mteb 2.0.5__py3-none-any.whl → 2.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (156) hide show
  1. mteb/__init__.py +10 -1
  2. mteb/_create_dataloaders.py +2 -0
  3. mteb/abstasks/_stratification.py +1 -1
  4. mteb/abstasks/abstask.py +6 -1
  5. mteb/abstasks/dataset_card_template.md +1 -1
  6. mteb/abstasks/retrieval.py +2 -1
  7. mteb/abstasks/retrieval_dataset_loaders.py +1 -1
  8. mteb/abstasks/task_metadata.py +1 -1
  9. mteb/benchmarks/benchmarks/__init__.py +2 -0
  10. mteb/benchmarks/benchmarks/benchmarks.py +82 -11
  11. mteb/benchmarks/get_benchmark.py +1 -1
  12. mteb/descriptive_stats/Classification/DutchColaClassification.json +54 -0
  13. mteb/descriptive_stats/Classification/DutchGovernmentBiasClassification.json +54 -0
  14. mteb/descriptive_stats/Classification/DutchNewsArticlesClassification.json +90 -0
  15. mteb/descriptive_stats/Classification/DutchSarcasticHeadlinesClassification.json +54 -0
  16. mteb/descriptive_stats/Classification/IconclassClassification.json +96 -0
  17. mteb/descriptive_stats/Classification/OpenTenderClassification.json +222 -0
  18. mteb/descriptive_stats/Classification/VaccinChatNLClassification.json +1068 -0
  19. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringP2P.json +45 -0
  20. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringS2S.json +45 -0
  21. mteb/descriptive_stats/Clustering/IconclassClusteringS2S.json +48 -0
  22. mteb/descriptive_stats/Clustering/OpenTenderClusteringP2P.json +111 -0
  23. mteb/descriptive_stats/Clustering/OpenTenderClusteringS2S.json +111 -0
  24. mteb/descriptive_stats/Clustering/VABBClusteringP2P.json +60 -0
  25. mteb/descriptive_stats/Clustering/VABBClusteringS2S.json +60 -0
  26. mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XFlickr30kCoT2IRetrieval.json +243 -153
  27. mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XM3600T2IRetrieval.json +999 -629
  28. mteb/descriptive_stats/Image/Any2AnyRetrieval/OVENIT2TRetrieval.json +33 -17
  29. mteb/descriptive_stats/Image/DocumentUnderstanding/MIRACLVisionRetrieval.json +574 -0
  30. mteb/descriptive_stats/MultilabelClassification/CovidDisinformationNLMultiLabelClassification.json +84 -0
  31. mteb/descriptive_stats/MultilabelClassification/VABBMultiLabelClassification.json +156 -0
  32. mteb/descriptive_stats/PairClassification/SICKNLPairClassification.json +35 -0
  33. mteb/descriptive_stats/PairClassification/XLWICNLPairClassification.json +35 -0
  34. mteb/descriptive_stats/Retrieval/ClimateFEVERHardNegatives.v2.json +30 -0
  35. mteb/descriptive_stats/Retrieval/DBPediaHardNegatives.v2.json +30 -0
  36. mteb/descriptive_stats/Retrieval/DutchNewsArticlesRetrieval.json +30 -0
  37. mteb/descriptive_stats/Retrieval/FEVERHardNegatives.v2.json +30 -0
  38. mteb/descriptive_stats/Retrieval/HotpotQAHardNegatives.v2.json +30 -0
  39. mteb/descriptive_stats/Retrieval/LegalQANLRetrieval.json +30 -0
  40. mteb/descriptive_stats/Retrieval/OpenTenderRetrieval.json +30 -0
  41. mteb/descriptive_stats/Retrieval/QuoraRetrievalHardNegatives.v2.json +30 -0
  42. mteb/descriptive_stats/Retrieval/RiaNewsRetrievalHardNegatives.v2.json +30 -0
  43. mteb/descriptive_stats/Retrieval/VABBRetrieval.json +30 -0
  44. mteb/descriptive_stats/Retrieval/VDRMultilingualRetrieval.json +184 -0
  45. mteb/descriptive_stats/Retrieval/bBSARDNLRetrieval.json +30 -0
  46. mteb/descriptive_stats/STS/SICK-NL-STS.json +28 -0
  47. mteb/languages/check_language_code.py +11 -3
  48. mteb/languages/language_scripts.py +4 -0
  49. mteb/leaderboard/text_segments.py +1 -1
  50. mteb/models/model_implementations/b1ade_models.py +1 -1
  51. mteb/models/model_implementations/bge_models.py +1 -3
  52. mteb/models/model_implementations/bmretriever_models.py +1 -1
  53. mteb/models/model_implementations/gme_v_models.py +2 -2
