mt-metadata 0.3.5__py2.py3-none-any.whl → 0.3.7__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mt-metadata might be problematic. Click here for more details.

Files changed (34) hide show
  1. mt_metadata/__init__.py +1 -1
  2. mt_metadata/base/helpers.py +9 -2
  3. mt_metadata/timeseries/filters/filtered.py +133 -75
  4. mt_metadata/timeseries/filters/frequency_response_table_filter.py +10 -7
  5. mt_metadata/timeseries/station.py +31 -0
  6. mt_metadata/timeseries/stationxml/xml_channel_mt_channel.py +53 -1
  7. mt_metadata/timeseries/stationxml/xml_inventory_mt_experiment.py +1 -0
  8. mt_metadata/transfer_functions/__init__.py +38 -0
  9. mt_metadata/transfer_functions/core.py +96 -71
  10. mt_metadata/transfer_functions/io/edi/edi.py +29 -19
  11. mt_metadata/transfer_functions/io/edi/metadata/define_measurement.py +1 -0
  12. mt_metadata/transfer_functions/io/edi/metadata/emeasurement.py +4 -2
  13. mt_metadata/transfer_functions/io/edi/metadata/header.py +3 -1
  14. mt_metadata/transfer_functions/io/edi/metadata/information.py +13 -6
  15. mt_metadata/transfer_functions/io/emtfxml/emtfxml.py +12 -6
  16. mt_metadata/transfer_functions/io/emtfxml/metadata/data.py +1 -1
  17. mt_metadata/transfer_functions/io/emtfxml/metadata/estimate.py +1 -1
  18. mt_metadata/transfer_functions/io/emtfxml/metadata/period_range.py +6 -1
  19. mt_metadata/transfer_functions/io/emtfxml/metadata/provenance.py +6 -2
  20. mt_metadata/transfer_functions/io/emtfxml/metadata/standards/copyright.json +2 -1
  21. mt_metadata/transfer_functions/processing/aurora/__init__.py +0 -1
  22. mt_metadata/transfer_functions/processing/aurora/band.py +7 -11
  23. mt_metadata/transfer_functions/processing/aurora/channel_nomenclature.py +6 -44
  24. mt_metadata/transfer_functions/processing/aurora/standards/regression.json +46 -1
  25. mt_metadata/transfer_functions/processing/aurora/station.py +17 -11
  26. mt_metadata/transfer_functions/processing/aurora/stations.py +4 -4
  27. mt_metadata/utils/mttime.py +1 -1
  28. mt_metadata/utils/validators.py +11 -2
  29. {mt_metadata-0.3.5.dist-info → mt_metadata-0.3.7.dist-info}/METADATA +52 -3
  30. {mt_metadata-0.3.5.dist-info → mt_metadata-0.3.7.dist-info}/RECORD +34 -34
  31. {mt_metadata-0.3.5.dist-info → mt_metadata-0.3.7.dist-info}/AUTHORS.rst +0 -0
  32. {mt_metadata-0.3.5.dist-info → mt_metadata-0.3.7.dist-info}/LICENSE +0 -0
  33. {mt_metadata-0.3.5.dist-info → mt_metadata-0.3.7.dist-info}/WHEEL +0 -0
  34. {mt_metadata-0.3.5.dist-info → mt_metadata-0.3.7.dist-info}/top_level.txt +0 -0
@@ -141,7 +141,7 @@ class Band(Base):
141
141
 
142
142
  class FrequencyBands(object):
143
143
  """
144
- This is just collection of FrequencyBand objects.
144
+ This is just collection of objects of class Band.
145
145
  It is intended to be used at a single decimation level
146
146
 
147
147
  The core underlying variable is "band_edges", a 2D array, with one row per
@@ -169,11 +169,9 @@ class FrequencyBands(object):
169
169
 
170
170
  def validate(self):
171
171
  """
172
- placeholder for sanity checks.
173
- Main reason this is here is in anticipation of supporting an append() method
174
- to this class that accepts FrequencyBand objects. In that case we may wish
175
- to re-order the band edges.
176
-
172
+ Placeholder for sanity checks.
173
+ Main reason for this is in anticipation of an append() method that accepts Band objects.
174
+ In that case we may wish to re-order the band edges.
177
175
 
178
176
  """
179
177
  band_centers = self.band_centers()
@@ -215,12 +213,10 @@ class FrequencyBands(object):
215
213
 
