mteb 2.1.0__py3-none-any.whl → 2.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +2 -0
- mteb/abstasks/_stratification.py +1 -1
- mteb/abstasks/abstask.py +6 -1
- mteb/abstasks/dataset_card_template.md +1 -1
- mteb/abstasks/retrieval.py +2 -1
- mteb/abstasks/retrieval_dataset_loaders.py +1 -1
- mteb/abstasks/task_metadata.py +1 -1
- mteb/benchmarks/benchmarks/benchmarks.py +7 -11
- mteb/benchmarks/get_benchmark.py +1 -1
- mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XFlickr30kCoT2IRetrieval.json +243 -153
- mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XM3600T2IRetrieval.json +999 -629
- mteb/descriptive_stats/Image/Any2AnyRetrieval/OVENIT2TRetrieval.json +33 -17
- mteb/descriptive_stats/Image/DocumentUnderstanding/MIRACLVisionRetrieval.json +574 -0
- mteb/descriptive_stats/Retrieval/ClimateFEVERHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/DBPediaHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/FEVERHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/HotpotQAHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/QuoraRetrievalHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/RiaNewsRetrievalHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/VDRMultilingualRetrieval.json +184 -0
- mteb/languages/check_language_code.py +11 -3
- mteb/languages/language_scripts.py +4 -0
- mteb/leaderboard/text_segments.py +1 -1
- mteb/models/model_implementations/b1ade_models.py +1 -1
- mteb/models/model_implementations/bge_models.py +1 -3
- mteb/models/model_implementations/bmretriever_models.py +1 -1
- mteb/models/model_implementations/gme_v_models.py +2 -2
- mteb/models/model_implementations/ibm_granite_models.py +1 -1
- mteb/models/model_implementations/inf_models.py +3 -3
- mteb/models/model_implementations/jina_models.py +12 -2
- mteb/models/model_implementations/llm2vec_models.py +1 -1
- mteb/models/model_implementations/misc_models.py +2 -2
- mteb/models/model_implementations/mxbai_models.py +1 -1
- mteb/models/model_implementations/salesforce_models.py +1 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -1
- mteb/models/model_implementations/voyage_v.py +9 -9
- mteb/results/task_result.py +6 -8
- mteb/tasks/classification/dan/angry_tweets_classification.py +2 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +3 -3
- mteb/tasks/classification/mya/myanmar_news.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py +9 -8
- mteb/tasks/retrieval/code/code_rag.py +8 -8
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +18 -4
- mteb/tasks/retrieval/eng/climate_fever_retrieval.py +68 -77
- mteb/tasks/retrieval/eng/dbpedia_retrieval.py +55 -50
- mteb/tasks/retrieval/eng/fever_retrieval.py +62 -67
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/hotpot_qa_retrieval.py +57 -67
- mteb/tasks/retrieval/eng/legal_summarization_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +0 -3
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +0 -2
- mteb/tasks/retrieval/eng/oven_it2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/quora_retrieval.py +51 -46
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/jpn/ja_gov_faqs_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/miracl_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +2 -9
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +6 -5
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +3 -4
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/rus/__init__.py +11 -2
- mteb/tasks/retrieval/rus/ria_news_retrieval.py +48 -44
- mteb/tasks/retrieval/tur/tur_hist_quad.py +2 -2
- {mteb-2.1.0.dist-info → mteb-2.1.1.dist-info}/METADATA +5 -5
- {mteb-2.1.0.dist-info → mteb-2.1.1.dist-info}/RECORD +82 -87
- mteb/descriptive_stats/Classification/PersianTextTone.json +0 -56
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchCount.json +0 -37
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDepth.json +0 -25
