mteb 2.1.14__py3-none-any.whl → 2.1.16__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
mteb/cache.py CHANGED
@@ -62,7 +62,11 @@ class ResultCache:
62
62
  Returns:
63
63
  The path to the results of the task.
64
64
  """
65
- results_folder = "results" if not remote else "remote"
65
+ results_folder = (
66
+ self.cache_path / "results"
67
+ if not remote
68
+ else self.cache_path / "remote" / "results"
69
+ )
66
70
 
67
71
  if isinstance(model_name, ModelMeta):
68
72
  if model_revision is not None:
@@ -74,7 +78,7 @@ class ResultCache:
74
78
  elif isinstance(model_name, str):
75
79
  model_name = model_name.replace("/", "__").replace(" ", "_")
76
80
 
77
- model_path = self.cache_path / results_folder / model_name
81
+ model_path = results_folder / model_name
78
82
 
79
83
  if model_revision is None:
80
84
  logger.warning(
mteb/evaluate.py CHANGED
@@ -256,6 +256,20 @@ def _check_model_modalities(
256
256
  logger.warning(msg)
257
257
 
258
258
 
259
+ def _requires_merge(task: AbsTask, existing_results: TaskResult) -> bool:
260
+ """Check if the existing results require merging with new results."""
261
+ # If the task has multiple eval splits and existing results cover only a subset, we need to merge
262
+ required_evals = dict.fromkeys(task.eval_splits, task.hf_subsets)
263
+ for split, subsets in required_evals.items():
264
+ res = existing_results.scores.get(split, None)
265
+ if res is None:
266
+ return True
267
+ hf_subsets = [r["hf_subset"] for r in res]
268
+ if not set(subsets).issubset(set(hf_subsets)):
269
+ return True
270
+ return False
271
+
272
+
259
273
  def evaluate(
260
274
  model: ModelMeta | MTEBModels | SentenceTransformer | CrossEncoder,
261
275
  tasks: AbsTask | Iterable[AbsTask],
@@ -388,13 +402,18 @@ def evaluate(
388
402
 
389
403
  if (
390
404
  existing_results
391
- and overwrite_strategy == "only-missing"
392
- and overwrite_strategy == OverwriteStrategy.ONLY_MISSING
393
- and existing_results.is_mergeable(task)
405
+ and overwrite_strategy
406
+ not in (OverwriteStrategy.ALWAYS, OverwriteStrategy.NEVER)
407
+ and (
408
+ not _requires_merge(task, existing_results)
409
+ or existing_results.is_mergeable(task)
410
+ )
394
411
  ):
395
412
  missing_eval = existing_results.get_missing_evaluations(task)
396
413
  else:
397
414
  missing_eval = dict.fromkeys(task.eval_splits, task.hf_subsets)
415
+ # Will be fully recomputed so we set it to None to avoid merging:
416
+ existing_results = None
398
417
 
399
418
  if (
400
419
  existing_results
@@ -415,7 +434,8 @@ def evaluate(
415
434
  OverwriteStrategy.ONLY_CACHE,
416
435
  ]:
417
436
  raise ValueError(
418
- f"overwrite_strategy is set to '{overwrite_strategy.value}' and the results file exists. However there are the following missing splits (and subsets): {missing_eval}. To rerun these set overwrite_strategy to 'only-missing'."
437
+ f"overwrite_strategy is set to '{overwrite_strategy.value}' and the results file exists for task {task.metadata.name}. "
438
+ + f"However there are the following missing splits (and subsets): {missing_eval}. To rerun these set overwrite_strategy to 'only-missing'."
419
439
  )
420
440
 
421
441
  if existing_results:
@@ -153,6 +153,9 @@ class InstructSentenceTransformerModel(AbsEncoder):
153
153
 
154
154
  self.model_name = model_name
155
155
  self.model = SentenceTransformer(model_name, revision=revision, **kwargs)
156
+ if max_seq_length:
157
+ # https://github.com/huggingface/sentence-transformers/issues/3575
158
+ self.model.max_seq_length = max_seq_length
156
159
  self.apply_instruction_to_passages = apply_instruction_to_passages
157
160
  self.prompts_dict = prompts_dict
158
161
 
