mteb 2.0.5__py3-none-any.whl → 2.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +10 -1
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +75 -0
- mteb/descriptive_stats/Classification/DutchColaClassification.json +54 -0
- mteb/descriptive_stats/Classification/DutchGovernmentBiasClassification.json +54 -0
- mteb/descriptive_stats/Classification/DutchNewsArticlesClassification.json +90 -0
- mteb/descriptive_stats/Classification/DutchSarcasticHeadlinesClassification.json +54 -0
- mteb/descriptive_stats/Classification/IconclassClassification.json +96 -0
- mteb/descriptive_stats/Classification/OpenTenderClassification.json +222 -0
- mteb/descriptive_stats/Classification/VaccinChatNLClassification.json +1068 -0
- mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringP2P.json +45 -0
- mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringS2S.json +45 -0
- mteb/descriptive_stats/Clustering/IconclassClusteringS2S.json +48 -0
- mteb/descriptive_stats/Clustering/OpenTenderClusteringP2P.json +111 -0
- mteb/descriptive_stats/Clustering/OpenTenderClusteringS2S.json +111 -0
- mteb/descriptive_stats/Clustering/VABBClusteringP2P.json +60 -0
- mteb/descriptive_stats/Clustering/VABBClusteringS2S.json +60 -0
- mteb/descriptive_stats/MultilabelClassification/CovidDisinformationNLMultiLabelClassification.json +84 -0
- mteb/descriptive_stats/MultilabelClassification/VABBMultiLabelClassification.json +156 -0
- mteb/descriptive_stats/PairClassification/SICKNLPairClassification.json +35 -0
- mteb/descriptive_stats/PairClassification/XLWICNLPairClassification.json +35 -0
- mteb/descriptive_stats/Retrieval/DutchNewsArticlesRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/LegalQANLRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/OpenTenderRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/VABBRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/bBSARDNLRetrieval.json +30 -0
- mteb/descriptive_stats/STS/SICK-NL-STS.json +28 -0
- mteb/tasks/classification/nld/__init__.py +16 -0
- mteb/tasks/classification/nld/dutch_cola_classification.py +38 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +37 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +30 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +36 -0
- mteb/tasks/classification/nld/iconclass_classification.py +41 -0
- mteb/tasks/classification/nld/open_tender_classification.py +38 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +46 -0
- mteb/tasks/clustering/__init__.py +1 -0
- mteb/tasks/clustering/nld/__init__.py +17 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +37 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +37 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +47 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +51 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +41 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +51 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +51 -0
- mteb/tasks/multilabel_classification/__init__.py +1 -0
- mteb/tasks/multilabel_classification/nld/__init__.py +9 -0