  54. mteb/models/model_implementations/ibm_granite_models.py +1 -1
  55. mteb/models/model_implementations/inf_models.py +3 -3
  56. mteb/models/model_implementations/jina_models.py +12 -2
  57. mteb/models/model_implementations/llm2vec_models.py +1 -1
  58. mteb/models/model_implementations/misc_models.py +2 -2
  59. mteb/models/model_implementations/mxbai_models.py +1 -1
  60. mteb/models/model_implementations/salesforce_models.py +1 -1
  61. mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -1
  62. mteb/models/model_implementations/voyage_v.py +9 -9
  63. mteb/results/task_result.py +6 -8
  64. mteb/tasks/classification/dan/angry_tweets_classification.py +2 -2
  65. mteb/tasks/classification/eng/legal_bench_classification.py +3 -3
  66. mteb/tasks/classification/mya/myanmar_news.py +2 -2
  67. mteb/tasks/classification/nld/__init__.py +16 -0
  68. mteb/tasks/classification/nld/dutch_cola_classification.py +38 -0
  69. mteb/tasks/classification/nld/dutch_government_bias_classification.py +37 -0
  70. mteb/tasks/classification/nld/dutch_news_articles_classification.py +30 -0
  71. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +36 -0
  72. mteb/tasks/classification/nld/iconclass_classification.py +41 -0
  73. mteb/tasks/classification/nld/open_tender_classification.py +38 -0
  74. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +46 -0
  75. mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
  76. mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
  77. mteb/tasks/clustering/__init__.py +1 -0
  78. mteb/tasks/clustering/nld/__init__.py +17 -0
  79. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +37 -0
  80. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +37 -0
  81. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +47 -0
  82. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +51 -0
  83. mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +41 -0
  84. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +51 -0
  85. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +51 -0
  86. mteb/tasks/multilabel_classification/__init__.py +1 -0
  87. mteb/tasks/multilabel_classification/nld/__init__.py +9 -0
  88. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +88 -0
  89. mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +44 -0
  90. mteb/tasks/pair_classification/__init__.py +1 -0
  91. mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py +9 -8
  92. mteb/tasks/pair_classification/nld/__init__.py +7 -0
  93. mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +36 -0
  94. mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +41 -0
  95. mteb/tasks/retrieval/code/code_rag.py +8 -8
  96. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
  97. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
  98. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
  99. mteb/tasks/retrieval/eng/__init__.py +18 -4
  100. mteb/tasks/retrieval/eng/climate_fever_retrieval.py +68 -77
  101. mteb/tasks/retrieval/eng/dbpedia_retrieval.py +55 -50
  102. mteb/tasks/retrieval/eng/fever_retrieval.py +62 -67
  103. mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +0 -4
  104. mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +0 -4
  105. mteb/tasks/retrieval/eng/hotpot_qa_retrieval.py +57 -67
  106. mteb/tasks/retrieval/eng/legal_summarization_retrieval.py +1 -1
  107. mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +0 -3
  108. mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +0 -2
  109. mteb/tasks/retrieval/eng/oven_it2t_retrieval.py +1 -1
  110. mteb/tasks/retrieval/eng/quora_retrieval.py +51 -46
  111. mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +0 -4
  112. mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +0 -4
  113. mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +0 -2
  114. mteb/tasks/retrieval/jpn/ja_gov_faqs_retrieval.py +1 -1