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDistance.json +0 -25
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchRelation.json +0 -25
- mteb/descriptive_stats/Image/VisualSTS/STS12VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS13VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS14VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS15VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS16VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS17MultilingualVisualSTS.json +0 -220
- mteb/descriptive_stats/Image/VisualSTS/STSBenchmarkMultilingualVisualSTS.json +0 -402
- mteb/descriptive_stats/Reranking/InstructIR.json +0 -31
- {mteb-2.1.0.dist-info → mteb-2.1.1.dist-info}/WHEEL +0 -0
- {mteb-2.1.0.dist-info → mteb-2.1.1.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.0.dist-info → mteb-2.1.1.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.0.dist-info → mteb-2.1.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 90470,
|
|
4
|
+
"number_of_characters": 30600110,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 30586476,
|
|
7
|
+
"min_text_length": 8,
|
|
8
|
+
"average_text_length": 339.58561119129564,
|
|
9
|
+
"max_text_length": 5857,
|
|
10
|
+
"unique_texts": 90070
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 13634,
|
|
15
|
+
"min_text_length": 6,
|
|
16
|
+
"average_text_length": 34.085,
|
|
17
|
+
"max_text_length": 88,
|
|
18
|
+
"unique_texts": 399
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 15286,
|
|
23
|
+
"min_relevant_docs_per_query": 21,
|
|
24
|
+
"average_relevant_docs_per_query": 38.215,
|
|
25
|
+
"max_relevant_docs_per_query": 1499,
|
|
26
|
+
"unique_relevant_docs": 40724
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 164698,
|
|
4
|
+
"number_of_characters": 114050514,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 114000894,
|
|
7
|
+
"min_text_length": 1,
|
|
8
|
+
"average_text_length": 696.4098156361104,
|
|
9
|
+
"max_text_length": 29033,
|
|
10
|
+
"unique_texts": 163698
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 49620,
|
|
15
|
+
"min_text_length": 15,
|
|
16
|
+
"average_text_length": 49.62,
|
|
17
|
+
"max_text_length": 172,
|
|
18
|
+
"unique_texts": 997
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 1171,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.171,
|
|
25
|
+
"max_relevant_docs_per_query": 15,
|
|
26
|
+
"unique_relevant_docs": 677
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 226621,
|
|
4
|
+
"number_of_characters": 84600866,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 84508282,
|
|
7
|
+
"min_text_length": 8,
|
|
8
|
+
"average_text_length": 374.55858275603777,
|
|
9
|
+
"max_text_length": 3463,
|
|
10
|
+
"unique_texts": 225621
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 92584,
|
|
15
|
+
"min_text_length": 34,
|
|
16
|
+
"average_text_length": 92.584,
|
|
17
|
+
"max_text_length": 288,
|
|
18
|
+
"unique_texts": 1000
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 2000,
|
|
23
|
+
"min_relevant_docs_per_query": 2,
|
|
24
|
+
"average_relevant_docs_per_query": 2.0,
|
|
25
|
+
"max_relevant_docs_per_query": 2,
|
|
26
|
+
"unique_relevant_docs": 1975
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 178163,
|
|
4
|
+
"number_of_characters": 10498457,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 10447229,
|
|
7
|
+
"min_text_length": 1,
|
|
8
|
+
"average_text_length": 58.96958732918273,
|
|
9
|
+
"max_text_length": 581,
|
|
10
|
+
"unique_texts": 176849
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 51228,
|
|
15
|
+
"min_text_length": 2,
|
|
16
|
+
"average_text_length": 51.228,
|
|
17
|
+
"max_text_length": 180,
|
|
18
|
+
"unique_texts": 1000
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 1641,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.641,
