mteb 1.39.5__py3-none-any.whl → 1.39.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -500,3 +500,132 @@ def _create_summary_table_mean_subset(
500
500
  joint_table.insert(0, "Rank (Borda)", joint_table.pop("borda_rank"))
501
501
 
502
502
  return joint_table
503
+
504
+
505
+ def _create_summary_table_mean_task_type(
506
+ benchmark_results: BenchmarkResults,
507
+ ) -> pd.DataFrame:
508
+ """Create summary table from BenchmarkResults.
509
+
510
+ Returns a DataFrame with one row per model containing summary statistics
511
+ and task type averages.
512
+
513
+ Args:
514
+ benchmark_results: BenchmarkResults object containing model results
515
+
516
+ Returns:
517
+ DataFrame with model summaries, ready for styling in the leaderboard
518
+ """
519
+ data = benchmark_results.to_dataframe(format="long")
520
+
521
+ if data.empty:
522
+ no_results_frame = pd.DataFrame(
523
+ {"No results": ["You can try relaxing your criteria"]}
524
+ )
525
+ return no_results_frame
526
+
527
+ # Convert to DataFrame and pivot
528
+ per_task = data.pivot(index="model_name", columns="task_name", values="score")
529
+
530
+ # Remove models with no scores
531
+ to_remove = per_task.isna().all(axis="columns")
532
+ if to_remove.all():
533
+ no_results_frame = pd.DataFrame(
534
+ {"No results": ["You can try relaxing your criteria"]}
535
+ )
536
+ return no_results_frame
537
+
538
+ models_to_remove = list(per_task[to_remove].index)
539
+ per_task = per_task.drop(models_to_remove, axis=0)
540
+
541
+ # Calculate means by task type
542
+ mean_per_type = _get_means_per_types(per_task)
543
+ mean_per_type = mean_per_type.pivot(
544
+ index="model_name", columns="task_type", values="score"
545
+ )
546
+ mean_per_type.columns = [
547
+ _split_on_capital(column) for column in mean_per_type.columns
548
+ ]
549
+
550
+ # Calculate overall means
551
+ typed_mean = mean_per_type.mean(skipna=False, axis=1)
552
+
553
+ # Build joint table
554
+ joint_table = mean_per_type.copy()
555
+ joint_table = joint_table.drop(models_to_remove, axis=0)
556
+ joint_table.insert(0, "mean_by_task_type", typed_mean)
557
+ joint_table = joint_table.sort_values("mean_by_task_type", ascending=False)
558
+ joint_table["borda_rank"] = _get_borda_rank(per_task)
559
+ joint_table["rank"] = [i + 1 for i in range(len(joint_table))]
560
+ joint_table = joint_table.reset_index()
561
+
562
+ # Add model metadata
563
+ model_metas = joint_table["model_name"].map(_failsafe_get_model_meta)
564
+ joint_table = joint_table[model_metas.notna()]
565
+ joint_table["model_link"] = model_metas.map(lambda m: m.reference)
566
+
567
+ # Insert model metadata columns
568
+ joint_table.insert(
569
+ 1,
570
+ "Max Tokens",
571
+ model_metas.map(lambda m: _format_max_tokens(m.max_tokens)),
572
+ )
573
+ joint_table.insert(
574
+ 1,
575
+ "Embedding Dimensions",
576
+ model_metas.map(lambda m: str(int(m.embed_dim)) if m.embed_dim else "Unknown"),
577
+ )
578
+ joint_table.insert(
579
+ 1,
580
+ "Number of Parameters",
581
+ model_metas.map(lambda m: _format_n_parameters(m.n_parameters)),
582
+ )
583
+ joint_table.insert(
584
+ 1,
585
+ "Memory Usage (MB)",
586
+ model_metas.map(
587
+ lambda m: str(int(m.memory_usage_mb)) if m.memory_usage_mb else "Unknown"
588
+ ),
589
+ )
590
+
591
+ # Add zero-shot percentage
592
+ tasks = get_tasks(tasks=list(data["task_name"].unique()))
593
+ joint_table.insert(
594
+ 1, "Zero-shot", model_metas.map(lambda m: m.zero_shot_percentage(tasks))
595
+ )
596
+ joint_table["Zero-shot"] = joint_table["Zero-shot"].fillna(-1)
597
+
598
+ # Clean up model names (remove HF organization)
599
+ joint_table["model_name"] = joint_table["model_name"].map(
600
+ lambda name: name.split("/")[-1]
601
+ )
602
+
603
+ # Add markdown links to model names
604
+ name_w_link = (
605
+ "[" + joint_table["model_name"] + "](" + joint_table["model_link"] + ")"
606
+ )
607
+ joint_table["model_name"] = joint_table["model_name"].mask(
608
+ joint_table["model_link"].notna(), name_w_link
609
+ )
610
+ joint_table = joint_table.drop(columns=["model_link"])
611
+
612
+ # Rename columns
613
+ joint_table = joint_table.rename(
614
+ columns={
615
+ "model_name": "Model",
616
+ "mean_by_task_type": "Mean (TaskType)",
617
+ "borda_rank": "Rank (Borda)",
618
+ }
619
+ )
620
+
621
+ if "Any Any Multilingual Retrieval" in joint_table.columns:
622
+ joint_table = joint_table.rename(
623
+ columns={"Any Any Multilingual Retrieval": "Multilingual Retrieval"}
624
+ )
625
+ if "Any Any Retrieval" in joint_table.columns:
626
+ joint_table = joint_table.rename(columns={"Any Any Retrieval": "Retrieval"})
627
+
628
+ # Move borda rank to front
629
+ joint_table.insert(0, "Rank", joint_table.pop("rank"))
630
+
631
+ return joint_table
@@ -12,6 +12,7 @@ from mteb.benchmarks._create_table import (
12
12
  _create_summary_table_from_benchmark_results,
13
13
  _create_summary_table_mean_public_private,
14
14
  _create_summary_table_mean_subset,
15
+ _create_summary_table_mean_task_type,
15
16
  )
16
17
  from mteb.load_results.load_results import load_results
17
18
 
