mteb 2.0.4__py3-none-any.whl → 2.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (59) hide show
  1. mteb/descriptive_stats/BitextMining/BUCC.json +70 -40
  2. mteb/descriptive_stats/Classification/DKHateClassification.json +40 -24
  3. mteb/descriptive_stats/Classification/FinancialPhrasebankClassification.json +23 -15
  4. mteb/descriptive_stats/Classification/ImdbClassification.json +40 -24
  5. mteb/descriptive_stats/Classification/KorHateClassification.json +23 -15
  6. mteb/descriptive_stats/Clustering/ArxivClusteringP2P.json +555 -550
  7. mteb/descriptive_stats/Clustering/ArxivClusteringP2P.v2.json +546 -541
  8. mteb/descriptive_stats/Clustering/ArxivClusteringS2S.json +555 -550
  9. mteb/descriptive_stats/Clustering/MLSUMClusteringP2P.json +2466 -2416
  10. mteb/descriptive_stats/Clustering/RedditClusteringP2P.json +1365 -1360
  11. mteb/descriptive_stats/Clustering/SNLClustering.json +378 -373
  12. mteb/descriptive_stats/Clustering/SwednClustering.json +28 -23
  13. mteb/descriptive_stats/Clustering/VGClustering.json +54 -49
  14. mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/WITT2IRetrieval.json +324 -204
  15. mteb/descriptive_stats/Image/Any2AnyRetrieval/MemotionI2TRetrieval.json +28 -18
  16. mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRAirbnbSyntheticRetrieval.json +334 -0
  17. mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRGitHubReadmeRetrieval.json +544 -0
  18. mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRTweetStockSyntheticsRetrieval.json +334 -0
  19. mteb/descriptive_stats/Image/DocumentUnderstanding/JinaVDRWikimediaCommonsDocumentsRetrieval.json +634 -0
  20. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore2ESGReportsRetrieval.json +154 -0
  21. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore2EconomicsReportsRetrieval.json +154 -0
  22. mteb/descriptive_stats/Image/ImageClassification/Imagenet1k.json +6039 -3007
  23. mteb/descriptive_stats/Image/ZeroShotClassification/Imagenet1kZeroShot.json +3024 -3010
  24. mteb/descriptive_stats/Image/ZeroShotClassification/PatchCamelyonZeroShot.json +30 -16
  25. mteb/descriptive_stats/Reranking/MIRACLReranking.json +555 -479
  26. mteb/descriptive_stats/Reranking/MindSmallReranking.json +29 -25
  27. mteb/descriptive_stats/Retrieval/AlloprofRetrieval.json +25 -26
  28. mteb/descriptive_stats/Retrieval/Code1Retrieval.json +30 -0
  29. mteb/descriptive_stats/Retrieval/DanFEVER.json +25 -26
  30. mteb/descriptive_stats/Retrieval/EnglishFinance1Retrieval.json +30 -0
  31. mteb/descriptive_stats/Retrieval/EnglishFinance2Retrieval.json +30 -0
  32. mteb/descriptive_stats/Retrieval/EnglishFinance3Retrieval.json +30 -0
  33. mteb/descriptive_stats/Retrieval/EnglishFinance4Retrieval.json +30 -0
  34. mteb/descriptive_stats/Retrieval/EnglishHealthcare1Retrieval.json +30 -0
  35. mteb/descriptive_stats/Retrieval/French1Retrieval.json +30 -0
  36. mteb/descriptive_stats/Retrieval/FrenchLegal1Retrieval.json +30 -0
  37. mteb/descriptive_stats/Retrieval/German1Retrieval.json +30 -0
  38. mteb/descriptive_stats/Retrieval/GermanHealthcare1Retrieval.json +30 -0
  39. mteb/descriptive_stats/Retrieval/GermanLegal1Retrieval.json +30 -0
  40. mteb/descriptive_stats/Retrieval/JapaneseCode1Retrieval.json +30 -0
  41. mteb/descriptive_stats/Retrieval/JapaneseLegal1Retrieval.json +30 -0