|
|
25
|
+
"max_relevant_docs_per_query": 34,
|
|
26
|
+
"unique_relevant_docs": 1641
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 192237,
|
|
4
|
+
"number_of_characters": 234466370,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 234404032,
|
|
7
|
+
"min_text_length": 0,
|
|
8
|
+
"average_text_length": 1225.7253146619116,
|
|
9
|
+
"max_text_length": 2000,
|
|
10
|
+
"unique_texts": 191237
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 62338,
|
|
15
|
+
"min_text_length": 4,
|
|
16
|
+
"average_text_length": 62.338,
|
|
17
|
+
"max_text_length": 85,
|
|
18
|
+
"unique_texts": 1000
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 1000,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 1,
|
|
26
|
+
"unique_relevant_docs": 1000
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,184 @@
|
|
|
1
|
+
{
|
|
2
|
+
"train": {
|
|
3
|
+
"num_samples": 16500,
|
|
4
|
+
"number_of_characters": 118992,
|
|
5
|
+
"documents_text_statistics": null,
|
|
6
|
+
"documents_image_statistics": {
|
|
7
|
+
"min_image_width": 447,
|
|
8
|
+
"average_image_width": 1401.1196666666667,
|
|
9
|
+
"max_image_width": 2743,
|
|
10
|
+
"min_image_height": 376,
|
|
11
|
+
"average_image_height": 1685.2892,
|
|
12
|
+
"max_image_height": 5257,
|
|
13
|
+
"unique_images": 14981
|
|
14
|
+
},
|
|
15
|
+
"queries_text_statistics": {
|
|
16
|
+
"total_text_length": 118992,
|
|
17
|
+
"min_text_length": 13,
|
|
18
|
+
"average_text_length": 79.328,
|
|
19
|
+
"max_text_length": 204,
|
|
20
|
+
"unique_texts": 1499
|
|
21
|
+
},
|
|
22
|
+
"queries_image_statistics": null,
|
|
23
|
+
"relevant_docs_statistics": {
|
|
24
|
+
"num_relevant_docs": 1499,
|
|
25
|
+
"min_relevant_docs_per_query": 1,
|
|
26
|
+
"average_relevant_docs_per_query": 1.0,
|
|
27
|
+
"max_relevant_docs_per_query": 1,
|
|
28
|
+
"unique_relevant_docs": 1499
|
|
29
|
+
},
|
|
30
|
+
"top_ranked_statistics": null,
|
|
31
|
+
"hf_subset_descriptive_stats": {
|
|
32
|
+
"en": {
|
|
33
|
+
"num_samples": 3300,
|
|
34
|
+
"number_of_characters": 20947,
|
|
35
|
+
"documents_text_statistics": null,
|
|
36
|
+
"documents_image_statistics": {
|
|
37
|
+
"min_image_width": 653,
|
|
38
|
+
"average_image_width": 1388.4603333333334,
|
|
39
|
+
"max_image_width": 2464,
|
|
40
|
+
"min_image_height": 878,
|
|
41
|
+
"average_image_height": 1691.6246666666666,
|
|
42
|
+
"max_image_height": 3533,
|
|
43
|
+
"unique_images": 2996
|
|
44
|
+
},
|
|
45
|
+
"queries_text_statistics": {
|
|
46
|
+
"total_text_length": 20947,
|
|
47
|
+
"min_text_length": 31,
|
|
48
|
+
"average_text_length": 69.82333333333334,
|
|
49
|
+
"max_text_length": 142,
|
|
50
|
+
"unique_texts": 300
|
|
51
|
+
},
|
|
52
|
+
"queries_image_statistics": null,
|
|
53
|
+
"relevant_docs_statistics": {
|
|
54
|
+
"num_relevant_docs": 300,
|
|
55
|
+
"min_relevant_docs_per_query": 1,
|
|
56
|
+
"average_relevant_docs_per_query": 1.0,
|
|
57
|
+
"max_relevant_docs_per_query": 1,
|
|
58
|
+
"unique_relevant_docs": 300
|
|
59
|
+
},
|
|
60
|
+
"top_ranked_statistics": null
|
|
61
|
+
},
|
|
62
|
+
"es": {
|
|
63
|
+
"num_samples": 3300,
|
|
64
|
+
"number_of_characters": 24935,
|
|
65
|
+
"documents_text_statistics": null,
|
|
66
|
+
"documents_image_statistics": {
|
|
67
|
+
"min_image_width": 447,
|
|
68
|
+
"average_image_width": 1370.8263333333334,
|
|
69
|
+
"max_image_width": 2743,
|
|
70
|
+
"min_image_height": 376,
|
|
71
|
+
"average_image_height": 1709.195,
|
|
72
|
+
"max_image_height": 5257,
|
|
73
|
+
"unique_images": 2997
|
|
74
|
+
},
|
|
75
|
+
"queries_text_statistics": {
|
|
76
|
+
"total_text_length": 24935,
|
|
77
|
+
"min_text_length": 35,
|
|
78
|
+
"average_text_length": 83.11666666666666,
|
|
79
|
+
"max_text_length": 153,
|
|
80
|
+
"unique_texts": 300
|
|
81
|
+
},
|
|
82
|
+
"queries_image_statistics": null,
|
|
83
|
+