@@ -107,3 +108,11 @@ class HUMEBenchmark(Benchmark):
107
108
  ) -> pd.DataFrame:
108
109
  """Create summary table. Called by the leaderboard app."""
109
110
  return _create_summary_table_mean_subset(benchmark_results)
111
+
112
+
113
+ class MIEBBenchmark(Benchmark):
114
+ def _create_summary_table(
115
+ self, benchmark_results: BenchmarkResults
116
+ ) -> pd.DataFrame:
117
+ """Create summary table. Called by the leaderboard app."""
118
+ return _create_summary_table_mean_task_type(benchmark_results)
@@ -4,7 +4,7 @@ from typing import TYPE_CHECKING, Annotated
4
4
 
5
5
  from pydantic import AnyUrl, BeforeValidator, TypeAdapter
6
6
 
7
- from mteb.benchmarks.benchmark import Benchmark, HUMEBenchmark
7
+ from mteb.benchmarks.benchmark import Benchmark, HUMEBenchmark, MIEBBenchmark
8
8
  from mteb.overview import MTEBTasks, get_task, get_tasks
9
9
 
10
10
  if TYPE_CHECKING:
@@ -1754,7 +1754,7 @@ MIEB_common_tasks = [
1754
1754
  "WebQAT2TRetrieval",
1755
1755
  ]
1756
1756
 
1757
- MIEB_ENG = Benchmark(
1757
+ MIEB_ENG = MIEBBenchmark(
1758
1758
  name="MIEB(eng)",
1759
1759
  display_name="Image-Text, English",
1760
1760
  icon="https://github.com/DennisSuitters/LibreICONS/raw/2d2172d15e3c6ca03c018629d60050e4b99e5c55/svg-color/libre-gui-picture.svg",
@@ -1783,7 +1783,7 @@ MIEB_ENG = Benchmark(
1783
1783
  """,
1784
1784
  )
1785
1785
 
1786
- MIEB_MULTILINGUAL = Benchmark(
1786
+ MIEB_MULTILINGUAL = MIEBBenchmark(
1787
1787
  name="MIEB(Multilingual)",
1788
1788
  display_name="Image-Text, Multilingual",
1789
1789
  icon="https://github.com/DennisSuitters/LibreICONS/raw/2d2172d15e3c6ca03c018629d60050e4b99e5c55/svg-color/libre-gui-pictures.svg",
@@ -1818,7 +1818,7 @@ MIEB_MULTILINGUAL = Benchmark(
1818
1818
  """,
1819
1819
  )
1820
1820
 
1821
- MIEB_LITE = Benchmark(
1821
+ MIEB_LITE = MIEBBenchmark(
1822
1822
  name="MIEB(lite)",
1823
1823
  display_name="Image-Text, Lite",
1824
1824
  icon="https://github.com/DennisSuitters/LibreICONS/raw/2d2172d15e3c6ca03c018629d60050e4b99e5c55/svg-color/libre-map-landscape.svg",
@@ -1902,7 +1902,7 @@ MIEB_LITE = Benchmark(
1902
1902
  """,
1903
1903
  )
1904
1904
 