216
214
  Returns
217
215
  -------
218
- frequency_band: FrequencyBand() object
216
+ frequency_band: Band()
217
+ Class that represents a frequency band
219
218
  """
220
- # frequency_band = FrequencyBand(
221
- # self.band_edges[i_band, 0],
222
- # self.band_edges[i_band, 1],
223
- # )
219
+
224
220
  frequency_band = Band(
225
221
  frequency_min=self.band_edges[i_band, 0],
226
222
  frequency_max=self.band_edges[i_band, 1],
@@ -10,53 +10,11 @@ from mt_metadata.base.helpers import write_lines
10
10
  from mt_metadata.base import get_schema, Base
11
11
  from .standards import SCHEMA_FN_PATHS
12
12
 
13
+ from mt_metadata.transfer_functions import CHANNEL_MAPS
14
+
13
15
  # =============================================================================
14
16
  attr_dict = get_schema("channel_nomenclature", SCHEMA_FN_PATHS)
15
17
 
16
- # Define allowed sets of channel labellings
17
- STANDARD_INPUT_NAMES = [
18
- "hx",
19
- "hy",
20
- ]
21
- STANDARD_OUTPUT_NAMES = [
22
- "ex",
23
- "ey",
24
- "hz",
25
- ]
26
-
27
- def load_channel_maps():
28
- """
29
- :return: Keys are the channel_nomenclature schema keywords.
30
- Values are dictionaries which map the STANDARD_INPUT_NAMES, \
31
- STANDARD_OUTPUT_NAMES to the channel names associated with a given
32
- channel nomenclature
33
- :rtype: dict
34
- """
35
- import json
36
- import pathlib
37
- fn = pathlib.Path(__file__).parent.joinpath("standards", "channel_nomenclatures.json")
38
- with open(fn) as f:
39
- channel_maps = json.loads(f.read())
40
- return channel_maps
41
-
42
- CHANNEL_MAPS = load_channel_maps()
43
-
44
- def get_allowed_channel_names(standard_names):
45
- """
46
- :param standard_names: one of STANDARD_INPUT_NAMES, or STANDARD_OUTPUT_NAMES
47
- :type standard_names: list
48
- :return: allowed_names: list of channel names that are supported
49
- :rtype: list
50
- """
51
- allowed_names = []
52
- for ch in standard_names:
53
- for _, channel_map in CHANNEL_MAPS.items():
54
- allowed_names.append(channel_map[ch])
55
- allowed_names = list(set(allowed_names))
56
- return allowed_names
57
-
58
- ALLOWED_INPUT_CHANNELS = get_allowed_channel_names(STANDARD_INPUT_NAMES)
59
- ALLOWED_OUTPUT_CHANNELS = get_allowed_channel_names(STANDARD_OUTPUT_NAMES)
60
18
 
61
19
  # =============================================================================
62
20
  class ChannelNomenclature(Base):
@@ -77,6 +35,10 @@ class ChannelNomenclature(Base):
77
35
  def hx_hy(self):
78
36
  return [self.hx, self.hy]
79
37
 
38
+ @property
39
+ def hx_hy_hz(self):
40
+ return [self.hx, self.hy, self.hz]
41
+
80
42
  @property
81
43
  def ex_ey_hz(self):
82
44
  return [self.ex, self.ey, self.hz]
@@ -31,5 +31,50 @@
31
31
  "alias": [],
32
32
  "example": "2",
33
33
  "default": 2
34
+ },
35
+ "r0": {
36
+ "type": "float",
37
+ "required": true,
38
+ "style": "number",
39
+ "units": null,
40
+ "description": "The number of standard deviations where the influence function changes from linear to quadratic",
41
+ "options": [],
42
+ "alias": [],
43
+ "example": "1.4",
44
+ "default": 1.5
45
+ },
46
+ "u0": {
47
+ "type": "float",
48
+ "required": true,
49
+ "style": "number",
50
+ "units": null,
51
+ "description": "Control for redescending Huber regression weights.",
52
+ "options": [],
53
+ "alias": [],
54
+ "example": "2.8",
55
+ "default": 2.8
56
+ },
57
+ "tolerance": {
58
+ "type": "float",
59
+ "required": true,
60
+ "style": "number",
61
+ "units": null,
62
+ "description": "Control for convergence of RME algorithm. Lower means more iterations",
63
+ "options": [],
64
+ "alias": [],
65
+ "example": "0.005",
66
+ "default": 0.005
67
+ },
68
+ "verbosity": {
69
+ "type": "int",
70
+ "required": true,
71
+ "style": "number",
72
+ "units": null,
73
+ "description": "Control for logging messages during regression -- Higher means more messages",
74
+ "options": [0, 1, 2],
75
+ "alias": [],
76
+ "example": "1",
77
+ "default": 0
78
+
34
79
  }
35
- }
80
+ }
@@ -17,6 +17,8 @@ from .run import Run
17
17
 