@@ -21,6 +21,198 @@ from mteb.types import Array, BatchedInput, PromptType
21
21
 
22
22
  logger = logging.getLogger(__name__)
23
23
 
24
+ jasper_token_compression_600m_prompts_dict = {
25
+ "AFQMC": "Retrieve semantically similar text",
26
+ "AILACasedocs": {
27
+ "query": "Given a web search query, retrieve relevant passages that answer the query",
28
+ "document": "",
29
+ },
30
+ "AILAStatutes": {
31
+ "query": "Given a web search query, retrieve relevant passages that answer the query",
32
+ "document": "",
33
+ },
34
+ "ATEC": "Retrieve semantically similar text",
35
+ "AmazonCounterfactualClassification": "Classify a given Amazon customer review text as either counterfactual or not-counterfactual",
36
+ "ArXivHierarchicalClusteringP2P": "Identify the main and secondary category of Arxiv papers based on the titles and abstracts",
37
+ "ArXivHierarchicalClusteringS2S": "Identify the main and secondary category of Arxiv papers based on the titles",
38
+ "ArguAna": {
39
+ "query": "Given a claim, find documents that refute the claim",
40
+ "document": "Given a claim, find documents that refute the claim",
41
+ },
42
+ "AskUbuntuDupQuestions": {
43
+ "query": "Retrieve duplicate questions from AskUbuntu forum",
44
+ "document": "",
45
+ },
46
+ "BIOSSES": "Retrieve semantically similar text",
47
+ "BQ": "Retrieve semantically similar text",
48
+ "Banking77Classification": "Given a online banking query, find the corresponding intents",
49
+ "BiorxivClusteringP2P.v2": "Identify the main category of Biorxiv papers based on the titles and abstracts",
50
+ "CLSClusteringP2P": "Identify the main category of scholar papers based on the titles and abstracts",
51
+ "CLSClusteringS2S": "Identify the main category of scholar papers based on the titles",
52
+ "CMedQAv1-reranking": {
53
+ "query": "Given a Chinese community medical question, retrieve replies that best answer the question",
54
+ "document": "",
55
+ },
56
+ "CMedQAv2-reranking": {
57
+ "query": "Given a Chinese community medical question, retrieve replies that best answer the question",
58
+ "document": "",
59
+ },
60
+ "CQADupstackGamingRetrieval": {
61
+ "query": "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question",
62
+ "document": "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question",
63
+ },
64
+ "CQADupstackUnixRetrieval": {
65
+ "query": "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question",
66
+ "document": "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question",
67
+ },
68
+ "ClimateFEVERHardNegatives": {
69
+ "query": "Given a claim about climate change, retrieve documents that support or refute the claim",
70
+ "document": "",
71
+ },
72
+ "CmedqaRetrieval": {
73
+ "query": "Given a Chinese community medical question, retrieve replies that best answer the question",
74
+ "document": "",
75
+ },
76
+ "Cmnli": "Retrieve semantically similar text.",
77
+ "CovidRetrieval": {
78
+ "query": "Given a question on COVID-19, retrieve news articles that answer the question",
79
+ "document": "",
80
+ },
81
+ "DuRetrieval": {
82
+ "query": "Given a Chinese search query, retrieve web passages that answer the question",
83
+ "document": "",
84
+ },
85
+ "EcomRetrieval": {
86
+ "query": "Given a user query from an e-commerce website, retrieve description sentences of relevant products",
87
+ "document": "",
88
+ },
89
+ "FEVERHardNegatives": {
90
+ "query": "Given a claim, retrieve documents that support or refute the claim",
91
+ "document": "",
92
+ },
93
+ "FiQA2018": {
94
+ "query": "Given a financial question, retrieve user replies that best answer the question",
95
+ "document": "",
96
+ },
97
+ "GerDaLIRSmall": {
98
+ "query": "Given a web search query, retrieve relevant passages that answer the query",
99
+ "document": "",
100
+ },
101
+ "HotpotQAHardNegatives": {
102
+ "query": "Given a multi-hop question, retrieve documents that can help answer the question",
103
+ "document": "",
104
+ },
105
+ "IFlyTek": "Given an App description text, find the appropriate fine-grained category",
106
+ "ImdbClassification": "Classify the sentiment expressed in the given movie review text from the IMDB dataset",
107
+ "JDReview": "Classify the customer review for iPhone on e-commerce platform into positive or negative",
108
+ "LCQMC": "Retrieve semantically similar text",
109
+ "LeCaRDv2": {
110
+ "query": "Given a web search query, retrieve relevant passages that answer the query",
111
+ "document": "",
112
+ },
113
+ "LegalBenchConsumerContractsQA": {
114
+ "query": "Given a web search query, retrieve relevant passages that answer the query",
115
+ "document": "",
116
+ },
117
+ "LegalBenchCorporateLobbying": {
118
+ "query": "Given a web search query, retrieve relevant passages that answer the query",
119
+ "document": "",
120
+ },
121
+ "LegalQuAD": {
122
+ "query": "Given a web search query, retrieve relevant passages that answer the query",