1905
- MIEB_IMG = Benchmark(
1905
+ MIEB_IMG = MIEBBenchmark(
1906
1906
  name="MIEB(Img)",
1907
1907
  display_name="Image only",
1908
1908
  icon="https://github.com/DennisSuitters/LibreICONS/raw/2d2172d15e3c6ca03c018629d60050e4b99e5c55/svg-color/libre-gui-pictures.svg",
@@ -53,19 +53,13 @@ class LinearRegressionEvaluator(Evaluator):
53
53
  scores = {}
54
54
  X_train = model.encode(
55
55
  self.sentences_train,
56
- model=model,
57
56
  task_name=self.task_name,
58
- hf_split="train",
59
- hf_subset=self.hf_subset,
60
57
  **encode_kwargs,
61
58
  )
62
59
  if test_cache is None:
63
60
  X_test = model.encode(
64
61
  self.sentences_test,
65
- model=model,
66
62
  task_name=self.task_name,
67
- hf_split=self.hf_split,
68
- hf_subset=self.hf_subset,
69
63
  **encode_kwargs,
70
64
  )
71
65
  test_cache = X_test
mteb/leaderboard/table.py CHANGED
@@ -116,6 +116,7 @@ def _apply_summary_table_styling(joint_table: pd.DataFrame) -> gr.DataFrame:
116
116
  """Apply styling to a raw summary DataFrame"""
117
117
  excluded_columns = [
118
118
  "Rank (Borda)",
119
+ "Rank",
119
120
  "Model",
120
121
  "Number of Parameters",
121
122
  "Embedding Dimensions",
@@ -150,11 +150,11 @@ from .sin.SinhalaNewsClassification import *
150
150
  from .sin.SinhalaNewsSourceClassification import *
151
151
  from .slk.CSFDSKMovieReviewSentimentClassification import *
152
152
  from .slk.SlovakHateSpeechClassification import *
153
+ from .slk.SlovakMovieReviewSentimentClassification import *
153
154
  from .slv.FrenkSlClassification import *
154
155
  from .spa.SpanishNewsClassification import *
155
156
  from .spa.SpanishSentimentClassification import *
156
157
  from .ssw.SiswatiNewsClassification import *
157
- from .svk.SlovakMovieReviewSentimentClassification import *
158
158
  from .swa.SwahiliNewsClassification import *
159
159
  from .swe.DalajClassification import *
160
160
  from .swe.SwedishSentimentClassification import *
@@ -18,7 +18,7 @@ class SlovakMovieReviewSentimentClassification(AbsTaskClassification):
18
18
  category="s2s",
19
19
  modalities=["text"],
20
20
  eval_splits=["test"],
21
- eval_langs=["svk-Latn"],
21
+ eval_langs=["slk-Latn"],
22
22
  main_score="accuracy",
23
23
  date=("2002-05-21", "2020-03-05"),
24
24
  dialect=[],
@@ -59,7 +59,7 @@ class SlovakMovieReviewSentimentClassificationV2(AbsTaskClassification):
59
59
  category="s2s",
60
60
  modalities=["text"],
61
61
  eval_splits=["test"],
62
- eval_langs=["svk-Latn"],
62
+ eval_langs=["slk-Latn"],
63
63
  main_score="accuracy",
64
64
  date=("2002-05-21", "2020-03-05"),
65
65
  dialect=[],
@@ -30,6 +30,39 @@ _LANGUAGES = {
30
30
  "zh": ["zho-Hans"],
31
31
  }
32
32
 
33
+ _common_metadata = dict(
34
+ reference="http://miracl.ai",
35
+ type="Retrieval",
36
+ category="s2p",
37
+ modalities=["text"],
38
+ eval_splits=[_EVAL_SPLIT],
39
+ eval_langs=_LANGUAGES,
40
+ main_score="ndcg_at_10",
41
+ date=("2022-06-01", "2023-01-30"),
42
+ domains=["Encyclopaedic", "Written"],
43
+ task_subtypes=[],
44
+ license="cc-by-sa-4.0",
45
+ annotations_creators="expert-annotated",
46
+ dialect=[],
47
+ sample_creation="created",
48
+ bibtex_citation=r"""
49
+ @article{10.1162/tacl_a_00595,
50
+ abstract = {{MIRACL is a multilingual dataset for ad hoc retrieval across 18 languages that collectively encompass over three billion native speakers around the world. This resource is designed to support monolingual retrieval tasks, where the queries and the corpora are in the same language. In total, we have gathered over 726k high-quality relevance judgments for 78k queries over Wikipedia in these languages, where all annotations have been performed by native speakers hired by our team. MIRACL covers languages that are both typologically close as well as distant from 10 language families and 13 sub-families, associated with varying amounts of publicly available resources. Extensive automatic heuristic verification and manual assessments were performed during the annotation process to control data quality. In total, MIRACL represents an investment of around five person-years of human annotator effort. Our goal is to spur research on improving retrieval across a continuum of languages, thus enhancing information access capabilities for diverse populations around the world, particularly those that have traditionally been underserved. MIRACL is available at http://miracl.ai/.}},
51
+ author = {Zhang, Xinyu and Thakur, Nandan and Ogundepo, Odunayo and Kamalloo, Ehsan and Alfonso-Hermelo, David and Li, Xiaoguang and Liu, Qun and Rezagholizadeh, Mehdi and Lin, Jimmy},
52
+ doi = {10.1162/tacl_a_00595},
53
+ eprint = {https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl\_a\_00595/2157340/tacl\_a\_00595.pdf},
54
+ issn = {2307-387X},
55
+ journal = {Transactions of the Association for Computational Linguistics},
56
+ month = {09},
57
+ pages = {1114-1131},
58
+ title = {{MIRACL: A Multilingual Retrieval Dataset Covering 18 Diverse Languages}},
59
+ url = {https://doi.org/10.1162/tacl\_a\_00595},
60
+ volume = {11},
61
+ year = {2023},
62
+ }
63
+ """,
64
+ )
65
+
33
66
 