"relevant_docs_statistics": {
|
|
84
|
+
"num_relevant_docs": 300,
|
|
85
|
+
"min_relevant_docs_per_query": 1,
|
|
86
|
+
"average_relevant_docs_per_query": 1.0,
|
|
87
|
+
"max_relevant_docs_per_query": 1,
|
|
88
|
+
"unique_relevant_docs": 300
|
|
89
|
+
},
|
|
90
|
+
"top_ranked_statistics": null
|
|
91
|
+
},
|
|
92
|
+
"fr": {
|
|
93
|
+
"num_samples": 3300,
|
|
94
|
+
"number_of_characters": 25217,
|
|
95
|
+
"documents_text_statistics": null,
|
|
96
|
+
"documents_image_statistics": {
|
|
97
|
+
"min_image_width": 780,
|
|
98
|
+
"average_image_width": 1402.3566666666666,
|
|
99
|
+
"max_image_width": 2579,
|
|
100
|
+
"min_image_height": 756,
|
|
101
|
+
"average_image_height": 1689.5696666666668,
|
|
102
|
+
"max_image_height": 2912,
|
|
103
|
+
"unique_images": 2998
|
|
104
|
+
},
|
|
105
|
+
"queries_text_statistics": {
|
|
106
|
+
"total_text_length": 25217,
|
|
107
|
+
"min_text_length": 37,
|
|
108
|
+
"average_text_length": 84.05666666666667,
|
|
109
|
+
"max_text_length": 152,
|
|
110
|
+
"unique_texts": 299
|
|
111
|
+
},
|
|
112
|
+
"queries_image_statistics": null,
|
|
113
|
+
"relevant_docs_statistics": {
|
|
114
|
+
"num_relevant_docs": 299,
|
|
115
|
+
"min_relevant_docs_per_query": 1,
|
|
116
|
+
"average_relevant_docs_per_query": 1.0,
|
|
117
|
+
"max_relevant_docs_per_query": 1,
|
|
118
|
+
"unique_relevant_docs": 299
|
|
119
|
+
},
|
|
120
|
+
"top_ranked_statistics": null
|
|
121
|
+
},
|
|
122
|
+
"de": {
|
|
123
|
+
"num_samples": 3300,
|
|
124
|
+
"number_of_characters": 23029,
|
|
125
|
+
"documents_text_statistics": null,
|
|
126
|
+
"documents_image_statistics": {
|
|
127
|
+
"min_image_width": 828,
|
|
128
|
+
"average_image_width": 1394.5596666666668,
|
|
129
|
+
"max_image_width": 2366,
|
|
130
|
+
"min_image_height": 756,
|
|
131
|
+
"average_image_height": 1686.0596666666668,
|
|
132
|
+
"max_image_height": 2827,
|
|
133
|
+
"unique_images": 2994
|
|
134
|
+
},
|
|
135
|
+
"queries_text_statistics": {
|
|
136
|
+
"total_text_length": 23029,
|
|
137
|
+
"min_text_length": 35,
|
|
138
|
+
"average_text_length": 76.76333333333334,
|
|
139
|
+
"max_text_length": 143,
|
|
140
|
+
"unique_texts": 300
|
|
141
|
+
},
|
|
142
|
+
"queries_image_statistics": null,
|
|
143
|
+
"relevant_docs_statistics": {
|
|
144
|
+
"num_relevant_docs": 300,
|
|
145
|
+
"min_relevant_docs_per_query": 1,
|
|
146
|
+
"average_relevant_docs_per_query": 1.0,
|
|
147
|
+
"max_relevant_docs_per_query": 1,
|
|
148
|
+
"unique_relevant_docs": 300
|
|
149
|
+
},
|
|
150
|
+
"top_ranked_statistics": null
|
|
151
|
+
},
|
|
152
|
+
"it": {
|
|
153
|
+
"num_samples": 3300,
|
|
154
|
+
"number_of_characters": 24864,
|
|
155
|
+
"documents_text_statistics": null,
|
|
156
|
+
"documents_image_statistics": {
|
|
157
|
+
"min_image_width": 788,
|
|
158
|
+
"average_image_width": 1449.3953333333334,
|
|
159
|
+
"max_image_width": 2583,
|
|
160
|
+
"min_image_height": 804,
|
|
161
|
+
"average_image_height": 1649.997,
|
|
162
|
+
"max_image_height": 2168,
|
|
163
|
+
"unique_images": 2996
|
|
164
|
+
},
|
|
165
|
+
"queries_text_statistics": {
|
|
166
|
+
"total_text_length": 24864,
|
|
167
|
+
"min_text_length": 13,
|
|
168
|
+
"average_text_length": 82.88,
|
|
169
|
+
"max_text_length": 204,
|
|
170
|
+
"unique_texts": 300
|
|
171
|
+
},
|
|
172
|
+
"queries_image_statistics": null,
|
|
173
|
+
"relevant_docs_statistics": {
|
|
174
|
+
"num_relevant_docs": 300,
|
|
175
|
+
"min_relevant_docs_per_query": 1,
|
|
176
|
+
"average_relevant_docs_per_query": 1.0,
|
|
177
|
+
"max_relevant_docs_per_query": 1,
|
|
178
|
+
"unique_relevant_docs": 300
|
|
179
|
+
},
|
|
180
|
+
"top_ranked_statistics": null
|
|
181
|
+
}
|
|
182
|
+
}
|
|
183
|
+
}
|
|
184
|
+
}
|
|
@@ -13,7 +13,15 @@ def check_language_code(code: str) -> None:
|
|
|
13
13
|
Args:
|
|
14
14
|
code: The language code to check.