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +88 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +44 -0
- mteb/tasks/pair_classification/__init__.py +1 -0
- mteb/tasks/pair_classification/nld/__init__.py +7 -0
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +36 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +41 -0
- mteb/tasks/retrieval/nld/__init__.py +10 -0
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +41 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +30 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +39 -0
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +38 -0
- mteb/tasks/retrieval/nld/vabb_retrieval.py +41 -0
- mteb/tasks/sts/__init__.py +1 -0
- mteb/tasks/sts/nld/__init__.py +5 -0
- mteb/tasks/sts/nld/sick_nl_sts.py +41 -0
- {mteb-2.0.5.dist-info → mteb-2.1.0.dist-info}/METADATA +2 -204
- {mteb-2.0.5.dist-info → mteb-2.1.0.dist-info}/RECORD +67 -15
- {mteb-2.0.5.dist-info → mteb-2.1.0.dist-info}/WHEEL +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.0.dist-info}/entry_points.txt +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.0.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,156 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 3235,
|
|
4
|
+
"number_texts_intersect_with_train": 2265,
|
|
5
|
+
"text_statistics": {
|
|
6
|
+
"total_text_length": 2927178,
|
|
7
|
+
"min_text_length": 47,
|
|
8
|
+
"average_text_length": 904.8463678516229,
|
|
9
|
+
"max_text_length": 35167,
|
|
10
|
+
"unique_texts": 3235
|
|
11
|
+
},
|
|
12
|
+
"image_statistics": null,
|
|
13
|
+
"label_statistics": {
|
|
14
|
+
"min_labels_per_text": 1,
|
|
15
|
+
"average_label_per_text": 1.8593508500772797,
|
|
16
|
+
"max_labels_per_text": 8,
|
|
17
|
+
"unique_labels": 19,
|
|
18
|
+
"labels": {
|
|
19
|
+
"Social Sciences (General)": {
|
|
20
|
+
"count": 472
|
|
21
|
+
},
|
|
22
|
+
"Sociology": {
|
|
23
|
+
"count": 366
|
|
24
|
+
},
|
|
25
|
+
"Other Disciplines": {
|
|
26
|
+
"count": 557
|
|
27
|
+
},
|
|
28
|
+
"Educational Sciences": {
|
|
29
|
+
"count": 302
|
|
30
|
+
},
|
|
31
|
+
"Economics & Business": {
|
|
32
|
+
"count": 393
|
|
33
|
+
},
|
|
34
|
+
"Social Health Sciences": {
|
|
35
|
+
"count": 255
|
|
36
|
+
},
|
|
37
|
+
"Political Sciences": {
|
|
38
|
+
"count": 201
|
|
39
|
+
},
|
|
40
|
+
"Communication Studies": {
|
|
41
|
+
"count": 155
|
|
42
|
+
},
|
|
43
|
+
"History": {
|
|
44
|
+
"count": 287
|
|
45
|
+
},
|
|
46
|
+
"Humanities (General)": {
|
|
47
|
+
"count": 398
|
|
48
|
+
},
|
|
49
|
+
"Law": {
|
|
50
|
+
"count": 999
|
|
51
|
+
},
|
|
52
|
+
"Philosophy": {
|
|
53
|
+
"count": 233
|
|
54
|
+
},
|
|
55
|
+
"Art History": {
|
|
56
|
+
"count": 349
|
|
57
|
+
},
|
|
58
|
+
"Theology": {
|
|
59
|
+
"count": 58
|
|
60
|
+
},
|
|
61
|
+
"Psychology": {
|
|
62
|
+
"count": 174
|
|
63
|
+
},
|
|
64
|
+
"Criminology": {
|
|
65
|
+
"count": 284
|
|
66
|
+
},
|
|
67
|
+
"Linguistics": {
|
|
68
|
+
"count": 254
|
|
69
|
+
},
|
|
70
|
+
"Literature": {
|
|
71
|
+
"count": 140
|
|
72
|
+
},
|
|
73
|
+
"Archaeology": {
|
|
74
|
+
"count": 138
|
|
75
|
+
}
|
|
76
|
+
}
|
|
77
|
+
}
|
|
78
|
+
