mteb 2.0.5__py3-none-any.whl → 2.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. mteb/__init__.py +10 -1
  2. mteb/benchmarks/benchmarks/__init__.py +2 -0
  3. mteb/benchmarks/benchmarks/benchmarks.py +75 -0
  4. mteb/descriptive_stats/Classification/DutchColaClassification.json +54 -0
  5. mteb/descriptive_stats/Classification/DutchGovernmentBiasClassification.json +54 -0
  6. mteb/descriptive_stats/Classification/DutchNewsArticlesClassification.json +90 -0
  7. mteb/descriptive_stats/Classification/DutchSarcasticHeadlinesClassification.json +54 -0
  8. mteb/descriptive_stats/Classification/IconclassClassification.json +96 -0
  9. mteb/descriptive_stats/Classification/OpenTenderClassification.json +222 -0
  10. mteb/descriptive_stats/Classification/VaccinChatNLClassification.json +1068 -0
  11. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringP2P.json +45 -0
  12. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringS2S.json +45 -0
  13. mteb/descriptive_stats/Clustering/IconclassClusteringS2S.json +48 -0
  14. mteb/descriptive_stats/Clustering/OpenTenderClusteringP2P.json +111 -0
  15. mteb/descriptive_stats/Clustering/OpenTenderClusteringS2S.json +111 -0
  16. mteb/descriptive_stats/Clustering/VABBClusteringP2P.json +60 -0
  17. mteb/descriptive_stats/Clustering/VABBClusteringS2S.json +60 -0
  18. mteb/descriptive_stats/MultilabelClassification/CovidDisinformationNLMultiLabelClassification.json +84 -0
  19. mteb/descriptive_stats/MultilabelClassification/VABBMultiLabelClassification.json +156 -0
  20. mteb/descriptive_stats/PairClassification/SICKNLPairClassification.json +35 -0
  21. mteb/descriptive_stats/PairClassification/XLWICNLPairClassification.json +35 -0
  22. mteb/descriptive_stats/Retrieval/DutchNewsArticlesRetrieval.json +30 -0
  23. mteb/descriptive_stats/Retrieval/LegalQANLRetrieval.json +30 -0
  24. mteb/descriptive_stats/Retrieval/OpenTenderRetrieval.json +30 -0
  25. mteb/descriptive_stats/Retrieval/VABBRetrieval.json +30 -0
  26. mteb/descriptive_stats/Retrieval/bBSARDNLRetrieval.json +30 -0
  27. mteb/descriptive_stats/STS/SICK-NL-STS.json +28 -0
  28. mteb/tasks/classification/nld/__init__.py +16 -0
  29. mteb/tasks/classification/nld/dutch_cola_classification.py +38 -0
  30. mteb/tasks/classification/nld/dutch_government_bias_classification.py +37 -0
  31. mteb/tasks/classification/nld/dutch_news_articles_classification.py +30 -0
  32. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +36 -0
  33. mteb/tasks/classification/nld/iconclass_classification.py +41 -0
  34. mteb/tasks/classification/nld/open_tender_classification.py +38 -0
  35. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +46 -0
  36. mteb/tasks/clustering/__init__.py +1 -0
  37. mteb/tasks/clustering/nld/__init__.py +17 -0
  38. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +37 -0
  39. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +37 -0
  40. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +47 -0
  41. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +51 -0
  42. mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +41 -0
  43. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +51 -0
  44. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +51 -0
  45. mteb/tasks/multilabel_classification/__init__.py +1 -0
  46. mteb/tasks/multilabel_classification/nld/__init__.py +9 -0
  47. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +88 -0
  48. mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +44 -0
  49. mteb/tasks/pair_classification/__init__.py +1 -0
  50. mteb/tasks/pair_classification/nld/__init__.py +7 -0
  51. mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +36 -0
  52. mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +41 -0
  53. mteb/tasks/retrieval/nld/__init__.py +10 -0