123
+ "document": "",
124
+ },
125
+ "LegalSummarization": {
126
+ "query": "Given a web search query, retrieve relevant passages that answer the query",
127
+ "document": "",
128
+ },
129
+ "MMarcoReranking": {
130
+ "query": "Given a Chinese search query, retrieve web passages that answer the question",
131
+ "document": "",
132
+ },
133
+ "MMarcoRetrieval": {
134
+ "query": "Given a web search query, retrieve relevant passages that answer the query",
135
+ "document": "",
136
+ },
137
+ "MTOPDomainClassification": "Classify the intent domain of the given utterance in task-oriented conversation",
138
+ "MassiveIntentClassification": "Given a user utterance as query, find the user intents",
139
+ "MassiveScenarioClassification": "Given a user utterance as query, find the user scenarios",
140
+ "MedicalRetrieval": {
141
+ "query": "Given a medical question, retrieve user replies that best answer the question",
142
+ "document": "",
143
+ },
144
+ "MedrxivClusteringP2P.v2": "Identify the main category of Medrxiv papers based on the titles and abstracts",
145
+ "MedrxivClusteringS2S.v2": "Identify the main category of Medrxiv papers based on the titles",
146
+ "MindSmallReranking": {
147
+ "query": "Retrieve relevant news articles based on user browsing history",
148
+ "document": "",
149
+ },
150
+ "MultilingualSentiment": "Classify sentiment of the customer review into positive, neutral, or negative",
151
+ "Ocnli": "Retrieve semantically similar text.",
152
+ "OnlineShopping": "Classify the customer review for online shopping into positive or negative",
153
+ "PAWSX": "Retrieve semantically similar text",
154
+ "QBQTC": "Retrieve semantically similar text",
155
+ "SCIDOCS": {
156
+ "query": "Given a scientific paper title, retrieve paper abstracts that are cited by the given paper",
157
+ "document": "",
158
+ },
159
+ "SICK-R": "Retrieve semantically similar text",
160
+ "STS12": "Retrieve semantically similar text",
161
+ "STS13": "Retrieve semantically similar text",
162
+ "STS14": "Retrieve semantically similar text",
163
+ "STS15": "Retrieve semantically similar text",
164
+ "STS17": "Retrieve semantically similar text",
165
+ "STS22.v2": "Retrieve semantically similar text",
166
+ "STSB": "Retrieve semantically similar text",
167
+ "STSBenchmark": "Retrieve semantically similar text",
168
+ "SprintDuplicateQuestions": "Retrieve duplicate questions from Sprint forum",
169
+ "StackExchangeClustering.v2": "Identify the topic or theme of StackExchange posts based on the titles",
170
+ "StackExchangeClusteringP2P.v2": "Identify the topic or theme of StackExchange posts based on the given paragraphs",
171
+ "SummEvalSummarization.v2": "Retrieve semantically similar text",
172
+ "T2Reranking": {
173
+ "query": "Given a Chinese search query, retrieve web passages that answer the question",
174
+ "document": "",
175
+ },
176
+ "T2Retrieval": {
177
+ "query": "Given a Chinese search query, retrieve web passages that answer the question",
178
+ "document": "",
179
+ },
180
+ "TNews": "Classify the fine-grained category of the given news title",
181
+ "TRECCOVID": {
182
+ "query": "Given a query on COVID-19, retrieve documents that answer the query",
183
+ "document": "",
184
+ },
185
+ "ThuNewsClusteringP2P": "Identify the topic or theme of the given news articles based on the titles and contents",
186
+ "ThuNewsClusteringS2S": "Identify the topic or theme of the given news articles based on the titles",
187
+ "Touche2020Retrieval.v3": {
188
+ "query": "Given a question, retrieve detailed and persuasive arguments that answer the question",
189
+ "document": "",
190
+ },
191
+ "ToxicConversationsClassification": "Classify the given comments as either toxic or not toxic",
192
+ "TweetSentimentExtractionClassification": "Classify the sentiment of a given tweet as either positive, negative, or neutral",
193
+ "TwentyNewsgroupsClustering.v2": "Identify the topic or theme of the given news articles",
194
+ "TwitterSemEval2015": "Retrieve tweets that are semantically similar to the given tweet",
195
+ "TwitterURLCorpus": "Retrieve tweets that are semantically similar to the given tweet",
196
+ "VideoRetrieval": {
197
+ "query": "Given a video search query, retrieve the titles of relevant videos",
198
+ "document": "",
199
+ },
200
+ "Waimai": "Classify the customer review from a food takeaway platform into positive or negative",
201
+ }
202
+ jasper_token_compression_600m_loader_kwargs = dict(
203
+ model_kwargs={
204
+ "attn_implementation": "sdpa",
205
+ "torch_dtype": "bfloat16",
206
+ "trust_remote_code": True,
207
+ },
208
+ tokenizer_kwargs={"padding_side": "left"},
209
+ trust_remote_code=True,
210
+ prompts_dict=jasper_token_compression_600m_prompts_dict,
211
+ apply_instruction_to_passages=True,
212
+ instruction_template="Instruct: {instruction}\nQuery: ",
213
+ max_seq_length=1024,
214
+ )
215
+
24
216
 