  42. mteb/descriptive_stats/Retrieval/MIRACLRetrieval.json +475 -494
  43. mteb/descriptive_stats/Retrieval/MSMARCO-Fa.json +25 -26
  44. mteb/descriptive_stats/Retrieval/MSMARCO.json +25 -84
  45. mteb/descriptive_stats/Retrieval/Touche2020.json +25 -26
  46. mteb/descriptive_stats/Summarization/SummEval.json +27 -50
  47. mteb/descriptive_stats/Summarization/SummEvalFr.json +27 -50
  48. mteb/models/model_implementations/kalm_models.py +29 -0
  49. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
  50. mteb/tasks/classification/eng/financial_phrasebank_classification.py +0 -3
  51. mteb/tasks/classification/kor/kor_hate_classification.py +0 -12
  52. mteb/tasks/clustering/swe/swedn_clustering.py +2 -2
  53. mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
  54. {mteb-2.0.4.dist-info → mteb-2.0.5.dist-info}/METADATA +1 -1
  55. {mteb-2.0.4.dist-info → mteb-2.0.5.dist-info}/RECORD +59 -40
  56. {mteb-2.0.4.dist-info → mteb-2.0.5.dist-info}/WHEEL +0 -0
  57. {mteb-2.0.4.dist-info → mteb-2.0.5.dist-info}/entry_points.txt +0 -0
  58. {mteb-2.0.4.dist-info → mteb-2.0.5.dist-info}/licenses/LICENSE +0 -0
  59. {mteb-2.0.4.dist-info → mteb-2.0.5.dist-info}/top_level.txt +0 -0
@@ -1,31 +1,30 @@
1
1
  {
2
2
  "dev": {
3
3
  "num_samples": 8848803,
4
- "number_of_characters": 2707180637,
5
- "num_documents": 8841823,
6
- "min_document_length": 0,
7
- "average_document_length": 306.1560844409575,
8
- "max_document_length": 1617,
9
- "unique_documents": 8841823,
10
- "num_queries": 6980,
11
- "min_query_length": 7,
12
- "average_query_length": 29.044126074498568,
13
- "max_query_length": 158,
14
- "unique_queries": 6980,
15
- "none_queries": 0,
16
- "num_relevant_docs": 7437,
17
- "min_relevant_docs_per_query": 1,
18
- "average_relevant_docs_per_query": 1.0654727793696275,
19
- "max_relevant_docs_per_query": 4,
20
- "unique_relevant_docs": 7433,
21
- "num_instructions": null,
22
- "min_instruction_length": null,
23
- "average_instruction_length": null,
24
- "max_instruction_length": null,
25
- "unique_instructions": null,
26
- "num_top_ranked": null,
27
- "min_top_ranked_per_query": null,
28
- "average_top_ranked_per_query": null,
29
- "max_top_ranked_per_query": null
4
+ "number_of_characters": 2707180622,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 2706977894,
7
+ "min_text_length": 0,
8
+ "average_text_length": 306.15608274447476,
9
+ "max_text_length": 1617,
10
+ "unique_texts": 8827413
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 202728,
15
+ "min_text_length": 7,
16
+ "average_text_length": 29.044126074498568,
17
+ "max_text_length": 158,
18
+ "unique_texts": 6978
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 7437,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0654727793696275,
25
+ "max_relevant_docs_per_query": 4,
26
+ "unique_relevant_docs": 7433
27
+ },
28
+ "top_ranked_statistics": null
30
29
  }
31
30
  }
@@ -1,89 +1,30 @@
1
1
  {
2
- "train": {
3
- "num_samples": 9344762,
4
- "number_of_characters": 2994608051,
5
- "num_documents": 8841823,
6
- "min_document_length": 4,
7
- "average_document_length": 336.79716603691344,
8
- "max_document_length": 1670,
9
- "unique_documents": 8841823,
10
- "num_queries": 502939,
11
- "min_query_length": 5,
12
- "average_query_length": 33.21898281898998,
13
- "max_query_length": 215,