  54. mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +41 -0
  55. mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +30 -0
  56. mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +39 -0
  57. mteb/tasks/retrieval/nld/open_tender_retrieval.py +38 -0
  58. mteb/tasks/retrieval/nld/vabb_retrieval.py +41 -0
  59. mteb/tasks/sts/__init__.py +1 -0
  60. mteb/tasks/sts/nld/__init__.py +5 -0
  61. mteb/tasks/sts/nld/sick_nl_sts.py +41 -0
  62. {mteb-2.0.5.dist-info → mteb-2.1.0.dist-info}/METADATA +2 -204
  63. {mteb-2.0.5.dist-info → mteb-2.1.0.dist-info}/RECORD +67 -15
  64. {mteb-2.0.5.dist-info → mteb-2.1.0.dist-info}/WHEEL +0 -0
  65. {mteb-2.0.5.dist-info → mteb-2.1.0.dist-info}/entry_points.txt +0 -0
  66. {mteb-2.0.5.dist-info → mteb-2.1.0.dist-info}/licenses/LICENSE +0 -0
  67. {mteb-2.0.5.dist-info → mteb-2.1.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,156 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 3235,
4
+ "number_texts_intersect_with_train": 2265,
5
+ "text_statistics": {
6
+ "total_text_length": 2927178,
7
+ "min_text_length": 47,
8
+ "average_text_length": 904.8463678516229,
9
+ "max_text_length": 35167,
10
+ "unique_texts": 3235
11
+ },
12
+ "image_statistics": null,
13
+ "label_statistics": {
14
+ "min_labels_per_text": 1,
15
+ "average_label_per_text": 1.8593508500772797,
16
+ "max_labels_per_text": 8,
17
+ "unique_labels": 19,
18
+ "labels": {
19
+ "Social Sciences (General)": {
20
+ "count": 472
21
+ },
22
+ "Sociology": {
23
+ "count": 366
24
+ },
25
+ "Other Disciplines": {
26
+ "count": 557
27
+ },
28
+ "Educational Sciences": {
29
+ "count": 302
30
+ },
31
+ "Economics & Business": {
32
+ "count": 393
33
+ },
34
+ "Social Health Sciences": {
35
+ "count": 255
36
+ },
37
+ "Political Sciences": {
38
+ "count": 201
39
+ },
40
+ "Communication Studies": {
41
+ "count": 155
42
+ },
43
+ "History": {
44
+ "count": 287
45
+ },
46
+ "Humanities (General)": {
47
+ "count": 398
48
+ },
49
+ "Law": {
50
+ "count": 999
51
+ },
52
+ "Philosophy": {
53
+ "count": 233
54
+ },
55
+ "Art History": {
56
+ "count": 349
57
+ },
58
+ "Theology": {
59
+ "count": 58
60
+ },
61
+ "Psychology": {
62
+ "count": 174
63
+ },
64
+ "Criminology": {
65
+ "count": 284
66
+ },
67
+ "Linguistics": {
68
+ "count": 254
69
+ },
70
+ "Literature": {
71
+ "count": 140
72
+ },
73
+ "Archaeology": {
74
+ "count": 138
75
+ }
76
+ }
77
+ }
78
+ },
79
+ "train": {
80
+ "num_samples": 6471,
81
+ "number_texts_intersect_with_train": null,
82
+ "text_statistics": {
83
+ "total_text_length": 5847151,
84
+ "min_text_length": 38,
85
+ "average_text_length": 903.5931077113274,
86
+ "max_text_length": 35167,
87
+ "unique_texts": 6471
88
+ },
89
+ "image_statistics": null,
90
+ "label_statistics": {
91
+ "min_labels_per_text": 1,
92
+ "average_label_per_text": 1.8822438572090867,
93
+ "max_labels_per_text": 11,
94
+ "unique_labels": 19,
95
+ "labels": {
96
+ "Social Sciences (General)": {
97
+ "count": 1021
98
+ },
99
+ "Sociology": {
100
+ "count": 660
101
+ },
102
+ "Other Disciplines": {
103
+ "count": 1124
104
+ },
105
+ "Educational Sciences": {
106
+ "count": 541
107
+ },
108
+ "Economics & Business": {
109
+ "count": 756
110
+ },
111
+ "Linguistics": {
112
+ "count": 501
113
+ },
114
+ "Humanities (General)": {
115
+ "count": 995
116
+ },
117
+ "Political Sciences": {
118
+ "count": 380
119
+ },
120
+ "Communication Studies": {
121
+ "count": 327
122
+ },
123
+ "Psychology": {
124
+ "count": 375
125
+ },
126
+ "Philosophy": {
127
+ "count": 434
128
+ },
129
+ "Art History": {
130
+ "count": 703
131
+ },
132
+ "History": {
133
+ "count": 522
134
+ },
135
+ "Law": {
136
+ "count": 2150
137
+ },
138
+ "Theology": {
139
+ "count": 116
140
+ },
141
+ "Social Health Sciences": {
142
+ "count": 489
143
+ },
144
+ "Criminology": {
145