18
18
  # =============================================================================
19
19
  attr_dict = get_schema("station", SCHEMA_FN_PATHS)
20
+
21
+
20
22
  # =============================================================================
21
23
  class Station(Base):
22
24
  __doc__ = write_lines(attr_dict)
@@ -88,8 +90,8 @@ class Station(Base):
88
90
  processing
89
91
 
90
92
  [
91
- "station_id",
92
- "run_id",
93
+ "station",
94
+ "run",
93
95
  "start",
94
96
  "end",
95
97
  "mth5_path",
@@ -106,8 +108,8 @@ class Station(Base):
106
108
  for run in self.runs:
107
109
  for tp in run.time_periods:
108
110
  entry = {
109
- "station_id": self.id,
110
- "run_id": run.id,
111
+ "station": self.id,
112
+ "run": run.id,
111
113
  "start": tp.start,
112
114
  "end": tp.end,
113
115
  "mth5_path": self.mth5_path,
@@ -130,8 +132,8 @@ class Station(Base):
130
132
  set a data frame
131
133
 
132
134
  [
133
- "station_id",
134
- "run_id",
135
+ "station",
136
+ "run",
135
137
  "start",
136
138
  "end",
137
139
  "mth5_path",
@@ -150,15 +152,17 @@ class Station(Base):
150
152
 
151
153
  self.runs = []
152
154
 
153
- self.id = df.station_id.unique()[0]
155
+ self.id = df.station.unique()[0]
154
156
  self.mth5_path = df.mth5_path.unique()[0]
155
157
  self.remote = df.remote.unique()[0]
156
158
 
157
159
  for entry in df.itertuples():
158
160
  try:
159
- r = self.run_dict[entry.run_id]
161
+ r = self.run_dict[entry.run]
160
162
  r.time_periods.append(
161
- TimePeriod(start=entry.start.isoformat(), end=entry.end.isoformat())
163
+ TimePeriod(
164
+ start=entry.start.isoformat(), end=entry.end.isoformat()
165
+ )
162
166
  )
163
167
 
164
168
  except KeyError:
@@ -167,7 +171,7 @@ class Station(Base):
167
171
  else:
168
172
  channel_scale_factors = {}
169
173
  r = Run(
170
- id=entry.run_id,
174
+ id=entry.run,
171
175
  sample_rate=entry.sample_rate,
172
176
  input_channels=entry.input_channels,
173
177
  output_channels=entry.output_channels,
@@ -175,6 +179,8 @@ class Station(Base):
175
179
  )
176
180
 
177
181
  r.time_periods.append(
178
- TimePeriod(start=entry.start.isoformat(), end=entry.end.isoformat())
182
+ TimePeriod(
183
+ start=entry.start.isoformat(), end=entry.end.isoformat()
184
+ )
179
185
  )
180
186
  self.runs.append(r)
@@ -117,14 +117,14 @@ class Stations(Base):
117
117
 
118
118
  """
119
119
 
120
- station = df[df.remote == False].station_id.unique()[0]
121
- rr_stations = df[df.remote == True].station_id.unique()
120
+ station = df[df.remote == False].station.unique()[0]
121
+ rr_stations = df[df.remote == True].station.unique()
122
122
 
123
- self.local.from_dataset_dataframe(df[df.station_id == station])
123
+ self.local.from_dataset_dataframe(df[df.station == station])
124
124
 
125
125
  for rr_station in rr_stations:
126
126
  rr = Station()
127
- rr.from_dataset_dataframe(df[df.station_id == rr_station])
127
+ rr.from_dataset_dataframe(df[df.station == rr_station])
128
128
  self.add_remote(rr)
129
129
 
130
130
  def to_dataset_dataframe(self):
@@ -400,7 +400,7 @@ class MTime:
400
400
 
401
401
  """
402
402
  t_min_max = False
403
- if dt_str in [None, "", "none", "None", "NONE"]:
403
+ if dt_str in [None, "", "none", "None", "NONE", "Na"]:
404
404
  self.logger.debug(
405
405
  "Time string is None, setting to 1980-01-01:00:00:00"
406
406
  )
@@ -378,6 +378,15 @@ def validate_default(value_dict):
378
378
 