  115. mteb/tasks/retrieval/multilingual/belebele_retrieval.py +1 -1
  116. mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +0 -2
  117. mteb/tasks/retrieval/multilingual/miracl_retrieval.py +1 -1
  118. mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +2 -9
  119. mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +0 -2
  120. mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +0 -2
  121. mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +6 -5
  122. mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +3 -4
  123. mteb/tasks/retrieval/nld/__init__.py +10 -0
  124. mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +41 -0
  125. mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +30 -0
  126. mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +39 -0
  127. mteb/tasks/retrieval/nld/open_tender_retrieval.py +38 -0
  128. mteb/tasks/retrieval/nld/vabb_retrieval.py +41 -0
  129. mteb/tasks/retrieval/nob/norquad.py +2 -2
  130. mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
  131. mteb/tasks/retrieval/rus/__init__.py +11 -2
  132. mteb/tasks/retrieval/rus/ria_news_retrieval.py +48 -44
  133. mteb/tasks/retrieval/tur/tur_hist_quad.py +2 -2
  134. mteb/tasks/sts/__init__.py +1 -0
  135. mteb/tasks/sts/nld/__init__.py +5 -0
  136. mteb/tasks/sts/nld/sick_nl_sts.py +41 -0
  137. mteb-2.1.1.dist-info/METADATA +253 -0
  138. {mteb-2.0.5.dist-info → mteb-2.1.1.dist-info}/RECORD +142 -95
  139. mteb/descriptive_stats/Classification/PersianTextTone.json +0 -56
  140. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchCount.json +0 -37
  141. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDepth.json +0 -25
  142. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDistance.json +0 -25
  143. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchRelation.json +0 -25
  144. mteb/descriptive_stats/Image/VisualSTS/STS12VisualSTS.json +0 -20
  145. mteb/descriptive_stats/Image/VisualSTS/STS13VisualSTS.json +0 -20
  146. mteb/descriptive_stats/Image/VisualSTS/STS14VisualSTS.json +0 -20
  147. mteb/descriptive_stats/Image/VisualSTS/STS15VisualSTS.json +0 -20
  148. mteb/descriptive_stats/Image/VisualSTS/STS16VisualSTS.json +0 -20
  149. mteb/descriptive_stats/Image/VisualSTS/STS17MultilingualVisualSTS.json +0 -220
  150. mteb/descriptive_stats/Image/VisualSTS/STSBenchmarkMultilingualVisualSTS.json +0 -402
  151. mteb/descriptive_stats/Reranking/InstructIR.json +0 -31
  152. mteb-2.0.5.dist-info/METADATA +0 -455
  153. {mteb-2.0.5.dist-info → mteb-2.1.1.dist-info}/WHEEL +0 -0
  154. {mteb-2.0.5.dist-info → mteb-2.1.1.dist-info}/entry_points.txt +0 -0
  155. {mteb-2.0.5.dist-info → mteb-2.1.1.dist-info}/licenses/LICENSE +0 -0
  156. {mteb-2.0.5.dist-info → mteb-2.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,51 @@
1
+ from mteb.abstasks.clustering import AbsTaskClustering
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class VABBClusteringS2S(AbsTaskClustering):
6
+ max_fraction_of_documents_to_embed = 1.0
7
+ metadata = TaskMetadata(
8
+ name="VABBClusteringS2S",
9
+ dataset={
10
+ "path": "clips/mteb-nl-vabb-cls",
11
+ "revision": "544acc2e46909eab2b49962b043a18b9c9772770",
12
+ },
13
+ description="This dataset contains the fourteenth edition of the Flemish Academic Bibliography for the Social "
14
+ "Sciences and Humanities (VABB-SHW), a database of academic publications from the social sciences "
15
+ "and humanities authored by researchers affiliated to Flemish universities (more information). "
16
+ "Publications in the database are used as one of the parameters of the Flemish performance-based "
17
+ "research funding system",
18
+ reference="https://zenodo.org/records/14214806",
19
+ type="Clustering",
20
+ category="t2c",
21
+ modalities=["text"],
22
+ eval_splits=["test"],
23
+ eval_langs=["nld-Latn"],
