mteb 2.1.14__py3-none-any.whl → 2.1.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -153,6 +153,9 @@ class InstructSentenceTransformerModel(AbsEncoder):
153
153
 
154
154
  self.model_name = model_name
155
155
  self.model = SentenceTransformer(model_name, revision=revision, **kwargs)
156
+ if max_seq_length:
157
+ # https://github.com/huggingface/sentence-transformers/issues/3575
158
+ self.model.max_seq_length = max_seq_length
156
159
  self.apply_instruction_to_passages = apply_instruction_to_passages
157
160
  self.prompts_dict = prompts_dict
158
161
 
@@ -156,7 +156,7 @@ Jasper_Token_Compression_600M = ModelMeta(
156
156
  similarity_fn_name="cosine",
157
157
  framework=["Sentence Transformers", "PyTorch"],
158
158
  use_instructions=True,
159
- public_training_code=None,
159
+ public_training_code="https://github.com/DunZhang/Jasper-Token-Compression-Training",
160
160
  # public_training_data: unsupervised data for distillation
161
161
  public_training_data="https://huggingface.co/datasets/infgrad/jasper_text_distill_dataset",
162
162
  training_datasets=bge_m3_training_data
@@ -164,4 +164,15 @@ Jasper_Token_Compression_600M = ModelMeta(
164
164
  | bge_full_data
165
165
  | E5_MISTRAL_TRAINING_DATA
166
166
  | qzhou_training_data,
167
+ citation="""
168
+ @misc{zhang2025jaspertokencompression600mtechnicalreport,
169
+ title={Jasper-Token-Compression-600M Technical Report},
170
+ author={Dun Zhang and Ziyang Zeng and Yudong Zhou and Shuyang Lu},
171
+ year={2025},
172
+ eprint={2511.14405},
173
+ archivePrefix={arXiv},
174
+ primaryClass={cs.IR},
175
+ url={https://arxiv.org/abs/2511.14405},
176
+ }
177
+ """,
167
178
  )
@@ -0,0 +1,26 @@
1
+ """ATLES Champion Embedding Model for MTEB."""
2
+
3
+ from mteb.models.model_meta import ModelMeta
4
+ from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
5
+
6
+ spartan8806_atles_champion_embedding = ModelMeta(
7
+ loader=sentence_transformers_loader,
8
+ name="spartan8806/atles-champion-embedding",
9
+ languages=["eng-Latn"],
10
+ open_weights=True,
11
+ revision="d4c74d7000bbd25f3597fc0f2dcde59ef1386e8f",
12
+ release_date="2025-11-15",
13
+ n_parameters=110_000_000,
14
+ memory_usage_mb=420,
15
+ max_tokens=512,
16
+ embed_dim=768,
17
+ license="apache-2.0",
18
+ similarity_fn_name="cosine",
19
+ framework=["Sentence Transformers"],
20
+ reference="https://huggingface.co/spartan8806/atles-champion-embedding",
21
+ use_instructions=False,
22
+ training_datasets={"STSBenchmark"},
23
+ adapted_from="sentence-transformers/all-mpnet-base-v2",
24
+ public_training_code=None,
25
+ public_training_data=None,
26
+ )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.1.14
3
+ Version: 2.1.15
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -1430,7 +1430,7 @@ mteb/leaderboard/text_segments.py,sha256=iMIkS04QQjPbT-SkU0x6fOcS8xRbUYevryu9Hyd
1430
1430
  mteb/models/__init__.py,sha256=ycGU-x60LT0OFyP4CYa5pQhM7J5hCimubuT56va9wfM,741
1431
1431
  mteb/models/abs_encoder.py,sha256=m0JkRfRPMYadDgBR9eozRloI31ZSWkSzDFINpwbfLZk,16533
1432
1432
  mteb/models/get_model_meta.py,sha256=VpZZNINk-QrNeVpPZnlqzlLhtBs8G84eRwTzAb_gRD4,9108
1433
- mteb/models/instruct_wrapper.py,sha256=HxHmnlxkjtZhfgTZRYJBT3Nma7Dhx6a9e2Bg-cO_IYs,8844
1433
+ mteb/models/instruct_wrapper.py,sha256=Ty4nfEvioycL_uATkhd0PGuyeB5Xc9xrRd6HOGgb-tc,9005
1434
1434
  mteb/models/model_meta.py,sha256=b-Nel9nX5bJk4cgJnqkBzEKyMY7uXvxlCBSxmmH1Ios,14769