},
|
|
79
|
+
"train": {
|
|
80
|
+
"num_samples": 6471,
|
|
81
|
+
"number_texts_intersect_with_train": null,
|
|
82
|
+
"text_statistics": {
|
|
83
|
+
"total_text_length": 5847151,
|
|
84
|
+
"min_text_length": 38,
|
|
85
|
+
"average_text_length": 903.5931077113274,
|
|
86
|
+
"max_text_length": 35167,
|
|
87
|
+
"unique_texts": 6471
|
|
88
|
+
},
|
|
89
|
+
"image_statistics": null,
|
|
90
|
+
"label_statistics": {
|
|
91
|
+
"min_labels_per_text": 1,
|
|
92
|
+
"average_label_per_text": 1.8822438572090867,
|
|
93
|
+
"max_labels_per_text": 11,
|
|
94
|
+
"unique_labels": 19,
|
|
95
|
+
"labels": {
|
|
96
|
+
"Social Sciences (General)": {
|
|
97
|
+
"count": 1021
|
|
98
|
+
},
|
|
99
|
+
"Sociology": {
|
|
100
|
+
"count": 660
|
|
101
|
+
},
|
|
102
|
+
"Other Disciplines": {
|
|
103
|
+
"count": 1124
|
|
104
|
+
},
|
|
105
|
+
"Educational Sciences": {
|
|
106
|
+
"count": 541
|
|
107
|
+
},
|
|
108
|
+
"Economics & Business": {
|
|
109
|
+
"count": 756
|
|
110
|
+
},
|
|
111
|
+
"Linguistics": {
|
|
112
|
+
"count": 501
|
|
113
|
+
},
|
|
114
|
+
"Humanities (General)": {
|
|
115
|
+
"count": 995
|
|
116
|
+
},
|
|
117
|
+
"Political Sciences": {
|
|
118
|
+
"count": 380
|
|
119
|
+
},
|
|
120
|
+
"Communication Studies": {
|
|
121
|
+
"count": 327
|
|
122
|
+
},
|
|
123
|
+
"Psychology": {
|
|
124
|
+
"count": 375
|
|
125
|
+
},
|
|
126
|
+
"Philosophy": {
|
|
127
|
+
"count": 434
|
|
128
|
+
},
|
|
129
|
+
"Art History": {
|
|
130
|
+
"count": 703
|
|
131
|
+
},
|
|
132
|
+
"History": {
|
|
133
|
+
"count": 522
|
|
134
|
+
},
|
|
135
|
+
"Law": {
|
|
136
|
+
"count": 2150
|
|
137
|
+
},
|
|
138
|
+
"Theology": {
|
|
139
|
+
"count": 116
|
|
140
|
+
},
|
|
141
|
+
"Social Health Sciences": {
|
|
142
|
+
"count": 489
|
|
143
|
+
},
|
|
144
|
+
"Criminology": {
|
|
145
|
+
"count": 576
|
|
146
|
+
},
|
|
147
|
+
"Literature": {
|
|
148
|
+
"count": 275
|
|
149
|
+
},
|
|
150
|
+
"Archaeology": {
|
|
151
|
+
"count": 235
|
|
152
|
+
}
|
|
153
|
+
}
|
|
154
|
+
}
|
|
155
|
+
}
|
|
156
|
+
}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 2115,
|
|
4
|
+
"number_of_characters": 194569,
|
|
5
|
+
"unique_pairs": 2115,
|
|
6
|
+
"text1_statistics": {
|
|
7
|
+
"total_text_length": 100505,
|
|
8
|
+
"min_text_length": 10,
|
|
9
|
+
"average_text_length": 47.520094562647756,
|
|
10
|
+
"max_text_length": 158,
|
|
11
|
+
"unique_texts": 1769
|
|
12
|
+
},
|
|
13
|
+
"text2_statistics": {
|
|
14
|
+
"total_text_length": 94064,
|
|
15
|
+
"min_text_length": 10,
|
|
16
|
+
"average_text_length": 44.47470449172577,
|
|
17
|
+
"max_text_length": 158,
|
|
18
|
+
"unique_texts": 1738
|
|
19
|
+
},
|
|
20
|
+
"labels_statistics": {
|
|
21
|
+
"min_labels_per_text": 1,
|
|
22
|
+
"average_label_per_text": 1.0,
|
|
23
|
+
"max_labels_per_text": 1,
|
|
24
|
+
"unique_labels": 2,
|
|
25
|
+
"labels": {
|
|
26
|
+
"1": {
|
|
27
|
+
"count": 1404
|
|
28
|
+
},
|
|
29
|
+
"0": {
|
|
30
|
+
"count": 711
|
|
31
|
+
}
|
|
32
|
+
}
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 1004,
|
|
4
|
+
"number_of_characters": 103768,
|
|
5
|
+