25
217
  def instruction_template(
26
218
  instruction: str, prompt_type: PromptType | None = None
@@ -135,13 +327,10 @@ jasper_en_v1 = ModelMeta(
135
327
  """,
136
328
  )
137
329
 
330
+
138
331
  Jasper_Token_Compression_600M = ModelMeta(
139
332
  loader=InstructSentenceTransformerModel,
140
- loader_kwargs=dict(
141
- instruction_template=instruction_template,
142
- apply_instruction_to_passages=False,
143
- trust_remote_code=True,
144
- ),
333
+ loader_kwargs=jasper_token_compression_600m_loader_kwargs,
145
334
  name="infgrad/Jasper-Token-Compression-600M",
146
335
  languages=["eng-Latn", "zho-Hans"],
147
336
  open_weights=True,
@@ -156,7 +345,7 @@ Jasper_Token_Compression_600M = ModelMeta(
156
345
  similarity_fn_name="cosine",
157
346
  framework=["Sentence Transformers", "PyTorch"],
158
347
  use_instructions=True,
159
- public_training_code=None,
348
+ public_training_code="https://github.com/DunZhang/Jasper-Token-Compression-Training",
160
349
  # public_training_data: unsupervised data for distillation
161
350
  public_training_data="https://huggingface.co/datasets/infgrad/jasper_text_distill_dataset",
162
351
  training_datasets=bge_m3_training_data
@@ -164,4 +353,15 @@ Jasper_Token_Compression_600M = ModelMeta(
164
353
  | bge_full_data
165
354
  | E5_MISTRAL_TRAINING_DATA
166
355
  | qzhou_training_data,
356
+ citation="""
357
+ @misc{zhang2025jaspertokencompression600mtechnicalreport,
358
+ title={Jasper-Token-Compression-600M Technical Report},
359
+ author={Dun Zhang and Ziyang Zeng and Yudong Zhou and Shuyang Lu},
360
+ year={2025},
361
+ eprint={2511.14405},
362
+ archivePrefix={arXiv},
363
+ primaryClass={cs.IR},
364
+ url={https://arxiv.org/abs/2511.14405},
365
+ }
366
+ """,
167
367
  )
@@ -0,0 +1,26 @@
1
+ """ATLES Champion Embedding Model for MTEB."""
2
+
3
+ from mteb.models.model_meta import ModelMeta
4
+ from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
5
+
6
+ spartan8806_atles_champion_embedding = ModelMeta(
7
+ loader=sentence_transformers_loader,
8
+ name="spartan8806/atles-champion-embedding",
9
+ languages=["eng-Latn"],
10
+ open_weights=True,
11
+ revision="d4c74d7000bbd25f3597fc0f2dcde59ef1386e8f",
12
+ release_date="2025-11-15",
13
+ n_parameters=110_000_000,
14
+ memory_usage_mb=420,
15
+ max_tokens=512,
16
+ embed_dim=768,
17
+ license="apache-2.0",
18
+ similarity_fn_name="cosine",
19
+ framework=["Sentence Transformers"],
20
+ reference="https://huggingface.co/spartan8806/atles-champion-embedding",
21
+ use_instructions=False,
22
+ training_datasets={"STSBenchmark"},
23
+ adapted_from="sentence-transformers/all-mpnet-base-v2",
24
+ public_training_code=None,
25
+ public_training_data=None,
26
+ )
@@ -698,27 +698,31 @@ class TaskResult(BaseModel):
698
698
  name = result.metadata.name
699
699
  revision = result.metadata.revision
700
700
  else:
701
+ msg = "result must be a TaskResult or AbsTask object"
702
+ if raise_error:
703
+ raise ValueError(msg)
704
+ logger.debug(msg)
701
705
  return False
702
706
 