379
379
  def validate_value_type(value, v_type, style=None):
380
380
  """
381
+
382
+ :param value:
383
+ :type value:
384
+ :param v_type:
385
+ :type v_type:
386
+ :param style:
387
+ :type style:
388
+ :return:
389
+
381
390
  validate type from standards
382
391
 
383
392
  """
@@ -469,7 +478,7 @@ def validate_value_type(value, v_type, style=None):
469
478
 
470
479
  # if a number convert to appropriate type
471
480
  elif isinstance(
472
- value, (float, np.float_, np.float16, np.float32, np.float64)
481
+ value, (float, np.float16, np.float32, np.float64)
473
482
  ):
474
483
  if v_type is int:
475
484
  return int(value)
@@ -481,7 +490,7 @@ def validate_value_type(value, v_type, style=None):
481
490
  elif isinstance(value, Iterable):
482
491
  if v_type is str:
483
492
  if isinstance(value, np.ndarray):
484
- value = value.astype(np.unicode_)
493
+ value = value.astype(np.str_)
485
494
  value = [
486
495
  f"{v}".replace("'", "").replace('"', "") for v in value
487
496
  ]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mt-metadata
3
- Version: 0.3.5
3
+ Version: 0.3.7
4
4
  Summary: Metadata for magnetotelluric data
5
5
  Home-page: https://github.com/kujaku11/mt_metadata
6
6
  Author: Jared Peacock
@@ -28,7 +28,7 @@ Requires-Dist: matplotlib
28
28
  Requires-Dist: xarray
29
29
  Requires-Dist: loguru
30
30
 
31
- # mt_metadata version 0.3.5
31
+ # mt_metadata version 0.3.7
32
32
  Standard MT metadata
33
33
 
34
34
  [![PyPi version](https://img.shields.io/pypi/v/mt_metadata.svg)](https://pypi.python.org/pypi/mt-metadata)
@@ -58,7 +58,7 @@ MT Metadata is a project led by [IRIS-PASSCAL MT Software working group](https:/
58
58
 
59
59
  Most people will be using the transfer functions, but a lot of that metadata comes from the time series metadata. This module supports both and has tried to make them more or less seamless to reduce complication.
60
60
 
61
- * **Version**: 0.3.5
61
+ * **Version**: 0.3.7
62
62
  * **Free software**: MIT license
63
63
  * **Documentation**: https://mt-metadata.readthedocs.io.
64
64
  * **Examples**: Click the `Binder` badge above and Jupyter Notebook examples are in **mt_metadata/examples/notebooks** and **docs/source/notebooks**
@@ -377,3 +377,52 @@ History
377
377
  -----------------------
378
378
 