|
|
15
15
|
"""
|
|
16
|
-
lang
|
|
16
|
+
lang = None
|
|
17
|
+
script = None
|
|
18
|
+
if "-" in code:
|
|
19
|
+
lang, script = code.split("-")
|
|
20
|
+
elif code[0].isupper():
|
|
21
|
+
script = code
|
|
22
|
+
else:
|
|
23
|
+
lang = code
|
|
24
|
+
|
|
17
25
|
if script == "Code":
|
|
18
26
|
if lang in PROGRAMMING_LANGS:
|
|
19
27
|
return # override for code
|
|
@@ -21,11 +29,11 @@ def check_language_code(code: str) -> None:
|
|
|
21
29
|
raise ValueError(
|
|
22
30
|
f"Programming language {lang} is not a valid programming language."
|
|
23
31
|
)
|
|
24
|
-
if lang not in ISO_TO_LANGUAGE:
|
|
32
|
+
if lang is not None and lang not in ISO_TO_LANGUAGE:
|
|
25
33
|
raise ValueError(
|
|
26
34
|
f"Invalid language code: {lang}, you can find valid ISO 639-3 codes in {path_to_lang_codes}"
|
|
27
35
|
)
|
|
28
|
-
if script not in ISO_TO_SCRIPT:
|
|
36
|
+
if script is not None and script not in ISO_TO_SCRIPT:
|
|
29
37
|
raise ValueError(
|
|
30
38
|
f"Invalid script code: {script}, you can find valid ISO 15924 codes in {path_to_lang_scripts}"
|
|
31
39
|
)
|
|
@@ -3,6 +3,8 @@ from dataclasses import dataclass
|
|
|
3
3
|
|
|
4
4
|
from typing_extensions import Self
|
|
5
5
|
|
|
6
|
+
from mteb.languages import check_language_code
|
|
7
|
+
|
|
6
8
|
|
|
7
9
|
@dataclass
|
|
8
10
|
class LanguageScripts:
|
|
@@ -46,8 +48,10 @@ class LanguageScripts:
|
|
|
46
48
|
if len(lang_script) == 2:
|
|
47
49
|
normalized_langs.add(lang_script[0])
|
|
48
50
|
lang_script_codes.add(lang)
|
|
51
|
+
check_language_code(lang)
|
|
49
52
|
script_codes.add(lang_script[1])
|
|
50
53
|
else:
|
|
54
|
+
check_language_code(lang)
|
|
51
55
|
normalized_langs.add(lang)
|
|
52
56
|
|
|
53
57
|
return cls(
|
|
@@ -53,7 +53,7 @@ ACKNOWLEDGEMENT = """
|
|
|
53
53
|
<img src="https://play-lh.googleusercontent.com/HdfHZ5jnfMM1Ep7XpPaVdFIVSRx82wKlRC_qmnHx9H1E4aWNp4WKoOcH0x95NAnuYg" width="60" height="55" style="padding: 10px;">
|
|
54
54
|
</a>
|
|
55
55
|
<a href="https://huggingface.co">
|
|
56
|
-
<img src="https://raw.githubusercontent.com/embeddings-benchmark/mteb/main/docs/images/hf_logo.png" width="60" height="55" style="padding: 10px;">
|
|
56
|
+
<img src="https://raw.githubusercontent.com/embeddings-benchmark/mteb/main/docs/images/logos/hf_logo.png" width="60" height="55" style="padding: 10px;">
|
|
57
57
|
</a>
|
|
58
58
|
</div>
|
|
59
59
|
|
|
@@ -2,7 +2,7 @@ from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
|
2
2
|
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
3
3
|
|
|
4
4
|
b1ade_training_data = {
|
|
5
|
-
# We are in
|
|
5
|
+
# We are in the process of submitting a paper outlining our process of creating b1ade using model merging and knowledge distillation.