24
+ main_score="v_measure",
25
+ date=("2009-11-01", "2010-01-01"),
26
+ domains=["Academic", "Written"],
27
+ task_subtypes=[],
28
+ license="cc-by-nc-sa-4.0",
29
+ annotations_creators="derived",
30
+ dialect=[],
31
+ sample_creation="found",
32
+ bibtex_citation=r"""
33
+ @dataset{aspeslagh2024vabb,
34
+ author = {Aspeslagh, Pieter and Guns, Raf and Engels, Tim C. E.},
35
+ doi = {10.5281/zenodo.14214806},
36
+ publisher = {Zenodo},
37
+ title = {VABB-SHW: Dataset of Flemish Academic Bibliography for the Social Sciences and Humanities (edition 14)},
38
+ url = {https://doi.org/10.5281/zenodo.14214806},
39
+ year = {2024},
40
+ }
41
+ """,
42
+ )
43
+
44
+ def dataset_transform(self):
45
+ for split in self.dataset:
46
+ self.dataset[split] = self.dataset[split].rename_columns(
47
+ {"title": "sentences"}
48
+ )
49
+ self.dataset[split] = self.dataset[split].map(
50
+ lambda ex: {"labels": ex["org_discipline"]}
51
+ )
@@ -3,6 +3,7 @@ from .ita import *
3
3
  from .kor import *
4
4
  from .mlt import *
5
5
  from .multilingual import *
6
+ from .nld import *
6
7
  from .por import *
7
8
  from .rus import *
8
9
  from .swe import *
@@ -0,0 +1,9 @@
1
+ from .covid_disinformation_nl_multi_label_classification import (
2
+ CovidDisinformationNLMultiLabelClassification,
3
+ )
4
+ from .vabb_multi_label_classification import VABBMultiLabelClassification
5
+
6
+ __all__ = [
7
+ "CovidDisinformationNLMultiLabelClassification",
8
+ "VABBMultiLabelClassification",
9
+ ]
@@ -0,0 +1,88 @@
1
+ from mteb.abstasks.multilabel_classification import (
2
+ AbsTaskMultilabelClassification,
3
+ )
4
+ from mteb.abstasks.task_metadata import TaskMetadata
5
+
6
+
7
+ class CovidDisinformationNLMultiLabelClassification(AbsTaskMultilabelClassification):
8
+ metadata = TaskMetadata(
9
+ name="CovidDisinformationNLMultiLabelClassification",
10
+ dataset={
11
+ "path": "clips/mteb-nl-COVID-19-disinformation",
12
+ "revision": "7ad922bdef875db1f530847c6ffff05fc154f2e8",
13
+ },
14
+ description="The dataset is curated to address questions of interest to journalists, fact-checkers, "
15
+ "social media platforms, policymakers, and the general public.",
16
+ reference="https://aclanthology.org/2021.findings-emnlp.56.pdf",
17
+ type="MultilabelClassification",
18
+ category="t2c",
19
+ modalities=["text"],
20
+ eval_splits=["test"],
21
+ eval_langs=["nld-Latn"],
22
+ main_score="f1",
23
+ date=("2020-01-01", "2021-04-01"),
24
+ domains=["Web", "Social", "Written"],
25
+ task_subtypes=[],
26
+ license="cc-by-4.0",
27
+ annotations_creators="human-annotated",
28
+ dialect=[],
29
+ sample_creation="found",
30
+ bibtex_citation=r"""
31
+ @inproceedings{alam-etal-2021-fighting-covid,
32
+ address = {Punta Cana, Dominican Republic},
33
+ author = {Alam, Firoj and
34
+ Shaar, Shaden and
35
+ Dalvi, Fahim and
36
+ Sajjad, Hassan and
37
+ Nikolov, Alex and
38
+ Mubarak, Hamdy and
39
+ Da San Martino, Giovanni and
40
+ Abdelali, Ahmed and
41
+ Durrani, Nadir and
42
+ Darwish, Kareem and
43
+ Al-Homaid, Abdulaziz and
44
+ Zaghouani, Wajdi and
45
+ Caselli, Tommaso and
46
+ Danoe, Gijs and
47
+ Stolk, Friso and
48
+ Bruntink, Britt and
49
+ Nakov, Preslav},
50
+ booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2021},
51
+ doi = {10.18653/v1/2021.findings-emnlp.56},
52
+ editor = {Moens, Marie-Francine and
53
+ Huang, Xuanjing and
54
+ Specia, Lucia and
55
+ Yih, Scott Wen-tau},
56
+ month = nov,
57
+ pages = {611--649},
58
+ publisher = {Association for Computational Linguistics},
59
+ title = {Fighting the {COVID}-19 Infodemic: Modeling the Perspective of Journalists, Fact-Checkers, Social Media Platforms, Policy Makers, and the Society},
60
+ url = {https://aclanthology.org/2021.findings-emnlp.56/},
61
+ year = {2021},
62
+ }
63
+ """,
64
+ )
65
+
66
+ def dataset_transform(self) -> None:
67
+ labels = [
68
+ "q2_label",
69
+ "q3_label",
70
+ "q4_label",
71
+ "q5_label",
72
+ "q6_label",
73
+ "q7_label",
74
+ ]
75
+ _dataset = {}
76
+
77
+ def map_labels(example):
78
+ ml_labels = []
79
+ for i, label in enumerate(labels):
80
+ if example[label] == "yes":
81
+ ml_labels.append(i)
82
+ return {"label": ml_labels}
83
+
84
+ for split in self.dataset:
85
+ self.dataset[split] = self.dataset[split].filter(
86
+ lambda ex: ex["q1_label"] == "yes"
87
+ )
88
+ self.dataset[split] = self.dataset[split].map(map_labels)
@@ -0,0 +1,44 @@
1
+ from mteb.abstasks.multilabel_classification import (
2
+ AbsTaskMultilabelClassification,
3
+ )
4
+ from mteb.abstasks.task_metadata import TaskMetadata
5
+
6
+
7
+ class VABBMultiLabelClassification(AbsTaskMultilabelClassification):
8
+ samples_per_label = 128
9
+ metadata = TaskMetadata(
10
+ name="VABBMultiLabelClassification",
11
+ dataset={
12
+ "path": "clips/mteb-nl-vabb-mlcls-pr",
13
+ "revision": "584c70f5104671772119f21e9f8a3c912ac07d4a",
14
+ },
15
+ description="This dataset contains the fourteenth edition of the Flemish Academic Bibliography for the Social "
16
+ "Sciences and Humanities (VABB-SHW), a database of academic publications from the social sciences "
17
+ "and humanities authored by researchers affiliated to Flemish universities (more information). "
18
+ "Publications in the database are used as one of the parameters of the Flemish performance-based "
19
+ "research funding system",
20
+ reference="https://zenodo.org/records/14214806",
21
+ type="MultilabelClassification",
22
+ category="t2c",
23
+ modalities=["text"],
24
+ eval_splits=["test"],
25
+ eval_langs=["nld-Latn"],
26
+ main_score="f1",
27
+ date=("2020-01-01", "2021-04-01"),
28
+ domains=["Academic", "Written"],
29
+ task_subtypes=[],
30
+ license="cc-by-4.0",
31
+ annotations_creators="human-annotated",
32
+ dialect=[],
33
+ sample_creation="found",
34
+ bibtex_citation=r"""
35
+ @dataset{aspeslagh2024vabb,
36
+ author = {Aspeslagh, Pieter and Guns, Raf and Engels, Tim C. E.},
37
+ doi = {10.5281/zenodo.14214806},
38
+ publisher = {Zenodo},
39
+ title = {VABB-SHW: Dataset of Flemish Academic Bibliography for the Social Sciences and Humanities (edition 14)},
40
+ url = {https://doi.org/10.5281/zenodo.14214806},
41
+ year = {2024},
42
+ }
43
+ """,
44
+ )
@@ -9,6 +9,7 @@ from .ind import *
9
9
  from .ita import *
10
10
  from .kor import *
11
11
  from .multilingual import *
12
+ from .nld import *
12
13
  from .pol import *
13
14
  from .por import *
14
15
  from .rus import *
@@ -23,14 +23,15 @@ class IndicXnliPairClassification(AbsTaskPairClassification):
23
23
  "path": "mteb/IndicXnliPairClassification",
24
24
  "revision": "027e97b9afe84ea3447b57b7705b8864bb2b3a83",
25
25
  },
26
- description="""INDICXNLI is similar to existing XNLI dataset in shape/form, but
27
- focusses on Indic language family.
28
- The train (392,702), validation (2,490), and evaluation sets (5,010) of English
29
- XNLI were translated from English into each of the eleven Indic languages. IndicTrans
30
- is a large Transformer-based sequence to sequence model. It is trained on Samanantar
31
- dataset (Ramesh et al., 2021), which is the largest parallel multi- lingual corpus
32
- over eleven Indic languages.
33
- """,
26
+ description=(
27
+ "INDICXNLI is similar to existing XNLI dataset in shape/form, but "
28
+ "focuses on Indic language family. "
29
+ "The train (392,702), validation (2,490), and evaluation sets (5,010) of English "
30
+ "XNLI were translated from English into each of the eleven Indic languages. IndicTrans "
31
+ "is a large Transformer-based sequence to sequence model. It is trained on Samanantar "
32
+ "dataset (Ramesh et al., 2021), which is the largest parallel multi- lingual corpus "
33
+ "over eleven Indic languages."