"unique_pairs": 1004,
|
|
6
|
+
"text1_statistics": {
|
|
7
|
+
"total_text_length": 52390,
|
|
8
|
+
"min_text_length": 15,
|
|
9
|
+
"average_text_length": 52.18127490039841,
|
|
10
|
+
"max_text_length": 139,
|
|
11
|
+
"unique_texts": 851
|
|
12
|
+
},
|
|
13
|
+
"text2_statistics": {
|
|
14
|
+
"total_text_length": 51378,
|
|
15
|
+
"min_text_length": 9,
|
|
16
|
+
"average_text_length": 51.17330677290837,
|
|
17
|
+
"max_text_length": 131,
|
|
18
|
+
"unique_texts": 863
|
|
19
|
+
},
|
|
20
|
+
"labels_statistics": {
|
|
21
|
+
"min_labels_per_text": 1,
|
|
22
|
+
"average_label_per_text": 1.0,
|
|
23
|
+
"max_labels_per_text": 1,
|
|
24
|
+
"unique_labels": 2,
|
|
25
|
+
"labels": {
|
|
26
|
+
"1": {
|
|
27
|
+
"count": 502
|
|
28
|
+
},
|
|
29
|
+
"0": {
|
|
30
|
+
"count": 502
|
|
31
|
+
}
|
|
32
|
+
}
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 256524,
|
|
4
|
+
"number_of_characters": 415016602,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 414968472,
|
|
7
|
+
"min_text_length": 0,
|
|
8
|
+
"average_text_length": 1623.9902005291087,
|
|
9
|
+
"max_text_length": 29368,
|
|
10
|
+
"unique_texts": 255216
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 48130,
|
|
15
|
+
"min_text_length": 11,
|
|
16
|
+
"average_text_length": 48.13,
|
|
17
|
+
"max_text_length": 110,
|
|
18
|
+
"unique_texts": 1000
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 1000,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 1,
|
|
26
|
+
"unique_relevant_docs": 1000
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 30905,
|
|
4
|
+
"number_of_characters": 20629665,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 20619027,
|
|
7
|
+
"min_text_length": 41,
|
|
8
|
+
"average_text_length": 669.3837288575788,
|
|
9
|
+
"max_text_length": 1716,
|
|
10
|
+
"unique_texts": 30172
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 10638,
|
|
15
|
+
"min_text_length": 27,
|
|
16
|
+
"average_text_length": 104.29411764705883,
|
|
17
|
+
"max_text_length": 369,
|
|
18
|
+
"unique_texts": 102
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 157,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.5392156862745099,
|
|
25
|
+
"max_relevant_docs_per_query": 8,
|
|
26
|
+
"unique_relevant_docs": 148
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 138633,
|
|
4
|
+
"number_of_characters": 59639635,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 59576581,
|
|
7
|
+
"min_text_length": 2,
|
|
8
|
+
"average_text_length": 432.86552643624714,
|
|
9
|
+
"max_text_length": 16782,
|
|
10
|
+
"unique_texts": 122413
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 63054,
|
|
15
|
+
"min_text_length": 9,
|
|
16
|
+
"average_text_length": 63.054,
|
|
17
|
+
"max_text_length": 286,
|
|
18
|
+
"unique_texts": 992
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 1000,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 1,
|
|
26
|
+
"unique_relevant_docs": 1000
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 10318,
|
|
4
|
+
"number_of_characters": 7839416,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 7765564,