+ "count": 576
146
+ },
147
+ "Literature": {
148
+ "count": 275
149
+ },
150
+ "Archaeology": {
151
+ "count": 235
152
+ }
153
+ }
154
+ }
155
+ }
156
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 2115,
4
+ "number_of_characters": 194569,
5
+ "unique_pairs": 2115,
6
+ "text1_statistics": {
7
+ "total_text_length": 100505,
8
+ "min_text_length": 10,
9
+ "average_text_length": 47.520094562647756,
10
+ "max_text_length": 158,
11
+ "unique_texts": 1769
12
+ },
13
+ "text2_statistics": {
14
+ "total_text_length": 94064,
15
+ "min_text_length": 10,
16
+ "average_text_length": 44.47470449172577,
17
+ "max_text_length": 158,
18
+ "unique_texts": 1738
19
+ },
20
+ "labels_statistics": {
21
+ "min_labels_per_text": 1,
22
+ "average_label_per_text": 1.0,
23
+ "max_labels_per_text": 1,
24
+ "unique_labels": 2,
25
+ "labels": {
26
+ "1": {
27
+ "count": 1404
28
+ },
29
+ "0": {
30
+ "count": 711
31
+ }
32
+ }
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 1004,
4
+ "number_of_characters": 103768,
5
+ "unique_pairs": 1004,
6
+ "text1_statistics": {
7
+ "total_text_length": 52390,
8
+ "min_text_length": 15,
9
+ "average_text_length": 52.18127490039841,
10
+ "max_text_length": 139,
11
+ "unique_texts": 851
12
+ },
13
+ "text2_statistics": {
14
+ "total_text_length": 51378,
15
+ "min_text_length": 9,
16
+ "average_text_length": 51.17330677290837,
17
+ "max_text_length": 131,
18
+ "unique_texts": 863
19
+ },
20
+ "labels_statistics": {
21
+ "min_labels_per_text": 1,
22
+ "average_label_per_text": 1.0,
23
+ "max_labels_per_text": 1,
24
+ "unique_labels": 2,
25
+ "labels": {
26
+ "1": {
27
+ "count": 502
28
+ },
29
+ "0": {
30
+ "count": 502
31
+ }
32
+ }
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 256524,
4
+ "number_of_characters": 415016602,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 414968472,
7
+ "min_text_length": 0,
8
+ "average_text_length": 1623.9902005291087,
9
+ "max_text_length": 29368,
10
+ "unique_texts": 255216
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 48130,
15
+ "min_text_length": 11,
16
+ "average_text_length": 48.13,
17
+ "max_text_length": 110,
18
+ "unique_texts": 1000
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 1000,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0,
25
+ "max_relevant_docs_per_query": 1,
26
+ "unique_relevant_docs": 1000
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 30905,
4
+ "number_of_characters": 20629665,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 20619027,
7
+ "min_text_length": 41,
8
+ "average_text_length": 669.3837288575788,
9
+ "max_text_length": 1716,
10
+ "unique_texts": 30172
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 10638,
15
+ "min_text_length": 27,
16
+ "average_text_length": 104.29411764705883,
17
+ "max_text_length": 369,
18
+ "unique_texts": 102
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 157,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.5392156862745099,
25
+ "max_relevant_docs_per_query": 8,
26
+ "unique_relevant_docs": 148
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 138633,
4
+ "number_of_characters": 59639635,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 59576581,
7
+ "min_text_length": 2,
8
+ "average_text_length": 432.86552643624714,
9
+ "max_text_length": 16782,
10
+ "unique_texts": 122413
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 63054,
15
+ "min_text_length": 9,
16
+ "average_text_length": 63.054,
17
+ "max_text_length": 286,
18
+ "unique_texts": 992
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 1000,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0,
25
+ "max_relevant_docs_per_query": 1,
26
+ "unique_relevant_docs": 1000
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 10318,
4
+ "number_of_characters": 7839416,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 7765564,