34
+ ),
34
35
  reference="https://gem-benchmark.com/data_cards/opusparcus",
35
36
  category="t2t",
36
37
  modalities=["text"],
@@ -0,0 +1,7 @@
1
+ from .sick_nl_pair_classification import SICKNLPairClassification
2
+ from .xlwic_nl_pair_classification import XLWICNLPairClassification
3
+
4
+ __all__ = [
5
+ "SICKNLPairClassification",
6
+ "XLWICNLPairClassification",
7
+ ]
@@ -0,0 +1,36 @@
1
+ from mteb.abstasks.pair_classification import AbsTaskPairClassification
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class SICKNLPairClassification(AbsTaskPairClassification):
6
+ metadata = TaskMetadata(
7
+ name="SICKNLPairClassification",
8
+ dataset={
9
+ "path": "clips/mteb-nl-sick-pcls-pr",
10
+ "revision": "a13a1892bcb4c077dc416d390389223eea5f20f0",
11
+ },
12
+ description="SICK-NL is a Dutch translation of SICK ",
13
+ reference="https://aclanthology.org/2021.eacl-main.126/",
14
+ type="PairClassification",
15
+ category="t2t",
16
+ modalities=["text"],
17
+ eval_splits=["test"],
18
+ eval_langs=["nld-Latn"],
19
+ main_score="max_ap",
20
+ date=("2020-09-01", "2021-01-01"),
21
+ domains=["Web", "Written"],
22
+ task_subtypes=[],
23
+ license="mit",
24
+ annotations_creators="human-annotated",
25
+ dialect=[],
26
+ sample_creation="machine-translated and verified",
27
+ bibtex_citation=r"""
28
+ @inproceedings{wijnholds2021sick,
29
+ author = {Wijnholds, Gijs and Moortgat, Michael},
30
+ booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume},
31
+ pages = {1474--1479},
32
+ title = {SICK-NL: A Dataset for Dutch Natural Language Inference},
33
+ year = {2021},
34
+ }
35
+ """,
36
+ )
@@ -0,0 +1,41 @@
1
+ from mteb.abstasks.pair_classification import AbsTaskPairClassification
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class XLWICNLPairClassification(AbsTaskPairClassification):
6
+ metadata = TaskMetadata(
7
+ name="XLWICNLPairClassification",
8
+ description="The Word-in-Context dataset (WiC) addresses the dependence on sense inventories by reformulating "
9
+ "the standard disambiguation task as a binary classification problem; but, it is limited to the "
10
+ "English language. We put forward a large multilingual benchmark, XL-WiC, featuring gold standards "
11
+ "in 12 new languages from varied language families and with different degrees of resource "
12
+ "availability, opening room for evaluation scenarios such as zero-shot cross-lingual transfer. ",
13
+ reference="https://aclanthology.org/2020.emnlp-main.584.pdf",
14
+ dataset={
15
+ "path": "clips/mteb-nl-xlwic",
16
+ "revision": "0b33ce358b1b5d500ff3715ba3d777b4d2c21cb0",
17
+ },
18
+ type="PairClassification",
19
+ category="t2t",
20
+ modalities=["text"],
21
+ date=("2019-10-04", "2019-10-04"),
22
+ eval_splits=["test"],
23
+ eval_langs=["nld-Latn"],
24
+ main_score="max_ap",
25
+ domains=["Written"],
26
+ task_subtypes=[],
27
+ license="cc-by-nc-sa-4.0",
28
+ annotations_creators="derived",
29
+ dialect=[],
30
+ sample_creation="created",
31
+ bibtex_citation=r"""
32
+ @inproceedings{raganato2020xl,
33
+ author = {Raganato, A and Pasini, T and Camacho-Collados, J and Pilehvar, M and others},
34
+ booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
35
+ organization = {Association for Computational Linguistics (ACL)},
36
+ pages = {7193--7206},
37
+ title = {XL-WiC: A multilingual benchmark for evaluating semantic contextualization},
38
+ year = {2020},
39
+ }
40
+ """,
41
+ )
@@ -60,9 +60,9 @@ class CodeRAGProgrammingSolutionsRetrieval(AbsTaskRetrieval):
60
60
  self.data_loaded = True
61
61
 
62
62
  def dataset_transform(self) -> None:
63
- """And transform to a retrieval datset, which have the following attributes
63
+ """And transform to a retrieval dataset, which have the following attributes
64
64
 
65
- self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document datas like title and text
65
+ self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
