdaRUD6JlU2MM7Ls9xERP_OBS5gHt53u9Q,23588
|
|
23
23
|
mteb/_evaluators/sklearn_evaluator.py,sha256=f9SgBbvgCrkltdTebQTixT7KmIagGkjQ_cNnKuHTb3w,3772
|
|
@@ -38,11 +38,11 @@ mteb/abstasks/clustering.py,sha256=4KcaU8_sNLmLvMhwDpNmcY2nD3BNyx_LcM-ddSv-wtY,1
|
|
|
38
38
|
mteb/abstasks/clustering_legacy.py,sha256=HZY8zgBgqqs5urF_to9wzqm3MnjFivs59hU6P3NrzcI,8684
|
|
39
39
|
mteb/abstasks/dataset_card_template.md,sha256=aD6l8qc3_jxwoIGJNYLzse-jpRa8hu92AxpnUtNgges,5122
|
|
40
40
|
mteb/abstasks/multilabel_classification.py,sha256=feLlpSKoe3b_Sb58N-9cx_5hzti1a2iA8QxcSBWSfjE,8922
|
|
41
|
-
mteb/abstasks/pair_classification.py,sha256=
|
|
41
|
+
mteb/abstasks/pair_classification.py,sha256=ToOBFDiokZOz9ea-klMLj_37slbVFR3lSuihP81x9Lc,13263
|
|
42
42
|
mteb/abstasks/regression.py,sha256=SeacOErZUXGLGOcwqAvht6BlbD8fcsn9QhNiFIuJGyc,8832
|
|
43
43
|
mteb/abstasks/retrieval.py,sha256=7QTKYlGaGvF1lOQkB_B4qj8Vm2FxxFXNVTHhfwZO8Bw,26439
|
|
44
44
|
mteb/abstasks/retrieval_dataset_loaders.py,sha256=WukcFAn54rUpXULCG43eysHozXHAxo2CaPhQyL_2Yg8,9401
|
|
45
|
-
mteb/abstasks/sts.py,sha256=
|
|
45
|
+
mteb/abstasks/sts.py,sha256=aKTivjvDtAaoYb1hz1NBv2o3UpDR-3AaeHgkDFHMBGI,9077
|
|
46
46
|
mteb/abstasks/task_metadata.py,sha256=7CzYK1y-vwLUiWaEGPgU3HiolpW3UCul8Y2KJ-WSpeE,26892
|
|
47
47
|
mteb/abstasks/zeroshot_classification.py,sha256=4UxBIZ1e1iRK8PRAhCWnnSDirK2vi5-w2N5ZomCnaIM,5882
|
|
48
48
|
mteb/abstasks/image/__init__.py,sha256=NgvMJnp1g2mUv27RL-TvzA7s1BOdMG-EB1CrZfdbWdg,136
|
|
@@ -923,6 +923,7 @@ mteb/descriptive_stats/PairClassification/SprintDuplicateQuestions.json,sha256=S
|
|
|
923
923
|
mteb/descriptive_stats/PairClassification/SynPerChatbotRAGFAQPC.json,sha256=tH_5-4r-BtbpuPmR-dy_HDZ2-XoDtY5BUN2OS3pKUIQ,988
|
|
924
924
|
mteb/descriptive_stats/PairClassification/SynPerQAPC.json,sha256=_oV9WyPr3O93S0yd4PKnxVfEGZjkQ8eFGAyXnrgO4BY,995
|
|
925
925
|
mteb/descriptive_stats/PairClassification/SynPerTextKeywordsPC.json,sha256=X3syICEpIKwT__cEUqafPEEb5IbHKPe4o8qXfQJffKQ,987
|
|
926
|
+
mteb/descriptive_stats/PairClassification/TERRa.V2.json,sha256=ZN6JfpkVsay8rqp7SmgkP9TgjXx3_tN9pimu2W6APZw,976
|
|
926
927
|
mteb/descriptive_stats/PairClassification/TERRa.json,sha256=ZN6JfpkVsay8rqp7SmgkP9TgjXx3_tN9pimu2W6APZw,976
|
|
927
928
|
mteb/descriptive_stats/PairClassification/TalemaaderPC.json,sha256=2NE271xQXD7ZPvgmxRLB12eKmDPI51R7ODDVlLor6wU,960
|
|
928
929
|
mteb/descriptive_stats/PairClassification/TwitterSemEval2015-VN.json,sha256=moqTs9Pdns2c4ya1UqwOw3yuNk-Enx7zZ1cvDh83-2Q,985
|
|
@@ -2062,8 +2063,8 @@ mteb/tasks/pair_classification/pol/polish_pc.py,sha256=vUkkYqewzNcRQkZ_wLM63xH21
|
|
|
2062
2063
|
mteb/tasks/pair_classification/por/__init__.py,sha256=E_dD1BZfjS0gBjzmkhUnl8SrqiGegLRfPhcItUAn6b8,104
|
|
2063
2064
|
mteb/tasks/pair_classification/por/assin2_rte.py,sha256=4k--kU2r3LS05TXdtVo4991Y6ayGbsOc--UL-bkW2Yo,2011
|
|
2064
2065
|
mteb/tasks/pair_classification/por/sick_br_pc.py,sha256=aGsDQFyTQr0vI6GOoZ6fO4npB8gT8zYrjwKymEcm6bQ,2734
|
|
2065
|
-
mteb/tasks/pair_classification/rus/__init__.py,sha256=
|
|
2066
|
-
mteb/tasks/pair_classification/rus/terra.py,sha256=
|
|
2066
|
+
mteb/tasks/pair_classification/rus/__init__.py,sha256=Y6Rl-zlzdtOnEX_Gb_k_NlJ_HuRMvz5IsVvnavBEE7M,66
|
|
2067
|
+
mteb/tasks/pair_classification/rus/terra.py,sha256=HYFiSD1h1S9-9OotPrDm7oVoODXGDyHKtFEJGze1naQ,2662
|
|
2067
2068
|
mteb/tasks/pair_classification/vie/__init__.py,sha256=_sAoiOFXvdGjKGP1FU6Bex0OFuje9Um6QfOIlMStTzE,299
|
|
2068
2069
|
mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py,sha256=5g6yusxcWwwkapo7Abov7QEzZWJHhBLjOGWox0SvdAk,2037
|
|
2069
2070
|
mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py,sha256=2Ms_1qIK5GQd7RpV3fi-_u8wJhVQs_6bZncYkvP5i-o,1982
|
|
@@ -2557,9 +2558,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
|
|
|
2557
2558
|
mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
|
|
2558
2559
|
mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
|
|
2559
2560
|
mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
|
|
2560
|
-
mteb-2.
|
|
2561
|
-
mteb-2.
|
|
2562
|
-
mteb-2.
|
|
2563
|
-
mteb-2.
|
|
2564
|
-
mteb-2.
|
|
2565
|
-
mteb-2.
|
|
2561
|
+
mteb-2.2.0.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
2562
|
+
mteb-2.2.0.dist-info/METADATA,sha256=1NZ2lePEhPxx4Cj9U0y__LAS4VPhvwDfAVit4gK27mo,13573
|
|
2563
|
+
mteb-2.2.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
2564
|
+
mteb-2.2.0.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
|
|
2565
|
+
mteb-2.2.0.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
|
|
2566
|
+
mteb-2.2.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|