7
+ "min_text_length": 9,
8
+ "average_text_length": 833.393861343636,
9
+ "max_text_length": 35146,
10
+ "unique_texts": 9123
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 73852,
15
+ "min_text_length": 7,
16
+ "average_text_length": 73.852,
17
+ "max_text_length": 258,
18
+ "unique_texts": 999
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 1000,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0,
25
+ "max_relevant_docs_per_query": 1,
26
+ "unique_relevant_docs": 1000
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 22637,
4
+ "number_of_characters": 21218611,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 21197901,
7
+ "min_text_length": 7,
8
+ "average_text_length": 945.7015837608744,
9
+ "max_text_length": 37834,
10
+ "unique_texts": 22415
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 20710,
15
+ "min_text_length": 22,
16
+ "average_text_length": 93.28828828828829,
17
+ "max_text_length": 250,
18
+ "unique_texts": 222
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 1059,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 4.77027027027027,
25
+ "max_relevant_docs_per_query": 57,
26
+ "unique_relevant_docs": 491
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,28 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 4902,
4
+ "number_of_characters": 463327,
5
+ "unique_pairs": 4902,
6
+ "text1_statistics": {
7
+ "total_text_length": 233941,
8
+ "min_text_length": 10,
9
+ "average_text_length": 47.72358221134231,
10
+ "max_text_length": 158,
11
+ "unique_texts": 3378
12
+ },
13
+ "text2_statistics": {
14
+ "total_text_length": 229386,
15
+ "min_text_length": 10,
16
+ "average_text_length": 46.79436964504284,
17
+ "max_text_length": 158,
18
+ "unique_texts": 3327
19
+ },
20
+ "image1_statistics": null,
21
+ "image2_statistics": null,
22
+ "label_statistics": {
23
+ "min_score": 1.0,
24
+ "avg_score": 3.528012039368932,
25
+ "max_score": 5.0
26
+ }
27
+ }
28
+ }
@@ -2,8 +2,24 @@ from .dutch_book_review_sentiment_classification import (
2
2
  DutchBookReviewSentimentClassification,
3
3
  DutchBookReviewSentimentClassificationV2,
4
4
  )
5
+ from .dutch_cola_classification import DutchColaClassification
6
+ from .dutch_government_bias_classification import DutchGovernmentBiasClassification
7
+ from .dutch_news_articles_classification import DutchNewsArticlesClassification
8
+ from .dutch_sarcastic_headlines_classification import (
9
+ DutchSarcasticHeadlinesClassification,
10
+ )
11
+ from .iconclass_classification import IconclassClassification
12
+ from .open_tender_classification import OpenTenderClassification
13
+ from .vaccin_chat_nl_classification import VaccinChatNLClassification
5
14
 
6
15
  __all__ = [
7
16
  "DutchBookReviewSentimentClassification",
8
17
  "DutchBookReviewSentimentClassificationV2",
18
+ "DutchColaClassification",
19
+ "DutchGovernmentBiasClassification",
20
+ "DutchNewsArticlesClassification",
21
+ "DutchSarcasticHeadlinesClassification",
22
+ "IconclassClassification",
23
+ "OpenTenderClassification",
24
+ "VaccinChatNLClassification",
9
25
  ]
@@ -0,0 +1,38 @@
1
+ from mteb.abstasks.classification import AbsTaskClassification
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class DutchColaClassification(AbsTaskClassification):
6
+ samples_per_label = 128
7
+ metadata = TaskMetadata(
8
+ name="DutchColaClassification",
9
+ description="Dutch CoLA is a corpus of linguistic acceptability for Dutch.",
10
+ reference="https://huggingface.co/datasets/GroNLP/dutch-cola",
11
+ dataset={
12
+ "path": "clips/mteb-nl-dutch-cola",
13
+ "revision": "2269ed7d95d8abaab829f1592b4b2047372e9f81",
14
+ },
15
+ type="Classification",
16
+ category="t2c",
17
+ modalities=["text"],
18
+ date=("2024-03-01", "2024-05-01"),
19