66
66
  self.queries = Dict[query_id, str] #id => query
67
67
  self.relevant_docs = Dict[query_id, Dict[[doc_id, score]]
68
68
  """
@@ -117,9 +117,9 @@ class CodeRAGOnlineTutorialsRetrieval(AbsTaskRetrieval):
117
117
  self.data_loaded = True
118
118
 
119
119
  def dataset_transform(self) -> None:
120
- """And transform to a retrieval datset, which have the following attributes
120
+ """And transform to a retrieval dataset, which have the following attributes
121
121
 
122
- self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document datas like title and text
122
+ self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
123
123
  self.queries = Dict[query_id, str] #id => query
124
124
  self.relevant_docs = Dict[query_id, Dict[[doc_id, score]]
125
125
  """
@@ -177,9 +177,9 @@ class CodeRAGLibraryDocumentationSolutionsRetrieval(AbsTaskRetrieval):
177
177
  self.data_loaded = True
178
178
 
179
179
  def dataset_transform(self) -> None:
180
- """And transform to a retrieval datset, which have the following attributes
180
+ """And transform to a retrieval dataset, which have the following attributes
181
181
 
182
- self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document datas like title and text
182
+ self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
183
183
  self.queries = Dict[query_id, str] #id => query
184
184
  self.relevant_docs = Dict[query_id, Dict[[doc_id, score]]
185
185
  """
@@ -234,9 +234,9 @@ class CodeRAGStackoverflowPostsRetrieval(AbsTaskRetrieval):
234
234
  self.data_loaded = True
235
235
 
236
236
  def dataset_transform(self) -> None:
237
- """And transform to a retrieval datset, which have the following attributes
237
+ """And transform to a retrieval dataset, which have the following attributes
238
238
 
239
- self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document datas like title and text
239
+ self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
240
240
  self.queries = Dict[query_id, str] #id => query
241
241
  self.relevant_docs = Dict[query_id, Dict[[doc_id, score]]
242
242
  """
@@ -56,7 +56,7 @@ Derczynski, Leon},
56
56
  self.data_loaded = True
57
57
 
58
58
  def dataset_transform(self) -> None:
59
- """And transform to a retrieval datset, which have the following attributes
59
+ """And transform to a retrieval dataset, which have the following attributes
60
60
 
61
61
  self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
62
62
  self.queries = dict[query_id, str] #id => query
@@ -69,9 +69,9 @@ Piperidis, Stelios},
69
69
  self.data_loaded = True
70
70
 
71
71
  def dataset_transform(self) -> None:
72
- """And transform to a retrieval datset, which have the following attributes
72
+ """And transform to a retrieval dataset, which have the following attributes
73
73
 
74
- self.corpus = dict[doc_id, dict[str, str]] #id => dict with document datas like title and text
74
+ self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
75
75
  self.queries = dict[query_id, str] #id => query
76
76
  self.relevant_docs = dict[query_id, dict[[doc_id, score]]
77
77
  """
@@ -45,9 +45,9 @@ class TwitterHjerneRetrieval(AbsTaskRetrieval):
45
45
  self.data_loaded = True
46
46
 
47
47
  def dataset_transform(self) -> None:
48
- """And transform to a retrieval datset, which have the following attributes
48
+ """And transform to a retrieval dataset, which have the following attributes
49
49
 
50
- self.corpus = dict[doc_id, dict[str, str]] #id => dict with document datas like title and text
50
+ self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
51
51
  self.queries = dict[query_id, str] #id => query
52
52
  self.relevant_docs = dict[query_id, dict[[doc_id, score]]
53
53
  """
@@ -22,6 +22,7 @@ from .cirr_it2i_retrieval import CIRRIT2IRetrieval
22
22
  from .climate_fever_retrieval import (
23
23
  ClimateFEVER,
24
24
  ClimateFEVERHardNegatives,