|
|
6
6
|
# Similar to mixedbread models, we do not train on any data (except the MSMarco training split) of MTEB.
|
|
7
7
|
"MSMARCO",
|
|
8
8
|
}
|
|
@@ -62,7 +62,7 @@ bge_m3_training_data = {
|
|
|
62
62
|
# mMARCO-ZH
|
|
63
63
|
# LawGPT
|
|
64
64
|
# NLI-zh2, LeCaRDv2,
|
|
65
|
-
# NLI, MultiLongDoc (their
|
|
65
|
+
# NLI, MultiLongDoc (their synthetic)
|
|
66
66
|
# + synthetic data
|
|
67
67
|
}
|
|
68
68
|
|
|
@@ -141,7 +141,6 @@ bge_chinese_training_data = {
|
|
|
141
141
|
# https://huggingface.co/BAAI/bge-m3/discussions/29
|
|
142
142
|
bgem3_languages = [
|
|
143
143
|
"afr-Latn", # af
|
|
144
|
-
# als
|
|
145
144
|
"amh-Ethi", # am
|
|
146
145
|
# an
|
|
147
146
|
# ar
|
|
@@ -151,7 +150,6 @@ bgem3_languages = [
|
|
|
151
150
|
# av
|
|
152
151
|
# az
|
|
153
152
|
"azj-Latn", # azb
|
|
154
|
-
# ba
|
|
155
153
|
# bar
|
|
156
154
|
# bcl
|
|
157
155
|
"ben-Beng", # be
|
|
@@ -48,7 +48,7 @@ class BMRetrieverWrapper(InstructSentenceTransformerModel):
|
|
|
48
48
|
if padding_side is not None:
|
|
49
49
|
tokenizer_params["padding_side"] = padding_side
|
|
50
50
|
kwargs.setdefault("tokenizer_args", {}).update(tokenizer_params)
|
|
51
|
-
kwargs.setdefault("config_args", {}).update(
|
|
51
|
+
kwargs.setdefault("config_args", {}).update(revision=revision)
|
|
52
52
|
|
|
53
53
|
transformer = Transformer(
|
|
54
54
|
model_name,
|
|
@@ -39,7 +39,7 @@ class Encoder(torch.nn.Module):
|
|
|
39
39
|
self.max_length = max_length
|
|
40
40
|
self.normalize = normalize
|
|
41
41
|
self.processor.tokenizer.padding_side = "right"
|
|
42
|
-
self.
|
|
42
|
+
self.default_instruction = "You are a helpful assistant."
|
|
43
43
|
|
|
44
44
|
def forward(
|
|
45
45
|
self,
|
|
@@ -103,7 +103,7 @@ class Encoder(torch.nn.Module):
|
|
|
103
103
|
instruction=None,
|
|
104
104
|
**kwargs,
|
|
105
105
|
):
|
|
106
|
-
instruction = instruction or self.
|
|
106
|
+
instruction = instruction or self.default_instruction
|
|
107
107
|
# Inputs must be batched
|
|
108
108
|
input_texts, input_images = [], []
|
|
109
109
|
for t, i in zip(texts, images):
|
|
@@ -79,7 +79,7 @@ granite_training_data = {
|
|
|
79
79
|
"MIRACLReranking",
|
|
80
80
|
# Multilingual MrTydi Triples
|
|
81
81
|
"MrTidyRetrieval",
|
|
82
|
-
# Sadeeem Question
|
|
82
|
+
# Sadeeem Question Answering
|
|
83
83
|
# DBPedia Title-Body Pairs
|
|
84
84
|
"DBPedia",
|
|
85
85
|
"DBPedia-NL", # translated from hotpotQA (not trained on)
|
|
@@ -4,7 +4,7 @@ from mteb.models.model_meta import (
|
|
|
4
4
|
)
|
|
5
5
|
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
6
6
|
|
|
7
|
-
|
|
7
|
+
inf_retriever_v1_training_data = {
|
|
8
8
|
# eng_Latn
|
|
9
9
|
"ArguAna",
|
|
10
10
|
"CQADupstackRetrieval",
|
|
@@ -66,7 +66,7 @@ inf_retriever_v1 = ModelMeta(
|
|
|
66
66
|
adapted_from="Alibaba-NLP/gte-Qwen2-7B-instruct",
|
|
67
67
|
public_training_code=None,
|
|
68
68
|
public_training_data=None,
|
|
69
|
-
training_datasets=
|
|
69
|
+
training_datasets=inf_retriever_v1_training_data,
|
|