|
|
7
|
+
"min_text_length": 9,
|
|
8
|
+
"average_text_length": 833.393861343636,
|
|
9
|
+
"max_text_length": 35146,
|
|
10
|
+
"unique_texts": 9123
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 73852,
|
|
15
|
+
"min_text_length": 7,
|
|
16
|
+
"average_text_length": 73.852,
|
|
17
|
+
"max_text_length": 258,
|
|
18
|
+
"unique_texts": 999
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 1000,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 1,
|
|
26
|
+
"unique_relevant_docs": 1000
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 22637,
|
|
4
|
+
"number_of_characters": 21218611,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 21197901,
|
|
7
|
+
"min_text_length": 7,
|
|
8
|
+
"average_text_length": 945.7015837608744,
|
|
9
|
+
"max_text_length": 37834,
|
|
10
|
+
"unique_texts": 22415
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 20710,
|
|
15
|
+
"min_text_length": 22,
|
|
16
|
+
"average_text_length": 93.28828828828829,
|
|
17
|
+
"max_text_length": 250,
|
|
18
|
+
"unique_texts": 222
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 1059,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 4.77027027027027,
|
|
25
|
+
"max_relevant_docs_per_query": 57,
|
|
26
|
+
"unique_relevant_docs": 491
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 4902,
|
|
4
|
+
"number_of_characters": 463327,
|
|
5
|
+
"unique_pairs": 4902,
|
|
6
|
+
"text1_statistics": {
|
|
7
|
+
"total_text_length": 233941,
|
|
8
|
+
"min_text_length": 10,
|
|
9
|
+
"average_text_length": 47.72358221134231,
|
|
10
|
+
"max_text_length": 158,
|
|
11
|
+
"unique_texts": 3378
|
|
12
|
+
},
|
|
13
|
+
"text2_statistics": {
|
|
14
|
+
"total_text_length": 229386,
|
|
15
|
+
"min_text_length": 10,
|
|
16
|
+
"average_text_length": 46.79436964504284,
|
|
17
|
+
"max_text_length": 158,
|
|
18
|
+
"unique_texts": 3327
|
|
19
|
+
},
|
|
20
|
+
"image1_statistics": null,
|
|
21
|
+
"image2_statistics": null,
|
|
22
|
+
"label_statistics": {
|
|
23
|
+
"min_score": 1.0,
|
|
24
|
+
"avg_score": 3.528012039368932,
|
|
25
|
+
"max_score": 5.0
|
|
26
|
+
}
|
|
27
|
+
}
|
|
28
|
+
}
|
|
@@ -2,8 +2,24 @@ from .dutch_book_review_sentiment_classification import (
|
|
|
2
2
|
DutchBookReviewSentimentClassification,
|
|
3
3
|
DutchBookReviewSentimentClassificationV2,
|
|
4
4
|
)
|
|
5
|
+
from .dutch_cola_classification import DutchColaClassification
|
|
6
|
+
from .dutch_government_bias_classification import DutchGovernmentBiasClassification
|
|
7
|
+
from .dutch_news_articles_classification import DutchNewsArticlesClassification
|
|
8
|
+
from .dutch_sarcastic_headlines_classification import (
|
|
9
|
+
DutchSarcasticHeadlinesClassification,
|
|
10
|
+
)
|
|
11
|
+
from .iconclass_classification import IconclassClassification
|
|
12
|
+
from .open_tender_classification import OpenTenderClassification
|
|
13
|
+
from .vaccin_chat_nl_classification import VaccinChatNLClassification
|
|
5
14
|
|
|
6
15
|
__all__ = [
|
|
7
16
|
"DutchBookReviewSentimentClassification",
|
|
8
17
|
"DutchBookReviewSentimentClassificationV2",
|
|