34
67
  def _load_miracl_data(
35
68
  path: str,
@@ -106,44 +139,15 @@ class MIRACLRetrieval(MultilingualTask, AbsTaskRetrieval):
106
139
  metadata = TaskMetadata(
107
140
  name="MIRACLRetrieval",
108
141
  description="MIRACL (Multilingual Information Retrieval Across a Continuum of Languages) is a multilingual retrieval dataset that focuses on search across 18 different languages.",
109
- reference="http://miracl.ai",
110
142
  dataset={
111
143
  "path": "miracl/mmteb-miracl",
112
144
  "revision": "main",
113
145
  "trust_remote_code": True,
114
146
  },
115
- type="Retrieval",
116
- category="s2p",
117
- modalities=["text"],
118
- eval_splits=[_EVAL_SPLIT],
119
- eval_langs=_LANGUAGES,
120
- main_score="ndcg_at_10",
121
- date=("2022-06-01", "2023-01-30"),
122
- domains=["Encyclopaedic", "Written"],
123
- task_subtypes=[],
124
- license="cc-by-sa-4.0",
125
- annotations_creators="expert-annotated",
126
- dialect=[],
127
- sample_creation="created",
128
- bibtex_citation=r"""
129
- @article{10.1162/tacl_a_00595,
130
- abstract = {{MIRACL is a multilingual dataset for ad hoc retrieval across 18 languages that collectively encompass over three billion native speakers around the world. This resource is designed to support monolingual retrieval tasks, where the queries and the corpora are in the same language. In total, we have gathered over 726k high-quality relevance judgments for 78k queries over Wikipedia in these languages, where all annotations have been performed by native speakers hired by our team. MIRACL covers languages that are both typologically close as well as distant from 10 language families and 13 sub-families, associated with varying amounts of publicly available resources. Extensive automatic heuristic verification and manual assessments were performed during the annotation process to control data quality. In total, MIRACL represents an investment of around five person-years of human annotator effort. Our goal is to spur research on improving retrieval across a continuum of languages, thus enhancing information access capabilities for diverse populations around the world, particularly those that have traditionally been underserved. MIRACL is available at http://miracl.ai/.}},
131
- author = {Zhang, Xinyu and Thakur, Nandan and Ogundepo, Odunayo and Kamalloo, Ehsan and Alfonso-Hermelo, David and Li, Xiaoguang and Liu, Qun and Rezagholizadeh, Mehdi and Lin, Jimmy},
132
- doi = {10.1162/tacl_a_00595},
133
- eprint = {https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl\_a\_00595/2157340/tacl\_a\_00595.pdf},
134
- issn = {2307-387X},
135
- journal = {Transactions of the Association for Computational Linguistics},
136
- month = {09},
137
- pages = {1114-1131},
138
- title = {{MIRACL: A Multilingual Retrieval Dataset Covering 18 Diverse Languages}},
139
- url = {https://doi.org/10.1162/tacl\_a\_00595},
140
- volume = {11},
141
- year = {2023},
142
- }
143
- """,
144
147
  prompt={
145
148
  "query": "Given a question, retrieve Wikipedia passages that answer the question"
146
149
  },
150
+ **_common_metadata,
147
151
  )
148
152
 
149
153
  def load_data(self, **kwargs):
@@ -300,45 +304,58 @@ def _load_miracl_data_hard_negatives(
300
304
 