70
70
|
citation=INF_RETRIEVER_CITATION,
|
|
71
71
|
)
|
|
72
72
|
|
|
@@ -92,6 +92,6 @@ inf_retriever_v1_1_5b = ModelMeta(
|
|
|
92
92
|
adapted_from="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
|
93
93
|
public_training_code=None,
|
|
94
94
|
public_training_data=None,
|
|
95
|
-
training_datasets=
|
|
95
|
+
training_datasets=inf_retriever_v1_training_data,
|
|
96
96
|
citation=INF_RETRIEVER_CITATION,
|
|
97
97
|
)
|
|
@@ -310,9 +310,19 @@ class JinaV4Wrapper(AbsEncoder):
|
|
|
310
310
|
text_embeddings = None
|
|
311
311
|
image_embeddings = None
|
|
312
312
|
if "text" in inputs.dataset.features:
|
|
313
|
-
text_embeddings = self.get_text_embeddings(
|
|
313
|
+
text_embeddings = self.get_text_embeddings(
|
|
314
|
+
inputs,
|
|
315
|
+
task_metadata=task_metadata,
|
|
316
|
+
prompt_type=prompt_type,
|
|
317
|
+
**kwargs,
|
|
318
|
+
)
|
|
314
319
|
if "image" in inputs.dataset.features:
|
|
315
|
-
image_embeddings = self.get_image_embeddings(
|
|
320
|
+
image_embeddings = self.get_image_embeddings(
|
|
321
|
+
inputs,
|
|
322
|
+
task_metadata=task_metadata,
|
|
323
|
+
prompt_type=prompt_type,
|
|
324
|
+
**kwargs,
|
|
325
|
+
)
|
|
316
326
|
|
|
317
327
|
if text_embeddings is not None and image_embeddings is not None:
|
|
318
328
|
if len(text_embeddings) != len(image_embeddings):
|
|
@@ -23,7 +23,7 @@ def llm2vec_instruction(instruction):
|
|
|
23
23
|
|
|
24
24
|
llm2vec_supervised_training_data = {
|
|
25
25
|
# source, section g1: https://arxiv.org/pdf/2404.05961
|
|
26
|
-
# splits assumed but
|
|
26
|
+
# splits assumed but unknown
|
|
27
27
|
"HotpotQA",
|
|
28
28
|
"HotpotQA-PL", # translation not trained on
|
|
29
29
|
"HotpotQA-NL", # translation not trained on
|
|
@@ -382,7 +382,7 @@ Mihaiii__Venusaur = ModelMeta(
|
|
|
382
382
|
reference="https://huggingface.co/Mihaiii/Venusaur",
|
|
383
383
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
384
384
|
use_instructions=None,
|
|
385
|
-
training_datasets=None, # source model is
|
|
385
|
+
training_datasets=None, # source model is unknown
|
|
386
386
|
# {"Mihaiii/qa-assistant"},
|
|
387
387
|
adapted_from="Mihaiii/test14",
|
|
388
388
|
superseded_by=None,
|
|
@@ -1516,7 +1516,7 @@ openbmb__minicpm_embedding = ModelMeta(
|
|
|
1516
1516
|
superseded_by=None,
|
|
1517
1517
|
)
|
|
1518
1518
|
|
|
1519
|
-
|
|
1519
|
+
silma_ai__silma_embedding_matryoshka_v0_1 = ModelMeta(
|
|
1520
1520
|
name="silma-ai/silma-embeddding-matryoshka-v0.1",
|
|
1521
1521
|
revision="a520977a9542ebdb8a7206df6b7ff6977f1886ea",
|
|
1522
1522
|
release_date="2024-10-12",
|
|
@@ -5,7 +5,7 @@ from mteb.models.model_meta import (
|
|
|
5
5
|
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
6
6
|
|
|
7
7
|
mixedbread_training_data = {
|
|
8
|
-
# from
|
|
8
|
+
# from correspondence:
|
|
9
9
|
# as mentioned in our blog post
|
|
10
10
|
# (https://www.mixedbread.com/blog/mxbai-embed-large-v1#built-for-rag-and-real-world-use-cases:~:text=During%20the%20whole,related%20use%20cases.)