18
|
+
"DutchColaClassification",
|
|
19
|
+
"DutchGovernmentBiasClassification",
|
|
20
|
+
"DutchNewsArticlesClassification",
|
|
21
|
+
"DutchSarcasticHeadlinesClassification",
|
|
22
|
+
"IconclassClassification",
|
|
23
|
+
"OpenTenderClassification",
|
|
24
|
+
"VaccinChatNLClassification",
|
|
9
25
|
]
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class DutchColaClassification(AbsTaskClassification):
|
|
6
|
+
samples_per_label = 128
|
|
7
|
+
metadata = TaskMetadata(
|
|
8
|
+
name="DutchColaClassification",
|
|
9
|
+
description="Dutch CoLA is a corpus of linguistic acceptability for Dutch.",
|
|
10
|
+
reference="https://huggingface.co/datasets/GroNLP/dutch-cola",
|
|
11
|
+
dataset={
|
|
12
|
+
"path": "clips/mteb-nl-dutch-cola",
|
|
13
|
+
"revision": "2269ed7d95d8abaab829f1592b4b2047372e9f81",
|
|
14
|
+
},
|
|
15
|
+
type="Classification",
|
|
16
|
+
category="t2c",
|
|
17
|
+
modalities=["text"],
|
|
18
|
+
date=("2024-03-01", "2024-05-01"),
|
|
19
|
+
eval_splits=["test"],
|
|
20
|
+
eval_langs=["nld-Latn"],
|
|
21
|
+
main_score="f1",
|
|
22
|
+
domains=["Written"],
|
|
23
|
+
task_subtypes=["Linguistic acceptability"],
|
|
24
|
+
license="not specified", # specified as unknown
|
|
25
|
+
annotations_creators="expert-annotated",
|
|
26
|
+
dialect=[],
|
|
27
|
+
sample_creation="found",
|
|
28
|
+
bibtex_citation=r"""
|
|
29
|
+
@misc{gronlp_2024,
|
|
30
|
+
author = {Bylinina, Lisa and Abdi, Silvana and Brouwer, Hylke and Elzinga, Martine and Gunput, Shenza and Huisman, Sem and Krooneman, Collin and Poot, David and Top, Jelmer and Weideman, Cain},
|
|
31
|
+
doi = { 10.57967/hf/3825 },
|
|
32
|
+
publisher = { Hugging Face },
|
|
33
|
+
title = { {Dutch-CoLA (Revision 5a4196c)} },
|
|
34
|
+
url = { https://huggingface.co/datasets/GroNLP/dutch-cola },
|
|
35
|
+
year = {2024},
|
|
36
|
+
}
|
|
37
|
+
""",
|
|
38
|
+
)
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class DutchGovernmentBiasClassification(AbsTaskClassification):
|
|
6
|
+
samples_per_label = 32
|
|
7
|
+
metadata = TaskMetadata(
|
|
8
|
+
name="DutchGovernmentBiasClassification",
|
|
9
|
+
description="The Dutch Government Data for Bias Detection (DGDB) is a dataset sourced from the Dutch House of Representatives and annotated for bias by experts",
|
|
10
|
+
reference="https://dl.acm.org/doi/pdf/10.1145/3696410.3714526",
|
|
11
|
+
dataset={
|
|
12
|
+
"path": "clips/mteb-nl-dutch-government-bias-detection",
|
|
13
|
+
"revision": "bf5e20ee2d3ce2e24e4de50f5dd8573e0e0e2fec",
|
|
14
|
+
},
|
|
15
|
+
type="Classification",
|
|
16
|
+
category="t2c",
|
|
17
|
+
modalities=["text"],
|
|
18
|
+
date=("2019-10-04", "2019-10-04"),
|
|
19
|
+
eval_splits=["test"],
|
|
20
|
+
eval_langs=["nld-Latn"],
|
|
21
|
+
main_score="f1",
|
|
22
|
+
domains=["Written", "Government"],
|
|
23
|
+
task_subtypes=[],
|
|
24
|
+
license="cc-by-nc-sa-4.0",
|
|
25
|
+
annotations_creators="expert-annotated",
|
|
26
|
+
dialect=[],
|
|
27
|
+
sample_creation="found",
|
|
28
|
+
bibtex_citation=r"""
|
|
29
|
+
@inproceedings{de2025detecting,
|
|
30
|
+