+ eval_splits=["test"],
20
+ eval_langs=["nld-Latn"],
21
+ main_score="f1",
22
+ domains=["Written"],
23
+ task_subtypes=["Linguistic acceptability"],
24
+ license="not specified", # specified as unknown
25
+ annotations_creators="expert-annotated",
26
+ dialect=[],
27
+ sample_creation="found",
28
+ bibtex_citation=r"""
29
+ @misc{gronlp_2024,
30
+ author = {Bylinina, Lisa and Abdi, Silvana and Brouwer, Hylke and Elzinga, Martine and Gunput, Shenza and Huisman, Sem and Krooneman, Collin and Poot, David and Top, Jelmer and Weideman, Cain},
31
+ doi = { 10.57967/hf/3825 },
32
+ publisher = { Hugging Face },
33
+ title = { {Dutch-CoLA (Revision 5a4196c)} },
34
+ url = { https://huggingface.co/datasets/GroNLP/dutch-cola },
35
+ year = {2024},
36
+ }
37
+ """,
38
+ )
@@ -0,0 +1,37 @@
1
+ from mteb.abstasks.classification import AbsTaskClassification
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class DutchGovernmentBiasClassification(AbsTaskClassification):
6
+ samples_per_label = 32
7
+ metadata = TaskMetadata(
8
+ name="DutchGovernmentBiasClassification",
9
+ description="The Dutch Government Data for Bias Detection (DGDB) is a dataset sourced from the Dutch House of Representatives and annotated for bias by experts",
10
+ reference="https://dl.acm.org/doi/pdf/10.1145/3696410.3714526",
11
+ dataset={
12
+ "path": "clips/mteb-nl-dutch-government-bias-detection",
13
+ "revision": "bf5e20ee2d3ce2e24e4de50f5dd8573e0e0e2fec",
14
+ },
15
+ type="Classification",
16
+ category="t2c",
17
+ modalities=["text"],
18
+ date=("2019-10-04", "2019-10-04"),
19
+ eval_splits=["test"],
20
+ eval_langs=["nld-Latn"],
21
+ main_score="f1",
22
+ domains=["Written", "Government"],
23
+ task_subtypes=[],
24
+ license="cc-by-nc-sa-4.0",
25
+ annotations_creators="expert-annotated",
26
+ dialect=[],
27
+ sample_creation="found",
28
+ bibtex_citation=r"""
29
+ @inproceedings{de2025detecting,
30
+ author = {de Swart, Milena and Den Hengst, Floris and Chen, Jieying},
31
+ booktitle = {Proceedings of the ACM on Web Conference 2025},
32
+ pages = {5034--5044},
33
+ title = {Detecting Linguistic Bias in Government Documents Using Large language Models},
34
+ year = {2025},
35
+ }
36
+ """,
37
+ )
@@ -0,0 +1,30 @@
1
+ from mteb.abstasks.classification import AbsTaskClassification
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class DutchNewsArticlesClassification(AbsTaskClassification):
6
+ metadata = TaskMetadata(
7
+ name="DutchNewsArticlesClassification",
8
+ dataset={
9
+ "path": "clips/mteb-nl-news-articles-cls",
10
+ "revision": "0a7227d31f85c5676be92767f8df5405ea93de54",
11
+ },
12
+ description="This dataset contains all the articles published by the NOS as of the 1st of January 2010. The "
13
+ "data is obtained by scraping the NOS website. The NOS is one of the biggest (online) news "
14
+ "organizations in the Netherlands.",
15
+ reference="https://www.kaggle.com/datasets/maxscheijen/dutch-news-articles",
16
+ type="Classification",
17
+ category="t2c",
18
+ modalities=["text"],
19
+ eval_splits=["test"],
20
+ eval_langs=["nld-Latn"],
21
+ main_score="f1",
22
+ date=("2009-11-01", "2010-01-01"),
23
+ domains=["Written", "News"],
24
+ task_subtypes=["Topic classification"],
25
+ license="cc-by-nc-sa-4.0",
26
+ annotations_creators="derived",
27
+ dialect=[],
28
+ sample_creation="found",
29
+ bibtex_citation="",
30
+ )
@@ -0,0 +1,36 @@
1
+ from mteb.abstasks.classification import AbsTaskClassification
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class DutchSarcasticHeadlinesClassification(AbsTaskClassification):
6
+ metadata = TaskMetadata(
7
+ name="DutchSarcasticHeadlinesClassification",
8
+ description="This dataset contains news headlines of two Dutch news websites. All sarcastic headlines were "
9