|
|
11
11
|
# We do not train on any data (except the MSMarco training split) of MTEB. We have a strong filtering process to ensure the OOD setting. That's true
|
|
@@ -27,7 +27,7 @@ SFR_TRAINING_DATA = { # inherits from e5
|
|
|
27
27
|
"HotpotQA-PL", # translation not trained on
|
|
28
28
|
"HotpotQA-NL", # translation not trained on
|
|
29
29
|
# source: https://github.com/embeddings-benchmark/leaderboard/issues/41
|
|
30
|
-
#
|
|
30
|
+
# quote: In the realm of Semantic Textual Similarity (STS), it is trained on STS12, STS22, and STSBenchmark
|
|
31
31
|
"STS12",
|
|
32
32
|
"STS22",
|
|
33
33
|
"STSBenchmark",
|
|
@@ -344,7 +344,7 @@ TASK_NAME_TO_INSTRUCTION = {
|
|
|
344
344
|
"SprintDuplicateQuestions": "Retrieve semantically similar text\n{}",
|
|
345
345
|
"TwitterSemEval2015": "Retrieve semantically similar text\n{}",
|
|
346
346
|
"TwitterURLCorpus": "Retrieve semantically similar text\n{}",
|
|
347
|
-
"CQADupstackGamingRetrieval": "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given
|
|
347
|
+
"CQADupstackGamingRetrieval": "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question\n{}",
|
|
348
348
|
"CQADupstackUnixRetrieval": "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question\n{}",
|
|
349
349
|
"DuRetrieval": "为这个句子生成表示以用于检索相关内容:{}",
|
|
350
350
|
"T2Retrieval": "为这个句子生成表示以用于检索相关内容:{}",
|
|
@@ -51,7 +51,13 @@ def _downsample_image(
|
|
|
51
51
|
def voyage_v_loader(model_name, **kwargs):
|
|
52
52
|
requires_package(
|
|
53
53
|
voyage_v_loader,
|
|
54
|
-
"voyageai
|
|
54
|
+
"voyageai",
|
|
55
|
+
model_name,
|
|
56
|
+
"pip install 'mteb[voyage_v]'",
|
|
57
|
+
)
|
|
58
|
+
requires_package(
|
|
59
|
+
voyage_v_loader,
|
|
60
|
+
"tenacity",
|
|
55
61
|
model_name,
|
|
56
62
|
"pip install 'mteb[voyage_v]'",
|
|
57
63
|
)
|
|
@@ -65,11 +71,9 @@ def voyage_v_loader(model_name, **kwargs):
|
|
|
65
71
|
**kwargs: Any,
|
|
66
72
|
):
|
|
67
73
|
requires_image_dependencies()
|
|
68
|
-
from torchvision import transforms
|
|
69
74
|
|
|
70
75
|
self.model_name = model_name.split("/")[-1]
|
|
71
76
|
self.vo = voyageai.Client()
|
|
72
|
-
self.tensor_to_image = transforms.Compose([transforms.PILToTensor()])
|
|
73
77
|
|
|
74
78
|
@retry(
|
|
75
79
|
stop=stop_after_attempt(6), # Stop after 6 attempts
|
|
@@ -126,10 +130,7 @@ def voyage_v_loader(model_name, **kwargs):
|
|
|
126
130
|
for batch in tqdm(
|
|
127
131
|
images, disable=not show_progress_bar, desc="Image Encoding"
|
|
128
132
|
):
|
|
129
|
-
batch_images = [
|
|
130
|
-
[_downsample_image(self.tensor_to_image(image))]
|
|
131
|
-
for image in batch["image"]
|
|
132
|
-
]
|
|
133
|
+
batch_images = [[_downsample_image(image)] for image in batch["image"]]
|
|
133
134
|
embeddings = self._multimodal_embed(
|
|
134
135
|
batch_images, model=self.model_name, input_type=input_type
|
|
135
136
|
).embeddings
|
|
@@ -163,8 +164,7 @@ def voyage_v_loader(model_name, **kwargs):
|
|
|
163
164
|
inputs, disable=not show_progress_bar, desc="Interleaved Encoding"
|
|
164
165
|
):
|
|
165
166
|
batch_images = [
|
|
166
|
-
_downsample_image(
|
|
167
|
-
for image in batch["image"]
|
|
167
|
+
_downsample_image(image) for image in batch["image"]
|
|
168
168
|
]
|
|
169
169
|
batch_texts = batch["text"]
|
|
170
170
|
interleaved_inputs = [
|