author = {de Swart, Milena and Den Hengst, Floris and Chen, Jieying},
|
|
31
|
+
booktitle = {Proceedings of the ACM on Web Conference 2025},
|
|
32
|
+
pages = {5034--5044},
|
|
33
|
+
title = {Detecting Linguistic Bias in Government Documents Using Large language Models},
|
|
34
|
+
year = {2025},
|
|
35
|
+
}
|
|
36
|
+
""",
|
|
37
|
+
)
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class DutchNewsArticlesClassification(AbsTaskClassification):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="DutchNewsArticlesClassification",
|
|
8
|
+
dataset={
|
|
9
|
+
"path": "clips/mteb-nl-news-articles-cls",
|
|
10
|
+
"revision": "0a7227d31f85c5676be92767f8df5405ea93de54",
|
|
11
|
+
},
|
|
12
|
+
description="This dataset contains all the articles published by the NOS as of the 1st of January 2010. The "
|
|
13
|
+
"data is obtained by scraping the NOS website. The NOS is one of the biggest (online) news "
|
|
14
|
+
"organizations in the Netherlands.",
|
|
15
|
+
reference="https://www.kaggle.com/datasets/maxscheijen/dutch-news-articles",
|
|
16
|
+
type="Classification",
|
|
17
|
+
category="t2c",
|
|
18
|
+
modalities=["text"],
|
|
19
|
+
eval_splits=["test"],
|
|
20
|
+
eval_langs=["nld-Latn"],
|
|
21
|
+
main_score="f1",
|
|
22
|
+
date=("2009-11-01", "2010-01-01"),
|
|
23
|
+
domains=["Written", "News"],
|
|
24
|
+
task_subtypes=["Topic classification"],
|
|
25
|
+
license="cc-by-nc-sa-4.0",
|
|
26
|
+
annotations_creators="derived",
|
|
27
|
+
dialect=[],
|
|
28
|
+
sample_creation="found",
|
|
29
|
+
bibtex_citation="",
|
|
30
|
+
)
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class DutchSarcasticHeadlinesClassification(AbsTaskClassification):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="DutchSarcasticHeadlinesClassification",
|
|
8
|
+
description="This dataset contains news headlines of two Dutch news websites. All sarcastic headlines were "
|
|
9
|
+
"collected from the Speld.nl (the Dutch equivalent of The Onion) whereas all 'normal' headlines "
|
|
10
|
+
"were collected from the news website Nu.nl.",
|
|
11
|
+
reference="https://www.kaggle.com/datasets/harrotuin/dutch-news-headlines",
|
|
12
|
+
dataset={
|
|
13
|
+
"path": "clips/mteb-nl-sarcastic-headlines",
|
|
14
|
+
"revision": "7e520e36394795859583f84f81fcb97de915d05a",
|
|
15
|
+
},
|
|
16
|
+
type="Classification",
|
|
17
|
+
category="t2c",
|
|
18
|
+
modalities=["text"],
|
|
19
|
+
date=("2019-01-01", "2020-01-01"),
|
|
20
|
+
eval_splits=["test"],
|
|
21
|
+
eval_langs=["nld-Latn"],
|
|
22
|
+
main_score="f1",
|
|
23
|
+
domains=["News", "Written", "Fiction"],
|
|
24
|
+
task_subtypes=[],
|
|
25
|
+
license="cc0-1.0",
|
|
26
|
+
annotations_creators="derived",
|
|
27
|
+
dialect=[],
|
|
28
|
+
sample_creation="found",
|
|
29
|
+
bibtex_citation="""""",
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
def dataset_transform(self):
|
|
33
|
+
for split in self.dataset:
|
|
34
|
+
self.dataset[split] = self.dataset[split].rename_columns(
|
|
35
|
+
{"headline": "text", "is_sarcastic": "label"}
|
|
36
|
+
)