1435
1435
  mteb/models/models_protocols.py,sha256=D2hYWn_UBGMaKtRwBx3u0B0ni6lHJjSzTxX21XFNwIc,8917
1436
1436
  mteb/models/search_wrappers.py,sha256=qe2APunvRfPREdrq1moSi44mFXV6uaHvGHcLnaza-Sc,15483
@@ -1483,7 +1483,7 @@ mteb/models/model_implementations/hinvec_models.py,sha256=I_d_dSNVaGIwMIwyvTlaPA
1483
1483
  mteb/models/model_implementations/human.py,sha256=klMpuMAtYH92EIEwNMEhne_Baf9fNiTg1DNWYD11P44,532
1484
1484
  mteb/models/model_implementations/ibm_granite_models.py,sha256=YCT0jbgawy19ps5l8QlxpQoJLjq8Nh-3R-e6yxS0DRM,7902
1485
1485
  mteb/models/model_implementations/inf_models.py,sha256=lvXUFhAYDltq2_Xa9MHcwfhh1V20rbJLSgON76tkj6w,2906
1486
- mteb/models/model_implementations/jasper_models.py,sha256=yf6gNPTWl05rAJrao8lIpw0wld6xdmPx9PhDwbGHSlc,6037
1486
+ mteb/models/model_implementations/jasper_models.py,sha256=e1ooLxf0PGZ77YWJshCha94_6YXDMY6l0afgiGKmzNc,6464
1487
1487
  mteb/models/model_implementations/jina_clip.py,sha256=CfiIxbhKspjQajNtObCfGPHOWPk6uLn4cuwydQHFTMo,5118
1488
1488
  mteb/models/model_implementations/jina_models.py,sha256=QWoesiTygdFTLcdGpdx26wOUI1AXRz3jLmxGHJ0WMNE,29919
1489
1489
  mteb/models/model_implementations/kalm_models.py,sha256=FmW7Z5Qs6WYBLuKvql3u4IJW36kj4k-Ypah8qTBEBkg,59837
@@ -1536,6 +1536,7 @@ mteb/models/model_implementations/sentence_transformers_models.py,sha256=EtEaXg1
1536
1536
  mteb/models/model_implementations/shuu_model.py,sha256=KkcuVYjIzoha3Fvxh8ppqHQ9BfNMWeqDqn9dGCRKUjg,1167
1537
1537
  mteb/models/model_implementations/siglip_models.py,sha256=tvi8QB2ayBoeXsxwHrl5RFlkknvE6FM9N06zSBWGQD0,12602
1538
1538
  mteb/models/model_implementations/sonar_models.py,sha256=Nc6kAJRWSrxA57DPRrgOPHqS1dNhz2vsE_1ZA2JtigQ,4784
1539
+ mteb/models/model_implementations/spartan8806_atles_champion.py,sha256=9sWQH7tOT0uxXA7sbQcnqGt2f5O9xcw9HqFpRCzoQAA,918
1539
1540
  mteb/models/model_implementations/stella_models.py,sha256=NL3tk-rnuBdznsQ-nmelqun4tFO2xKoNPPOOVKqnPGU,8062
1540
1541
  mteb/models/model_implementations/tarka_models.py,sha256=xC6olJs9PSe_lrYsScw5hDHTjYSjcxgbvfK_7IoBFnk,27397
1541
1542
  mteb/models/model_implementations/text2vec_models.py,sha256=zaHWRc2W0RYZAOetinqRzug9UGW0HmY5U-jYsLXA8wo,4160
@@ -2554,9 +2555,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2554
2555
  mteb/types/_result.py,sha256=CRAUc5IvqI3_9SyXDwv-PWLCXwXdZem9RePeYESRtuw,996
2555
2556
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2556
2557
  mteb/types/statistics.py,sha256=YwJsxTf1eaCI_RE-J37a-gK5wDeGAsmkeZKoZCFihSo,3755
2557
- mteb-2.1.14.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2558
- mteb-2.1.14.dist-info/METADATA,sha256=DoOyy4Av4HUxW86m2yfBFprFzwTBkuezEF1mkrg0IJ4,13574
2559
- mteb-2.1.14.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2560
- mteb-2.1.14.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2561
- mteb-2.1.14.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2562
- mteb-2.1.14.dist-info/RECORD,,
2558
+ mteb-2.1.15.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2559
+ mteb-2.1.15.dist-info/METADATA,sha256=sH6xAIJ1ECtja9vx3g6Bz59HFNQv9irFidIozawidfw,13574
2560
+ mteb-2.1.15.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2561
+ mteb-2.1.15.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2562
+ mteb-2.1.15.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2563
+ mteb-2.1.15.dist-info/RECORD,,
File without changes