14
- "unique_queries": 502939,
15
- "none_queries": 0,
16
- "num_relevant_docs": 532751,
17
- "min_relevant_docs_per_query": 1,
18
- "average_relevant_docs_per_query": 1.0592755781516248,
19
- "max_relevant_docs_per_query": 7,
20
- "unique_relevant_docs": 516472,
21
- "num_instructions": null,
22
- "min_instruction_length": null,
23
- "average_instruction_length": null,
24
- "max_instruction_length": null,
25
- "unique_instructions": null,
26
- "num_top_ranked": null,
27
- "min_top_ranked_per_query": null,
28
- "average_top_ranked_per_query": null,
29
- "max_top_ranked_per_query": null
30
- },
31
2
  "dev": {
32
3
  "num_samples": 8848803,
33
- "number_of_characters": 2978133099,
34
- "num_documents": 8841823,
35
- "min_document_length": 4,
36
- "average_document_length": 336.79716603691344,
37
- "max_document_length": 1670,
38
- "unique_documents": 8841823,
39
- "num_queries": 6980,
40
- "min_query_length": 9,
41
- "average_query_length": 33.2621776504298,
42
- "max_query_length": 186,
43
- "unique_queries": 6980,
44
- "none_queries": 0,
45
- "num_relevant_docs": 7437,
46
- "min_relevant_docs_per_query": 1,
47
- "average_relevant_docs_per_query": 1.0654727793696275,
48
- "max_relevant_docs_per_query": 4,
49
- "unique_relevant_docs": 7433,
50
- "num_instructions": null,
51
- "min_instruction_length": null,
52
- "average_instruction_length": null,
53
- "max_instruction_length": null,
54
- "unique_instructions": null,
55
- "num_top_ranked": null,
56
- "min_top_ranked_per_query": null,
57
- "average_top_ranked_per_query": null,
58
- "max_top_ranked_per_query": null
59
- },
60
- "test": {
61
- "num_samples": 8841866,
62
- "number_of_characters": 2977902337,
63
- "num_documents": 8841823,
64
- "min_document_length": 4,
65
- "average_document_length": 336.79716603691344,
66
- "max_document_length": 1670,
67
- "unique_documents": 8841823,
68
- "num_queries": 43,
69
- "min_query_length": 16,
70
- "average_query_length": 32.74418604651163,
71
- "max_query_length": 55,
72
- "unique_queries": 43,
73
- "none_queries": 0,
74
- "num_relevant_docs": 9260,
75
- "min_relevant_docs_per_query": 132,
76
- "average_relevant_docs_per_query": 95.3953488372093,
77
- "max_relevant_docs_per_query": 582,
78
- "unique_relevant_docs": 9139,
79
- "num_instructions": null,
80
- "min_instruction_length": null,
81
- "average_instruction_length": null,
82
- "max_instruction_length": null,
83
- "unique_instructions": null,
84
- "num_top_ranked": null,
85
- "min_top_ranked_per_query": null,
86
- "average_top_ranked_per_query": null,
87
- "max_top_ranked_per_query": null
4
+ "number_of_characters": 2969291276,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 2969059106,
7
+ "min_text_length": 3,
8
+ "average_text_length": 335.79716603691344,
9
+ "max_text_length": 1669,
10
+ "unique_texts": 8841661
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 232170,
15
+ "min_text_length": 9,
16
+ "average_text_length": 33.2621776504298,
17
+ "max_text_length": 186,
18
+ "unique_texts": 6980
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 7437,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0654727793696275,
25
+ "max_relevant_docs_per_query": 4,
26
+ "unique_relevant_docs": 7433
27
+ },
28
+ "top_ranked_statistics": null
88
29
  }
89
30
  }
@@ -1,31 +1,30 @@
1
1
  {
2
2
  "test": {
3
3