25
+ ClimateFEVERHardNegativesV2,
25
26
  ClimateFEVERRetrievalv2,
26
27
  )
27
28
  from .cqa_dupstack_android_retrieval import CQADupstackAndroidRetrieval
@@ -57,7 +58,7 @@ from .dapfam_patent_retrieval import (
57
58
  DAPFAMOutTitlAbsToTitlAbsClmRetrieval,
58
59
  DAPFAMOutTitlAbsToTitlAbsRetrieval,
59
60
  )
60
- from .dbpedia_retrieval import DBPedia, DBPediaHardNegatives
61
+ from .dbpedia_retrieval import DBPedia, DBPediaHardNegatives, DBPediaHardNegativesV2
61
62
  from .edis_t2it_retrieval import EDIST2ITRetrieval
62
63
  from .encyclopedia_vqa_it2it_retrieval import EncyclopediaVQAIT2ITRetrieval
63
64
  from .english_finance1_retrieval import EnglishFinance1Retrieval
@@ -70,7 +71,7 @@ from .fashion200k_i2t_retrieval import Fashion200kI2TRetrieval
70
71
  from .fashion200k_t2i_retrieval import Fashion200kT2IRetrieval
71
72
  from .fashion_iq_it2i_retrieval import FashionIQIT2IRetrieval
72
73
  from .feedback_qa_retrieval import FeedbackQARetrieval
73
- from .fever_retrieval import FEVER, FEVERHardNegatives
74
+ from .fever_retrieval import FEVER, FEVERHardNegatives, FEVERHardNegativesV2
74
75
  from .fi_qa2018_retrieval import FiQA2018
75
76
  from .fin_qa_retrieval import FinQARetrieval
76
77
  from .finance_bench_retrieval import FinanceBenchRetrieval
@@ -85,7 +86,11 @@ from .hateful_memes_i2t_retrieval import HatefulMemesI2TRetrieval
85
86
  from .hateful_memes_t2i_retrieval import HatefulMemesT2IRetrieval
86
87
  from .hc3_finance_retrieval import HC3FinanceRetrieval
87
88
  from .hella_swag_retrieval import HellaSwag
88
- from .hotpot_qa_retrieval import HotpotQA, HotpotQAHardNegatives
89
+ from .hotpot_qa_retrieval import (
90
+ HotpotQA,
91
+ HotpotQAHardNegatives,
92
+ HotpotQAHardNegativesV2,
93
+ )
89
94
  from .image_co_de_t2i_retrieval import ImageCoDeT2IRetrieval
90
95
  from .info_seek_it2it_retrieval import InfoSeekIT2ITRetrieval
91
96
  from .info_seek_it2t_retrieval import InfoSeekIT2TRetrieval
@@ -133,7 +138,11 @@ from .oven_it2it_retrieval import OVENIT2ITRetrieval
133
138
  from .oven_it2t_retrieval import OVENIT2TRetrieval
134
139
  from .piqa_retrieval import PIQA
135
140
  from .quail_retrieval import Quail
136
- from .quora_retrieval import QuoraRetrieval, QuoraRetrievalHardNegatives
141
+ from .quora_retrieval import (
142
+ QuoraRetrieval,
143
+ QuoraRetrievalHardNegatives,
144
+ QuoraRetrievalHardNegativesV2,
145
+ )
137
146
  from .r2_med_retrieval import (
138
147
  R2MEDBioinformaticsRetrieval,
139
148
  R2MEDBiologyRetrieval,
@@ -247,6 +256,7 @@ __all__ = [
247
256
  "ChemNQRetrieval",
248
257
  "ClimateFEVER",
249
258
  "ClimateFEVERHardNegatives",
259
+ "ClimateFEVERHardNegativesV2",
250
260
  "ClimateFEVERRetrievalv2",
251
261
  "DAPFAMAllTitlAbsClmToFullTextRetrieval",
252
262
  "DAPFAMAllTitlAbsClmToTitlAbsClmRetrieval",
@@ -268,6 +278,7 @@ __all__ = [
268
278
  "DAPFAMOutTitlAbsToTitlAbsRetrieval",
269
279
  "DBPedia",
270
280
  "DBPediaHardNegatives",
281
+ "DBPediaHardNegativesV2",
271
282
  "EDIST2ITRetrieval",
272
283
  "EncyclopediaVQAIT2ITRetrieval",
273
284
  "EnglishFinance1Retrieval",
@@ -276,6 +287,7 @@ __all__ = [
276
287
  "EnglishFinance4Retrieval",
277
288
  "EnglishHealthcare1Retrieval",
278
289
  "FEVERHardNegatives",
290
+ "FEVERHardNegativesV2",
279
291
  "FaithDialRetrieval",
280
292
  "Fashion200kI2TRetrieval",
281
293
  "Fashion200kT2IRetrieval",
@@ -296,6 +308,7 @@ __all__ = [
296
308
  "HellaSwag",
297
309
  "HotpotQA",
298
310
  "HotpotQAHardNegatives",
311
+ "HotpotQAHardNegativesV2",
299
312
  "ImageCoDeT2IRetrieval",
300
313
  "InfoSeekIT2ITRetrieval",
301
314
  "InfoSeekIT2TRetrieval",
@@ -345,6 +358,7 @@ __all__ = [
345
358
  "Quail",
346
359
  "QuoraRetrieval",
347
360
  "QuoraRetrievalHardNegatives",
361
+ "QuoraRetrievalHardNegativesV2",
348
362
  "R2MEDBioinformaticsRetrieval",
349
363
  "R2MEDBiologyRetrieval",
350
364
  "R2MEDIIYiClinicalRetrieval",