703
707
  if self.task_name != name:
708
+ msg = f"Cannot merge TaskResult objects as they are derived from different tasks ({self.task_name} and {name})"
704
709
  if raise_error:
705
- raise ValueError(
706
- f"Cannot merge TaskResult objects as they are derived from different tasks ({self.task_name} and {name})"
707
- )
710
+ raise ValueError(msg)
711
+ logger.debug(msg)
708
712
  return False
709
713
 
710
714
  if Criteria.MTEB_VERSION in criteria and self.mteb_version != mteb_version:
715
+ msg = f"Cannot merge TaskResult objects as they are derived from different MTEB versions ({self.mteb_version} (loaded) and {mteb_version} (current))"
711
716
  if raise_error:
712
- raise ValueError(
713
- f"Cannot merge TaskResult objects as they are derived from different MTEB versions ({self.mteb_version} and {mteb_version})"
714
- )
717
+ raise ValueError(msg)
718
+ logger.debug(msg)
715
719
  return False
716
720
 
717
721
  if Criteria.DATASET_REVISION in criteria and self.dataset_revision != revision:
722
+ msg = f"Cannot merge TaskResult objects as they are derived from different dataset revisions ({self.dataset_revision} and {revision})"
718
723
  if raise_error:
719
- raise ValueError(
720
- f"Cannot merge TaskResult objects as they are derived from different dataset revisions ({self.dataset_revision} and {revision})"
721
- )
724
+ raise ValueError(msg)
725
+ logger.debug(msg)
722
726
  return False
723
727
 