  "num_samples": 382594,
4
- "number_of_characters": 658107591,
5
- "num_documents": 382545,
6
- "min_document_length": 3,
7
- "average_document_length": 1720.3347658445412,
8
- "max_document_length": 106072,
9
- "unique_documents": 382545,
10
- "num_queries": 49,
11
- "min_query_length": 16,
12
- "average_query_length": 43.42857142857143,
13
- "max_query_length": 83,
14
- "unique_queries": 49,
15
- "none_queries": 0,
16
- "num_relevant_docs": 2214,
17
- "min_relevant_docs_per_query": 40,
18
- "average_relevant_docs_per_query": 19.020408163265305,
19
- "max_relevant_docs_per_query": 52,
20
- "unique_relevant_docs": 2099,
21
- "num_instructions": null,
22
- "min_instruction_length": null,
23
- "average_instruction_length": null,
24
- "max_instruction_length": null,
25
- "unique_instructions": null,
26
- "num_top_ranked": null,
27
- "min_top_ranked_per_query": null,
28
- "average_top_ranked_per_query": null,
29
- "max_top_ranked_per_query": null
4
+ "number_of_characters": 658104319,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 658102191,
7
+ "min_text_length": 3,
8
+ "average_text_length": 1720.326212602439,
9
+ "max_text_length": 106072,
10
+ "unique_texts": 379559
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 2128,
15
+ "min_text_length": 16,
16
+ "average_text_length": 43.42857142857143,
17
+ "max_text_length": 83,
18
+ "unique_texts": 49
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 932,
23
+ "min_relevant_docs_per_query": 40,
24
+ "average_relevant_docs_per_query": 19.020408163265305,
25
+ "max_relevant_docs_per_query": 52,
26
+ "unique_relevant_docs": 2099
27
+ },
28
+ "top_ranked_statistics": null
30
29
  }
31
30
  }
@@ -1,55 +1,32 @@
1
1
  {
2
2
  "test": {
3
3
  "num_samples": 100,
4
- "number_of_characters": 212735,
5
- "min_text_length": 626,
6
- "avg_text_length": 2100.35,
7
- "max_text_length": 3153,
8
- "unique_texts": 100,
9
- "min_human_summaries_length": 11,
10
- "avg_human_summaries_length": 11.0,
11
- "max_human_summaries_length": 11,
12
- "unique_human_summaries": 1100,
13
- "min_machine_summaries_length": 16,
14
- "avg_machine_summaries_length": 16.0,
15
- "max_machine_summaries_length": 16,
16
- "unique_machine_summaries": 1548,
17
- "min_relevance": [
18
- 1.0,
19
- 1.3333333333333333,
20
- 3.6666666666666665,
21
- 2.3333333333333335,
22
- 3.6666666666666665,
23
- 3.0,
24
- 4.333333333333333,
25
- 4.0,
26
- 2.6666666666666665,
27
- 4.0,
28
- 2.0,
29
- 4.666666666666667,
30
- 4.333333333333333,
31
- 1.0,
32
- 2.0,
33
- 1.0
34
- ],
35
- "avg_relevance": 3.7770833333333336,
36
- "max_relevance": [
37
- 5.0,
38
- 4.666666666666667,
39
- 4.333333333333333,
40
- 2.6666666666666665,
41
- 4.666666666666667,
42
- 4.666666666666667,
43
- 4.666666666666667,
44
- 4.333333333333333,
45
- 4.0,
46
- 4.333333333333333,
47
- 4.666666666666667,
48
- 4.666666666666667,
49
- 4.333333333333333,
50
- 2.3333333333333335,
51
- 4.666666666666667,
52
- 4.666666666666667
53
- ]
4
+ "number_of_characters": 1007527,
5
+ "text_statistics": {
6
+ "total_text_length": 210035,
7
+ "min_text_length": 626,
8
+ "average_text_length": 2100.35,
9
+ "max_text_length": 3153,
10
+ "unique_texts": 100
11
+ },
12
+ "human_summaries_statistics": {
13
+ "total_text_length": 248982,
14
+ "min_text_length": 86,
15
+ "average_text_length": 226.34727272727272,
16