+ "collected from the Speld.nl (the Dutch equivalent of The Onion) whereas all 'normal' headlines "
10
+ "were collected from the news website Nu.nl.",
11
+ reference="https://www.kaggle.com/datasets/harrotuin/dutch-news-headlines",
12
+ dataset={
13
+ "path": "clips/mteb-nl-sarcastic-headlines",
14
+ "revision": "7e520e36394795859583f84f81fcb97de915d05a",
15
+ },
16
+ type="Classification",
17
+ category="t2c",
18
+ modalities=["text"],
19
+ date=("2019-01-01", "2020-01-01"),
20
+ eval_splits=["test"],
21
+ eval_langs=["nld-Latn"],
22
+ main_score="f1",
23
+ domains=["News", "Written", "Fiction"],
24
+ task_subtypes=[],
25
+ license="cc0-1.0",
26
+ annotations_creators="derived",
27
+ dialect=[],
28
+ sample_creation="found",
29
+ bibtex_citation="""""",
30
+ )
31
+
32
+ def dataset_transform(self):
33
+ for split in self.dataset:
34
+ self.dataset[split] = self.dataset[split].rename_columns(
35
+ {"headline": "text", "is_sarcastic": "label"}
36
+ )
@@ -0,0 +1,41 @@
1
+ from mteb.abstasks.classification import AbsTaskClassification
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class IconclassClassification(AbsTaskClassification):
6
+ samples_per_label = 32
7
+ metadata = TaskMetadata(
8
+ name="IconclassClassification",
9
+ description="Iconclass is an iconographic thesaurus, which is widely used in the digital heritage domain to "
10
+ "describe subjects depicted in artworks. The task is to classify the first layer of Iconclass",
11
+ reference="https://dl.acm.org/doi/pdf/10.1145/3575865",
12
+ dataset={
13
+ "path": "clips/mteb-nl-iconclass-cls",
14
+ "revision": "1cd02f1579dab39fedc95de8cc15fd620557a9f2",
15
+ },
16
+ type="Classification",
17
+ category="t2c",
18
+ modalities=["text"],
19
+ date=("2020-01-01", "2020-05-01"),
20
+ eval_splits=["test"],
21
+ eval_langs=["nld-Latn"],
22
+ main_score="f1",
23
+ domains=["Written", "Fiction"],
24
+ task_subtypes=[],
25
+ license="cc-by-nc-sa-4.0",
26
+ annotations_creators="expert-annotated",
27
+ dialect=[],
28
+ sample_creation="found",
29
+ bibtex_citation=r"""
30
+ @article{banar2023transfer,
31
+ author = {Banar, Nikolay and Daelemans, Walter and Kestemont, Mike},
32
+ journal = {ACM Journal on Computing and Cultural Heritage},
33
+ number = {2},
34
+ pages = {1--16},
35
+ publisher = {ACM New York, NY},
36
+ title = {Transfer learning for the visual arts: The multi-modal retrieval of iconclass codes},
37
+ volume = {16},
38
+ year = {2023},
39
+ }
40
+ """,
41
+ )
@@ -0,0 +1,38 @@
1
+ from mteb.abstasks.classification import AbsTaskClassification
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class OpenTenderClassification(AbsTaskClassification):
6
+ metadata = TaskMetadata(
7
+ name="OpenTenderClassification",
8
+ dataset={
9
+ "path": "clips/mteb-nl-opentender-cls-pr",
10
+ "revision": "9af5657575a669dc18c7f897a67287ff7d1a0c65",
11
+ },
12
+ description="This dataset contains Belgian and Dutch tender calls from OpenTender in Dutch",
13
+ reference="https://arxiv.org/abs/2509.12340",
14
+ type="Classification",
15
+ category="t2c",
16
+ modalities=["text"],
17
+ eval_splits=["test"],
18
+ eval_langs=["nld-Latn"],
19
+ main_score="f1",
20
+ date=("2025-08-01", "2025-08-10"),
21
+ domains=["Government", "Written"],
22
+ task_subtypes=[],
23
+ license="cc-by-4.0",
24
+ annotations_creators="human-annotated",
25
+ dialect=[],
26
+ sample_creation="found",
27
+ bibtex_citation=r"""
28
+ @misc{banar2025mtebnle5nlembeddingbenchmark,
29
+ archiveprefix = {arXiv},
30
+ author = {Nikolay Banar and Ehsan Lotfi and Jens Van Nooten and Cristina Arhiliuc and Marija Kliocaite and Walter Daelemans},
31
+ eprint = {2509.12340},
32
+ primaryclass = {cs.CL},
33
+ title = {MTEB-NL and E5-NL: Embedding Benchmark and Models for Dutch},
34
+ url = {https://arxiv.org/abs/2509.12340},
35
+ year = {2025},
36
+ }
37
+ """,
38
+ )