724
728
  return True
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.1.14
3
+ Version: 2.1.16
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -37,7 +37,7 @@ Requires-Dist: torchvision>0.2.1; extra == "image"
37
37
  Provides-Extra: codecarbon
38
38
  Requires-Dist: codecarbon<3.0.0,>=2.0.0; extra == "codecarbon"
39
39
  Provides-Extra: leaderboard
40
- Requires-Dist: gradio==5.35.0; extra == "leaderboard"
40
+ Requires-Dist: gradio==5.49.1; extra == "leaderboard"
41
41
  Requires-Dist: plotly<6.0.0,>=5.24.0; extra == "leaderboard"
42
42
  Requires-Dist: cachetools>=5.2.0; extra == "leaderboard"
43
43
  Requires-Dist: matplotlib>=3.9.4; extra == "leaderboard"
@@ -5,9 +5,9 @@ mteb/_helpful_enum.py,sha256=jh73N1jlcpg7RGz4bj8UpctiMNvqvHpp9wrB7SYEzIU,510
5
5
  mteb/_log_once.py,sha256=-tUKzxGQzf2LZSuQXi97oYFXMta1B6GEYXd7BPqssvY,1095
6
6
  mteb/_requires_package.py,sha256=eHg_TD9BVZRzNCcQQrUP17d8M1DF_vOd_tVx54AmAnM,3017
7
7
  mteb/_set_seed.py,sha256=HPlPRl__Pe6IG-4UgJqTfplcivJ_wA2kaClbXoHQedM,1178
8
- mteb/cache.py,sha256=rjpXTo9FTuYNwuZGQxZ1v9Yj8pIeMvwW7WNWM4CI6zA,20010
8
+ mteb/cache.py,sha256=AFCxgjODLg1-BJDiBC0F_fpc-PVNNgbugo84i4Ft0ZE,20088
9
9
  mteb/deprecated_evaluator.py,sha256=t13Eluvm5ByVIOqgT7fqiVfLb8Ud3A4bbF2djRfs8iA,26901
10
- mteb/evaluate.py,sha256=a8dE6GtDC8TC4Q9rvJfzPuPNDbuNJSx8TAhR-aFMnLQ,17153
10
+ mteb/evaluate.py,sha256=Pm0b9cfDHKVJ1fluNM3M9A4V3bO_FPvLNvTvwd2_tWk,17996
11
11
  mteb/filter_tasks.py,sha256=5XE1OYmgDDoJYnXwFf4ma_PIT_Lekzs420sQF_kpCiY,7240
12
12
  mteb/get_tasks.py,sha256=6Gc18a2bZoLQV1Ms_qdr2KieAqIXg8TDg4l7ZN8rW2I,14218
13
13
  mteb/load_results.py,sha256=Xw2ZX7BToU92WwUTQUQKPAgPhX7ucyRRdoCrxAoPHdI,6414
@@ -1430,7 +1430,7 @@ mteb/leaderboard/text_segments.py,sha256=iMIkS04QQjPbT-SkU0x6fOcS8xRbUYevryu9Hyd
1430
1430
  mteb/models/__init__.py,sha256=ycGU-x60LT0OFyP4CYa5pQhM7J5hCimubuT56va9wfM,741
1431
1431
  mteb/models/abs_encoder.py,sha256=m0JkRfRPMYadDgBR9eozRloI31ZSWkSzDFINpwbfLZk,16533
1432
1432
  mteb/models/get_model_meta.py,sha256=VpZZNINk-QrNeVpPZnlqzlLhtBs8G84eRwTzAb_gRD4,9108
1433
- mteb/models/instruct_wrapper.py,sha256=HxHmnlxkjtZhfgTZRYJBT3Nma7Dhx6a9e2Bg-cO_IYs,8844
1433
+ mteb/models/instruct_wrapper.py,sha256=Ty4nfEvioycL_uATkhd0PGuyeB5Xc9xrRd6HOGgb-tc,9005
1434
1434
  mteb/models/model_meta.py,sha256=b-Nel9nX5bJk4cgJnqkBzEKyMY7uXvxlCBSxmmH1Ios,14769
1435
1435
  mteb/models/models_protocols.py,sha256=D2hYWn_UBGMaKtRwBx3u0B0ni6lHJjSzTxX21XFNwIc,8917
1436
1436
  mteb/models/search_wrappers.py,sha256=qe2APunvRfPREdrq1moSi44mFXV6uaHvGHcLnaza-Sc,15483
@@ -1483,7 +1483,7 @@ mteb/models/model_implementations/hinvec_models.py,sha256=I_d_dSNVaGIwMIwyvTlaPA
1483
1483
  mteb/models/model_implementations/human.py,sha256=klMpuMAtYH92EIEwNMEhne_Baf9fNiTg1DNWYD11P44,532
1484
1484
  mteb/models/model_implementations/ibm_granite_models.py,sha256=YCT0jbgawy19ps5l8QlxpQoJLjq8Nh-3R-e6yxS0DRM,7902
1485
1485
  mteb/models/model_implementations/inf_models.py,sha256=lvXUFhAYDltq2_Xa9MHcwfhh1V20rbJLSgON76tkj6w,2906
1486
- mteb/models/model_implementations/jasper_models.py,sha256=yf6gNPTWl05rAJrao8lIpw0wld6xdmPx9PhDwbGHSlc,6037
1486
+ mteb/models/model_implementations/jasper_models.py,sha256=ZY7qRRpBpD3eVryQb4rLs5E3KDXlgFBvyelataqLIWs,16213
1487
1487