+ "max_text_length": 717,
17
+ "unique_texts": 1100
18
+ },
19
+ "machine_summaries_statistics": {
20
+ "total_text_length": 548510,
21
+ "min_text_length": 35,
22
+ "average_text_length": 342.81875,
23
+ "max_text_length": 718,
24
+ "unique_texts": 1548
25
+ },
26
+ "score_statistics": {
27
+ "min_score": 1.0,
28
+ "avg_score": 3.777083333333336,
29
+ "max_score": 5.0
30
+ }
54
31
  }
55
32
  }
@@ -1,55 +1,32 @@
1
1
  {
2
2
  "test": {
3
3
  "num_samples": 100,
4
- "number_of_characters": 242873,
5
- "min_text_length": 668,
6
- "avg_text_length": 2401.73,
7
- "max_text_length": 3699,
8
- "unique_texts": 100,
9
- "min_human_summaries_length": 11,
10
- "avg_human_summaries_length": 11.0,
11
- "max_human_summaries_length": 11,
12
- "unique_human_summaries": 1100,
13
- "min_machine_summaries_length": 16,
14
- "avg_machine_summaries_length": 16.0,
15
- "max_machine_summaries_length": 16,
16
- "unique_machine_summaries": 1540,
17
- "min_relevance": [
18
- 1.0,
19
- 1.333333333333333,
20
- 3.666666666666666,
21
- 2.333333333333333,
22
- 3.666666666666666,
23
- 3.0,
24
- 4.333333333333333,
25
- 4.0,
26
- 2.666666666666666,
27
- 4.0,
28
- 2.0,
29
- 4.666666666666667,
30
- 4.333333333333333,
31
- 1.0,
32
- 2.0,
33
- 1.0
34
- ],
35
- "avg_relevance": 3.7770833333333336,
36
- "max_relevance": [
37
- 5.0,
38
- 4.666666666666667,
39
- 4.333333333333333,
40
- 2.666666666666666,
41
- 4.666666666666667,
42
- 4.666666666666667,
43
- 4.666666666666667,
44
- 4.333333333333333,
45
- 4.0,
46
- 4.333333333333333,
47
- 4.666666666666667,
48
- 4.666666666666667,
49
- 4.333333333333333,
50
- 2.333333333333333,
51
- 4.666666666666667,
52
- 4.666666666666667
53
- ]
4
+ "number_of_characters": 1139767,
5
+ "text_statistics": {
6
+ "total_text_length": 240173,
7
+ "min_text_length": 668,
8
+ "average_text_length": 2401.73,
9
+ "max_text_length": 3699,
10
+ "unique_texts": 100
11
+ },
12
+ "human_summaries_statistics": {
13
+ "total_text_length": 284479,
14
+ "min_text_length": 76,
15
+ "average_text_length": 258.61727272727273,
16
+ "max_text_length": 815,
17
+ "unique_texts": 1100
18
+ },
19
+ "machine_summaries_statistics": {
20
+ "total_text_length": 615115,
21
+ "min_text_length": 0,
22
+ "average_text_length": 384.446875,
23
+ "max_text_length": 1079,
24
+ "unique_texts": 1540
25
+ },
26
+ "score_statistics": {
27
+ "min_score": 1.0,
28
+ "avg_score": 3.777083333333336,
29
+ "max_score": 5.0
30
+ }
54
31
  }
55
32
  }
@@ -766,3 +766,32 @@ HIT_TMG__KaLM_embedding_multilingual_mini_instruct_v2 = ModelMeta(
766
766
  superseded_by=None,
767
767
  citation=KALM_EMBEDDING_CITATION,
768
768
  )
769
+
770
+ KaLM_Embedding_KaLM_embedding_multilingual_mini_instruct_v2_5 = ModelMeta(
771
+ loader=InstructSentenceTransformerModel,
772
+ loader_kwargs=dict(
773
+ instruction_template=KaLM_INSTRUCTION,
774
+ max_seq_length=512,
775
+ apply_instruction_to_passages=False,
776
+ prompts_dict=KaLM_v2_task_prompts,
777
+ ),
778
+ name="KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5",
779
+ revision="6a4cfc1084cb459ebd4729b53a8656a61448c720",
780
+ release_date="2025-09-30",
781
+ languages=["eng-Latn", "zho-Hans"],
782
+ n_parameters=494032768,
783
+ memory_usage_mb=1885,
784
+ max_tokens=512,
785
+ embed_dim=896,
786
+ license="apache-2.0",
787
+ open_weights=True,
788
+ public_training_code=None,
789