301
305
 
302
306
  class MIRACLRetrievalHardNegatives(MultilingualTask, AbsTaskRetrieval):
307
+ # in current version prompt for instruction models different from original task
308
+ superseded_by = "MIRACLRetrievalHardNegatives.v2"
309
+
303
310
  metadata = TaskMetadata(
304
311
  name="MIRACLRetrievalHardNegatives",
305
312
  description="MIRACL (Multilingual Information Retrieval Across a Continuum of Languages) is a multilingual retrieval dataset that focuses on search across 18 different languages. The hard negative version has been created by pooling the 250 top documents per query from BM25, e5-multilingual-large and e5-mistral-instruct.",
306
- reference="http://miracl.ai",
307
313
  dataset={
308
314
  "path": "mteb/miracl-hard-negatives",
309
315
  "revision": "95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb",
310
316
  "trust_remote_code": True,
311
317
  },
312
- type="Retrieval",
313
- category="s2p",
314
- modalities=["text"],
315
- eval_splits=[_EVAL_SPLIT],
316
- eval_langs=_LANGUAGES,
317
- main_score="ndcg_at_10",
318
- date=("2022-06-01", "2023-01-30"),
319
- domains=["Encyclopaedic", "Written"],
320
- task_subtypes=[],
321
- license="cc-by-sa-4.0",
322
- annotations_creators="expert-annotated",
323
- dialect=[],
324
- sample_creation="created",
325
- bibtex_citation=r"""
326
- @article{10.1162/tacl_a_00595,
327
- abstract = {{MIRACL is a multilingual dataset for ad hoc retrieval across 18 languages that collectively encompass over three billion native speakers around the world. This resource is designed to support monolingual retrieval tasks, where the queries and the corpora are in the same language. In total, we have gathered over 726k high-quality relevance judgments for 78k queries over Wikipedia in these languages, where all annotations have been performed by native speakers hired by our team. MIRACL covers languages that are both typologically close as well as distant from 10 language families and 13 sub-families, associated with varying amounts of publicly available resources. Extensive automatic heuristic verification and manual assessments were performed during the annotation process to control data quality. In total, MIRACL represents an investment of around five person-years of human annotator effort. Our goal is to spur research on improving retrieval across a continuum of languages, thus enhancing information access capabilities for diverse populations around the world, particularly those that have traditionally been underserved. MIRACL is available at http://miracl.ai/.}},
328
- author = {Zhang, Xinyu and Thakur, Nandan and Ogundepo, Odunayo and Kamalloo, Ehsan and Alfonso-Hermelo, David and Li, Xiaoguang and Liu, Qun and Rezagholizadeh, Mehdi and Lin, Jimmy},
329
- doi = {10.1162/tacl_a_00595},
330
- eprint = {https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl\_a\_00595/2157340/tacl\_a\_00595.pdf},
331
- issn = {2307-387X},
332
- journal = {Transactions of the Association for Computational Linguistics},
333
- month = {09},
334
- pages = {1114-1131},
335
- title = {{MIRACL: A Multilingual Retrieval Dataset Covering 18 Diverse Languages}},
336
- url = {https://doi.org/10.1162/tacl\_a\_00595},
337
- volume = {11},
338
- year = {2023},
339
- }
340
- """,
341
318
  adapted_from=["MIRACLRetrieval"],
319
+ **_common_metadata,
320
+ )
321
+
322
+ def load_data(self, **kwargs):
323
+ if self.data_loaded:
324
+ return
325
+
326
+ self.corpus, self.queries, self.relevant_docs = (
327
+ _load_miracl_data_hard_negatives(
328
+ path=self.metadata.dataset["path"],
329
+ langs=self.hf_subsets,
330
+ splits=self.metadata_dict["eval_splits"],
331
+ cache_dir=kwargs.get("cache_dir", None),
332
+ revision=self.metadata.dataset["revision"],
333
+ trust_remote_code=self.metadata.dataset.get("trust_remote_code", False),
334
+ )
335
+ )
336
+
337
+ self.data_loaded = True
338
+
339
+
340
+ class MIRACLRetrievalHardNegativesV2(MultilingualTask, AbsTaskRetrieval):
341
+ metadata = TaskMetadata(
342
+ name="MIRACLRetrievalHardNegatives.v2",
343
+ description=(
344
+ "MIRACL (Multilingual Information Retrieval Across a Continuum of Languages) is a multilingual retrieval "
345
+ "dataset that focuses on search across 18 different languages. The hard negative version has been "
346
+ "created by pooling the 250 top documents per query from BM25, e5-multilingual-large and e5-mistral-instruct."
347
+ "V2 uses a more appropriate prompt rather than the default prompt for retrieval."
348
+ ),
349
+ dataset={
350
+ "path": "mteb/miracl-hard-negatives",
351
+ "revision": "95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb",
352
+ "trust_remote_code": True,
353
+ },
354
+ prompt={
355
+ "query": "Given a question, retrieve Wikipedia passages that answer the question",
356
+ },
357
+ adapted_from=["MIRACLRetrieval"],
358
+ **_common_metadata,
342
359
  )
343
360
 