  mteb/models/model_implementations/jina_clip.py,sha256=CfiIxbhKspjQajNtObCfGPHOWPk6uLn4cuwydQHFTMo,5118
1488
1488
  mteb/models/model_implementations/jina_models.py,sha256=QWoesiTygdFTLcdGpdx26wOUI1AXRz3jLmxGHJ0WMNE,29919
1489
1489
  mteb/models/model_implementations/kalm_models.py,sha256=FmW7Z5Qs6WYBLuKvql3u4IJW36kj4k-Ypah8qTBEBkg,59837
@@ -1536,6 +1536,7 @@ mteb/models/model_implementations/sentence_transformers_models.py,sha256=EtEaXg1
1536
1536
  mteb/models/model_implementations/shuu_model.py,sha256=KkcuVYjIzoha3Fvxh8ppqHQ9BfNMWeqDqn9dGCRKUjg,1167
1537
1537
  mteb/models/model_implementations/siglip_models.py,sha256=tvi8QB2ayBoeXsxwHrl5RFlkknvE6FM9N06zSBWGQD0,12602
1538
1538
  mteb/models/model_implementations/sonar_models.py,sha256=Nc6kAJRWSrxA57DPRrgOPHqS1dNhz2vsE_1ZA2JtigQ,4784
1539
+ mteb/models/model_implementations/spartan8806_atles_champion.py,sha256=9sWQH7tOT0uxXA7sbQcnqGt2f5O9xcw9HqFpRCzoQAA,918
1539
1540
  mteb/models/model_implementations/stella_models.py,sha256=NL3tk-rnuBdznsQ-nmelqun4tFO2xKoNPPOOVKqnPGU,8062
1540
1541
  mteb/models/model_implementations/tarka_models.py,sha256=xC6olJs9PSe_lrYsScw5hDHTjYSjcxgbvfK_7IoBFnk,27397
1541
1542
  mteb/models/model_implementations/text2vec_models.py,sha256=zaHWRc2W0RYZAOetinqRzug9UGW0HmY5U-jYsLXA8wo,4160
@@ -1552,7 +1553,7 @@ mteb/models/model_implementations/youtu_models.py,sha256=NB74E6z-_36HyXb8GXKn8Cr
1552
1553
  mteb/results/__init__.py,sha256=EXQqK4Am5eIYzD52dpcGAFSdqnC38oE6JHN302oidHc,158
1553
1554
  mteb/results/benchmark_results.py,sha256=OWqeBxbNsPmOKRhxY980N5CikpdJXToDGJGTXUe64Lw,18209
1554
1555
  mteb/results/model_result.py,sha256=Wdbkpxq7_geliYDr4558i6txDVdsHL-Y9WAv_u7thlI,13689
1555
- mteb/results/task_result.py,sha256=79lQNMH1xcCr_Y0XsOGRlF_9OJFPsaCCBTDUuK1wUG8,31782
1556
+ mteb/results/task_result.py,sha256=RqUhmWqxraQM7KP8EDvEcFzVf80it4tMkQNq9YVcsME,32005
1556
1557
  mteb/tasks/__init__.py,sha256=izAxU0ip1F_YUwx0dFCuN35BaktdmePh6vlDiHC0kLo,503
1557
1558
  mteb/tasks/aggregated_tasks/__init__.py,sha256=Ufgbh1AirxCQkojO3AUhUFWM8zQG10cfdVTkj_PeyLI,104
1558
1559
  mteb/tasks/aggregated_tasks/eng/__init__.py,sha256=HgaSyAX8Is5CGE006RgJkLQQVxrx2FmMnm6NHQBDi-4,358
@@ -2554,9 +2555,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2554
2555
  mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
2555
2556
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2556
2557
  mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
2557
- mteb-2.1.14.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2558
- mteb-2.1.14.dist-info/METADATA,sha256=DoOyy4Av4HUxW86m2yfBFprFzwTBkuezEF1mkrg0IJ4,13574
2559
- mteb-2.1.14.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2560
- mteb-2.1.14.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2561
- mteb-2.1.14.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2562
- mteb-2.1.14.dist-info/RECORD,,
2558
+ mteb-2.1.16.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2559
+ mteb-2.1.16.dist-info/METADATA,sha256=fTc0lzu8SewlGWKPCZdDDto9JVN_Rp3xOoQEN4pOuIs,13574
2560
+ mteb-2.1.16.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2561
+ mteb-2.1.16.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2562
+ mteb-2.1.16.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2563
+ mteb-2.1.16.dist-info/RECORD,,
File without changes