+ public_training_data="https://huggingface.co/datasets/KaLM-Embedding/KaLM-embedding-finetuning-data",
790
+ framework=["PyTorch", "Sentence Transformers"],
791
+ reference="https://huggingface.co/KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5",
792
+ similarity_fn_name="cosine",
793
+ use_instructions=True,
794
+ training_datasets=kalm_v2_training_data,
795
+ adapted_from="HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v2",
796
+ superseded_by=None,
797
+ )
@@ -21,7 +21,7 @@ class BUCCBitextMining(AbsTaskBitextMining):
21
21
  name="BUCC",
22
22
  dataset={
23
23
  "path": "mteb/BUCC",
24
- "revision": "39f20d5ac4a82e59dbcecaabdd599b82cbefa666",
24
+ "revision": "414572247440f0ccacf7eb0bb70a31533a0e5443",
25
25
  },
26
26
  description="BUCC bitext mining dataset",
27
27
  reference="https://comparable.limsi.fr/bucc2018/bucc2018-task.html",
@@ -36,9 +36,6 @@ class FinancialPhrasebankClassification(AbsTaskClassification):
36
36
  superseded_by="FinancialPhrasebankClassification.v2",
37
37
  )
38
38
 
39
- def dataset_transform(self):
40
- self.dataset = self.dataset.rename_column("sentence", "text")
41
-
42
39
 
43
40
  class FinancialPhrasebankClassificationV2(AbsTaskClassification):
44
41
  metadata = TaskMetadata(
@@ -44,18 +44,6 @@ class KorHateClassification(AbsTaskClassification):
44
44
  superseded_by="KorHateClassification.v2",
45
45
  )
46
46
 
47
- def dataset_transform(self):
48
- keep_cols = ["comments", "hate"]
49
- rename_dict = dict(zip(keep_cols, ["text", "label"]))
50
- remove_cols = [
51
- col for col in self.dataset["test"].column_names if col not in keep_cols
52
- ]
53
- self.dataset = self.dataset.rename_columns(rename_dict)
54
- self.dataset = self.dataset.remove_columns(remove_cols)
55
- self.dataset = self.stratified_subsampling(
56
- self.dataset, seed=self.seed, splits=["train"]
57
- )
58
-
59
47
 
60
48
  class KorHateClassificationV2(AbsTaskClassification):
61
49
  metadata = TaskMetadata(
@@ -8,14 +8,14 @@ class SwednClustering(AbsTaskClusteringLegacy):
8
8
  name="SwednClustering",
9
9
  dataset={
10
10
  "path": "mteb/SwednClustering",
11
- "revision": "7125017ead5797297f46e17b31bf78b56d12c2b2",
11
+ "revision": "45d2a99c3f1b6ee6189a6bb762ed74b7ef45dd9d",
12
12
  },
13
13
  description="The SWE-DN corpus is based on 1,963,576 news articles from the Swedish newspaper Dagens Nyheter (DN) during the years 2000--2020. The articles are filtered to resemble the CNN/DailyMail dataset both regarding textual structure. This dataset uses the category labels as clusters.",
14
14
  reference="https://spraakbanken.gu.se/en/resources/swedn",
15
15
  type="Clustering",
16
16
  category="t2c",
17
17
  modalities=["text"],
18
- eval_splits=["all"],
18
+ eval_splits=["test"],
19
19
  eval_langs=["swe-Latn"],
20
20
  main_score="v_measure",
21
21
  date=("2000-01-01", "2020-12-31"), # best guess
@@ -101,7 +101,7 @@ class VDRMultilingualRetrieval(AbsTaskRetrieval):
101
101
  "revision": "9e26ae152f5950ab1a5ff1c58edade3acc894793",
102
102
  },
103
103
  type="Retrieval",
104
- category="it2it",
104
+ category="t2i",
105
105
  modalities=["text", "image"],
106
106
  eval_splits=[_EVAL_SPLIT],
107
107
  eval_langs=_LANGS,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.0.4
3
+ Version: 2.0.5
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>