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class IconclassClassification(AbsTaskClassification):
|
|
6
|
+
samples_per_label = 32
|
|
7
|
+
metadata = TaskMetadata(
|
|
8
|
+
name="IconclassClassification",
|
|
9
|
+
description="Iconclass is an iconographic thesaurus, which is widely used in the digital heritage domain to "
|
|
10
|
+
"describe subjects depicted in artworks. The task is to classify the first layer of Iconclass",
|
|
11
|
+
reference="https://dl.acm.org/doi/pdf/10.1145/3575865",
|
|
12
|
+
dataset={
|
|
13
|
+
"path": "clips/mteb-nl-iconclass-cls",
|
|
14
|
+
"revision": "1cd02f1579dab39fedc95de8cc15fd620557a9f2",
|
|
15
|
+
},
|
|
16
|
+
type="Classification",
|
|
17
|
+
category="t2c",
|
|
18
|
+
modalities=["text"],
|
|
19
|
+
date=("2020-01-01", "2020-05-01"),
|
|
20
|
+
eval_splits=["test"],
|
|
21
|
+
eval_langs=["nld-Latn"],
|
|
22
|
+
main_score="f1",
|
|
23
|
+
domains=["Written", "Fiction"],
|
|
24
|
+
task_subtypes=[],
|
|
25
|
+
license="cc-by-nc-sa-4.0",
|
|
26
|
+
annotations_creators="expert-annotated",
|
|
27
|
+
dialect=[],
|
|
28
|
+
sample_creation="found",
|
|
29
|
+
bibtex_citation=r"""
|
|
30
|
+
@article{banar2023transfer,
|
|
31
|
+
author = {Banar, Nikolay and Daelemans, Walter and Kestemont, Mike},
|
|
32
|
+
journal = {ACM Journal on Computing and Cultural Heritage},
|
|
33
|
+
number = {2},
|
|
34
|
+
pages = {1--16},
|
|
35
|
+
publisher = {ACM New York, NY},
|
|
36
|
+
title = {Transfer learning for the visual arts: The multi-modal retrieval of iconclass codes},
|
|
37
|
+
volume = {16},
|
|
38
|
+
year = {2023},
|
|
39
|
+
}
|
|
40
|
+
""",
|
|
41
|
+
)
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class OpenTenderClassification(AbsTaskClassification):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="OpenTenderClassification",
|
|
8
|
+
dataset={
|
|
9
|
+
"path": "clips/mteb-nl-opentender-cls-pr",
|
|
10
|
+
"revision": "9af5657575a669dc18c7f897a67287ff7d1a0c65",
|
|
11
|
+
},
|
|
12
|
+
description="This dataset contains Belgian and Dutch tender calls from OpenTender in Dutch",
|
|
13
|
+
reference="https://arxiv.org/abs/2509.12340",
|
|
14
|
+
type="Classification",
|
|
15
|
+
category="t2c",
|
|
16
|
+
modalities=["text"],
|
|
17
|
+
eval_splits=["test"],
|
|
18
|
+
eval_langs=["nld-Latn"],
|
|
19
|
+
main_score="f1",
|
|
20
|
+
date=("2025-08-01", "2025-08-10"),
|
|
21
|
+
domains=["Government", "Written"],
|
|
22
|
+
task_subtypes=[],
|
|
23
|
+
license="cc-by-4.0",
|
|
24
|
+
annotations_creators="human-annotated",
|
|
25
|
+
dialect=[],
|
|
26
|
+
sample_creation="found",
|
|
27
|
+
bibtex_citation=r"""
|
|
28
|
+
@misc{banar2025mtebnle5nlembeddingbenchmark,
|
|
29
|
+
archiveprefix = {arXiv},
|
|
30
|
+
author = {Nikolay Banar and Ehsan Lotfi and Jens Van Nooten and Cristina Arhiliuc and Marija Kliocaite and Walter Daelemans},
|
|
31
|
+
eprint = {2509.12340},
|
|
32
|
+
primaryclass = {cs.CL},
|
|
33
|
+
title = {MTEB-NL and E5-NL: Embedding Benchmark and Models for Dutch},
|
|
34
|
+
url = {https://arxiv.org/abs/2509.12340},
|
|
35
|
+
year = {2025},
|
|
36
|
+
}
|
|
37
|
+
""",
|
|
38
|
+
)
|