344
361
  def load_data(self, **kwargs):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 1.39.5
3
+ Version: 1.39.7
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, nouamane@huggingface.co, info@nils-reimers.de
6
6
  License: Apache License
@@ -48,11 +48,11 @@ mteb/abstasks/Image/AbsTaskVisualSTS.py,sha256=Gyke5MxDseNzZqz56it_tMI5jCNVdURrb
48
48
  mteb/abstasks/Image/AbsTaskZeroShotClassification.py,sha256=BC_Ev8ldT3gd4om4tzkTjUTwr7GFw7vePosNLSCdgZU,5163
49
49
  mteb/abstasks/Image/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
50
  mteb/benchmarks/__init__.py,sha256=xfFZhvNbha5RS5dJL-j9cSYWdWckbZXHuM3ijmO7nCs,335
51
- mteb/benchmarks/_create_table.py,sha256=czqUoL9yXjY-jzS-2QL2PNwO8ObLVraJZCPFyoDTAdQ,16435
52
- mteb/benchmarks/benchmark.py,sha256=dpkku0__5nqFcSMUqirofMeW4i89YggEmIwC1nd3a4s,3859
51
+ mteb/benchmarks/_create_table.py,sha256=9oc4szgHVNIAYTSAcR21DK3rot3Av-EXReDjEaOfSIQ,20758
52
+ mteb/benchmarks/benchmark.py,sha256=I_qOOSUYz3Mxa3sSv3LfbxUESsw9yevFYtvzEkzskEg,4177
53
53
  mteb/benchmarks/get_benchmark.py,sha256=WxjPpjxcLtkAlxKnD9cQ2MtwpkxsIlvAtwwhE73EwsA,2744
54
54
  mteb/benchmarks/benchmarks/__init__.py,sha256=AdowVnEur-DVwKHtk_FoV3rIlmX9_lXoSsx95ZqkkqE,2131
55
- mteb/benchmarks/benchmarks/benchmarks.py,sha256=WKLa1VTRlWaE1myskseJr0aRfKIglH8o_vAIPQ2TNpk,83868
55
+ mteb/benchmarks/benchmarks/benchmarks.py,sha256=fmjPlHTNgeJPvclT9K2F9CKfN43L-2Q1eJkTyRjLE2A,83899
56
56
  mteb/benchmarks/benchmarks/rteb_benchmarks.py,sha256=M4oRsbYe8daKlZZF0yUpEgxt7I4STVUD_ouIdp2RsRE,10640
57
57
  mteb/evaluation/LangMapping.py,sha256=_ipd6Cg_Za2xFS50t4DEAPxCVpOZPCs8c9lhp7Kv1q0,2831
58
58
  mteb/evaluation/MTEB.py,sha256=eN2xqG_rTmG4NRVltn0-8uBU0pK3y1Q0NAVPX9axsL0,32002
@@ -63,7 +63,7 @@ mteb/evaluation/evaluators/ClusteringEvaluator.py,sha256=8AhwqPiX_XPn8WuFLlAMuy7
63
63
  mteb/evaluation/evaluators/Evaluator.py,sha256=MXRcAAdg9SSKLIUf-rouDyCWz4zzUaGd_FXdB6aJYY0,896
64
64
  mteb/evaluation/evaluators/InstructionRetrievalEvaluator.py,sha256=xfT0C1g1FdOSonl6H7BR_8XE05N9VMxryCwm3zTfNLI,1525
65
65
  mteb/evaluation/evaluators/PairClassificationEvaluator.py,sha256=CZfYYVBwaqoc5nQ3A9JAIAgeNEtHgruhDG4fyVJlhBQ,9068
66
- mteb/evaluation/evaluators/RegressionEvaluator.py,sha256=qMwtCPhXH3jyg42SiXPOQnXASQRlNP_vcpx3wdPlxnk,2314
66
+ mteb/evaluation/evaluators/RegressionEvaluator.py,sha256=ZZl3jAxOYFibNlD1bPX_uvJNntn4LTsHJiYtMxYMRFQ,2110
67
67
  mteb/evaluation/evaluators/RerankingEvaluator.py,sha256=E_XojL1my7iqNjtP8dtytWaGoVQEdCptIuPv3JDx6nc,22364
68
68
  mteb/evaluation/evaluators/RetrievalEvaluator.py,sha256=TCYwl1SbNp54QqhG1Zxlztgye8RgOGwpqgfeBfz2fHU,23558
69
69
  mteb/evaluation/evaluators/STSEvaluator.py,sha256=z59KeCDj_BzoMIgANQ_brFBumaqXNLfLEFX4V5NkGKs,3481
@@ -82,7 +82,7 @@ mteb/leaderboard/__init__.py,sha256=rb6vKGZV31m6x33LpKruPAwIBlQ5QzJVT0Y0do9DUSc,
82
82
  mteb/leaderboard/app.py,sha256=N6Ox5gzZHXdLaIyl8Yf1_Wu4yoOtyl0y6aVe_kzszts,31522
83
83
  mteb/leaderboard/benchmark_selector.py,sha256=dhZ9x3sqCkdcw7hJbqVr6PHSucPMbsGAgGPT6F_sow8,7196
84
84
  mteb/leaderboard/figures.py,sha256=wcSJWDJO4oATZlao_mY-oLDpj0QKvJp8pUhf4FbrI6s,7465
85
- mteb/leaderboard/table.py,sha256=X13bMrak-KQMEYo-zrJITcWLq7ZSOUBhAC9TSL40tSI,7323
85
+ mteb/leaderboard/table.py,sha256=1Yx2xlKzn--RSLi1GAAwGx9mpGBcZVU5ECr191G385s,7339
86
86
  mteb/leaderboard/text_segments.py,sha256=fokW080HKfLbyHH-HAcoNQ1PoW4K1IQSr-MukHjEVhU,6609
87
87
  mteb/load_results/__init__.py,sha256=vtxMb4Zz2Jpn4GjY59qhsTyQpfX3z57-b0iLSqm5pBQ,250
88
88
  mteb/load_results/benchmark_results.py,sha256=XQSCCnJ967A0tjIZoOVVmjRWxYA663c6Xcob-t3psRY,31671
@@ -233,7 +233,7 @@ mteb/tasks/BitextMining/srn/SRNCorpusBitextMining.py,sha256=1KY3kQd31Wz2GPKTyshw
233
233
  mteb/tasks/BitextMining/srn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
234
234
  mteb/tasks/BitextMining/vie/VieMedEVBitextMining.py,sha256=KsEY8e6Mx2SjGlV5_JGqPrzcFxJxnSXh7fWt32zefR8,2760
235
235
  mteb/tasks/BitextMining/vie/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
236
- mteb/tasks/Classification/__init__.py,sha256=bk9rC7VS5BFDkSai6GT9k3BzVHZFHu4U2o6J55sGgsw,9191
236
+ mteb/tasks/Classification/__init__.py,sha256=8gKeMJfGQIAEXRAGsWwtbL43cY1DiRJYP66AsfUWXnI,9191
237
237
  mteb/tasks/Classification/ara/AJGT.py,sha256=GNhn0ddAmjhEsH2e-7Yva8ap0W53E0TNfGSTMY4vOqs,3142
238
238
  mteb/tasks/Classification/ara/HotelReviewSentimentClassification.py,sha256=Tb3uzfYHI5fbrC726IuXU0o7N0fCgiKFqTAycsBKZe8,3101
239
239
  mteb/tasks/Classification/ara/OnlineStoreReviewSentimentClassification.py,sha256=oenRFbJbIONJ04k4_tPHlUMpOdniE9P6_1v1gy9wlCI,2502
@@ -426,6 +426,7 @@ mteb/tasks/Classification/sin/SinhalaNewsSourceClassification.py,sha256=ShaqgmTF
426
426
  mteb/tasks/Classification/sin/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
427
427
  mteb/tasks/Classification/slk/CSFDSKMovieReviewSentimentClassification.py,sha256=vCHn3qAb2hkZ1uVM7Pz1xNOsmDg6VjIJ91bJ5QB9O9U,3625
428
428
  mteb/tasks/Classification/slk/SlovakHateSpeechClassification.py,sha256=CgcXv4yvZ6wv82eE5d7P35PjDvxvWHlvoWg64kcMSGk,2400
429
+ mteb/tasks/Classification/slk/SlovakMovieReviewSentimentClassification.py,sha256=Dj-2AxHElAITkL7nhMuv0OBC7HEImRYBT_8x_2Csshg,3365
429
430
  mteb/tasks/Classification/slk/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
430
431
  mteb/tasks/Classification/slv/FrenkSlClassification.py,sha256=VjOwvpTDhEsKTR1zIWR3M998ZuWUz6MNm4_30ui0zYE,3266
431
432
  mteb/tasks/Classification/slv/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -434,8 +435,6 @@ mteb/tasks/Classification/spa/SpanishSentimentClassification.py,sha256=gEiTSir_3
434
435
  mteb/tasks/Classification/spa/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
435
436
  mteb/tasks/Classification/ssw/SiswatiNewsClassification.py,sha256=YipX9ACHi25m-LDzQ5CxIRNgOL62oAT5NBapeQkzhKc,3110
436
437
  mteb/tasks/Classification/ssw/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
437
- mteb/tasks/Classification/svk/SlovakMovieReviewSentimentClassification.py,sha256=ByiHVk6EpL2QLxHS3LAw4JBivN5hHXtXPdzTBb71ZUw,3365
438
- mteb/tasks/Classification/svk/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
439
438
  mteb/tasks/Classification/swa/SwahiliNewsClassification.py,sha256=Iml296uPAsYNpMuRZTcTAa-BCvkh6WXAw0iemKS0yIg,3644
440
439
  mteb/tasks/Classification/swa/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
441
440
  mteb/tasks/Classification/swe/DalajClassification.py,sha256=kWC4mzpRtP6iC3K9jNK0vKsO1zk7poIw_r7smCQ8OP8,4228
@@ -980,7 +979,7 @@ mteb/tasks/Retrieval/multilingual/CUREv1Retrieval.py,sha256=1icEnr1bhZTSwu05MTsx
980
979
  mteb/tasks/Retrieval/multilingual/CrossLingualSemanticDiscriminationWMT19.py,sha256=d_lcwJFEOzF_XWESftIW7dY6VAOTAHCvsFAIGqcuYSw,4885
981
980
  mteb/tasks/Retrieval/multilingual/CrossLingualSemanticDiscriminationWMT21.py,sha256=aPJ7Q3q6bF08fYO8JF7lRHIIzD42Rr0s0-SnL7TzHOE,4885
982
981
  mteb/tasks/Retrieval/multilingual/IndicQARetrieval.py,sha256=gcuYoqc8Oxw4eDC9JbsmSBzEK5ygFn7fIADX8A7EhJI,3863
983
- mteb/tasks/Retrieval/multilingual/MIRACLRetrieval.py,sha256=0DZYJgBICTmccCskm-YiUVH7L2bpt_YBSLH0lPVYif8,15039
982
+ mteb/tasks/Retrieval/multilingual/MIRACLRetrieval.py,sha256=B-ingrCxfOyWkpE9aIIpwayAYlQt8QQA4Vbjm4EPSDE,14454
984
983
  mteb/tasks/Retrieval/multilingual/MKQARetrieval.py,sha256=d7KZAPROhcih_pXl2-p-d26QRR5i3UbyK2oYThC3vug,4477
985
984
  mteb/tasks/Retrieval/multilingual/MLQARetrieval.py,sha256=2hC-uGDGqJoRRIFNSRJXjFAzK4ITmFpsZ-jV0jCcdU8,6619
986
985
  mteb/tasks/Retrieval/multilingual/MintakaRetrieval.py,sha256=tnJ0PrUIsaWINxqfpU022ZGkUjAEVQeP0MWmwq70XPU,4400
@@ -1153,9 +1152,9 @@ mteb/tasks/aggregated_tasks/STS17MultilingualVisualSTS.py,sha256=uf02yWS1BOnffl8
1153
1152
  mteb/tasks/aggregated_tasks/STSBenchmarkMultilingualVisualSTS.py,sha256=ImA29OtG9sotn5PynAO4QSl5YdXgYVMbHfqfOD2skIk,3156
1154
1153
  mteb/tasks/aggregated_tasks/SynPerChatbotConvSAClassification.py,sha256=V2XjmsKqe4CTK2IPKuVM7T8hDPP7Uo1WkzbVZlHinKg,1220
1155
1154
  mteb/tasks/aggregated_tasks/__init__.py,sha256=MAU-3SqUN6nypOkdBv4MZVCA2tMnxuw317Jwct9QX-A,881
1156
- mteb-1.39.5.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
1157
- mteb-1.39.5.dist-info/METADATA,sha256=Z9wZ7ng9Ha9s_0Kpl3M3hLGDLDyd3WUPCXHhpsjpRPk,29039
1158
- mteb-1.39.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
1159
- mteb-1.39.5.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
1160
- mteb-1.39.5.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
1161
- mteb-1.39.5.dist-info/RECORD,,
1155
+ mteb-1.39.7.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
1156
+ mteb-1.39.7.dist-info/METADATA,sha256=9vYlBQSFrtp81iE0lKTdsZ5SVwD2H2gWANnBxqe-2H8,29039
1157
+ mteb-1.39.7.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
1158
+ mteb-1.39.7.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
1159
+ mteb-1.39.7.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
1160
+ mteb-1.39.7.dist-info/RECORD,,
File without changes
File without changes