379
379
  * update pandas.append to concat
380
+
381
+ 0.3.4 ()
382
+ -----------------------
383
+
384
+ * Update HISTORY.rst by @kujaku11 in https://github.com/kujaku11/mt_metadata/pull/179
385
+ * Remove filter direction attributes by @kkappler in https://github.com/kujaku11/mt_metadata/pull/181
386
+ * Fix issue 173 by @kkappler in https://github.com/kujaku11/mt_metadata/pull/182
387
+ * Patch 173 by @kkappler in https://github.com/kujaku11/mt_metadata/pull/183
388
+ * Add some common helper functions by @kkappler in https://github.com/kujaku11/mt_metadata/pull/185
389
+ * Bug fix in FC layer by @kkappler in https://github.com/kujaku11/mt_metadata/pull/186
390
+ * Fix mth5 issue 187 by @kkappler in https://github.com/kujaku11/mt_metadata/pull/187
391
+ * bug fixes by @kujaku11 in https://github.com/kujaku11/mt_metadata/pull/180
392
+ * updating how a TF is initiated, initialize xarray is expensive by @kujaku11 in https://github.com/kujaku11/mt_metadata/pull/188
393
+ * Change default value of `get_elevation` to False by @kujaku11 in https://github.com/kujaku11/mt_metadata/pull/191
394
+ * Updating git clone address in the readme by @xandrd in https://github.com/kujaku11/mt_metadata/pull/189
395
+ * Fix how Z-files read/write by @kujaku11 in https://github.com/kujaku11/mt_metadata/pull/192
396
+ * Adjust how TF._initialize_transfer_function is setup by @kujaku11 in https://github.com/kujaku11/mt_metadata/pull/193
397
+ * Add Ability to store processing configuration in TF by @kujaku11 in https://github.com/kujaku11/mt_metadata/pull/196
398
+ * Bump version: 0.3.3 → 0.3.4 by @kujaku11 in https://github.com/kujaku11/mt_metadata/pull/198
399
+
400
+
401
+ 0.3.5 ()
402
+ ---------------------
403
+
404
+ * Patches by @kujaku11 in https://github.com/kujaku11/mt_metadata/pull/200
405
+ * Fix issue #202 by @kujaku11 in https://github.com/kujaku11/mt_metadata/pull/203
406
+ * Patches by @kkappler in https://github.com/kujaku11/mt_metadata/pull/205
407
+ * Bump version: 0.3.4 → 0.3.5 by @kujaku11 in https://github.com/kujaku11/mt_metadata/pull/206
408
+
409
+ 0.3.6 ()
410
+ ---------------------
411
+
412
+ * add method for accessing mag channel names by @kkappler in https://github.com/kujaku11/mt_metadata/pull/210
413
+ * Patches by @kujaku11 in https://github.com/kujaku11/mt_metadata/pull/208
414
+ * Fix mth5 issue 207 by @kkappler in https://github.com/kujaku11/mt_metadata/pull/209
415
+ * Minor changes by @kkappler in https://github.com/kujaku11/mt_metadata/pull/211
416
+ * Patches by @kujaku11 in https://github.com/kujaku11/mt_metadata/pull/212
417
+
418
+ 0.3.7 (2024-08-16)
419
+ ---------------------
420
+
421
+ * Minor fixes numpy 2.0 by @kkappler in https://github.com/kujaku11/mt_metadata/pull/213
422
+ * Fix issue 216 by @kkappler in https://github.com/kujaku11/mt_metadata/pull/218
423
+ * Patches by @kujaku11 in https://github.com/kujaku11/mt_metadata/pull/219
424
+ * add u0 and r0 as regression parameters by @kkappler in https://github.com/kujaku11/mt_metadata/pull/220
425
+ * Updating EMTF XML and StationXML writers by @kujaku11 in https://github.com/kujaku11/mt_metadata/pull/217
426
+ * Patches by @kkappler in https://github.com/kujaku11/mt_metadata/pull/221
427
+ * Patches by @kkappler in https://github.com/kujaku11/mt_metadata/pull/223
428
+ * Bump version: 0.3.6 → 0.3.7 by @kujaku11 in https://github.com/kujaku11/mt_metadata/pull/225
@@ -1,6 +1,6 @@
1
- mt_metadata/__init__.py,sha256=CmllQ7LH3dBndOB3nUPeBxK2sQMDqPyhjhdr2byrOJY,5588
1
+ mt_metadata/__init__.py,sha256=Ij-OA6uOFAAYRMgD-lPkuf74v6_J326Orxlg2fKQVbM,5588
2
2
  mt_metadata/base/__init__.py,sha256=bylCGBoJkeytxeQgMnuqivqFAvbyNE5htvP-3yu1GEY,184
3
- mt_metadata/base/helpers.py,sha256=oS4s7OysTQZ5J8VVPUJYYuVkqviSIlOwnNFKZe5FWIc,19721
3
+ mt_metadata/base/helpers.py,sha256=_SbJC8zDFmjQrmGbb6jBkqkWtaItNHyb8PREdPm5nl8,19798
4
4
  mt_metadata/base/metadata.py,sha256=obOFdU6FPf2o-SbdxOxZ60LvzbI6Cp-bbRXw8KdkBao,27145
5
5
  mt_metadata/base/schema.py,sha256=MvZBvy2elYia5VLRXqOV9x0GIklEWLM4qpTdqo820P4,12842
6
6
  mt_metadata/data/__init__.py,sha256=PECwullCdCwKGpd1fkQc1jL8CboaSQfy_Cdm-obl-Y8,217
@@ -69,7 +69,7 @@ mt_metadata/timeseries/provenance.py,sha256=GyF-VFdPa_EIlRiIO4NDC-emFXbX2DNLOSrs
69
69
  mt_metadata/timeseries/rating.py,sha256=Kyx9PV4KvKZzUIo9aoOdozU9umh5zFW62nXljZZPSKs,826
70
70
  mt_metadata/timeseries/run.py,sha256=iZ5gr7_HXvFAVBN5ONdIotlbKH1wjWy-ySE7vmCgOMY,14009
71
71
  mt_metadata/timeseries/software.py,sha256=ziFip_B_Y27x9zRizJJX3mW57JnKh2saNCm-K4hWkLg,1224
72
- mt_metadata/timeseries/station.py,sha256=odyyeohvIPyd3nHWgz4nH9Qa9Aq5heFlU6FOtKczjXQ,9855
72
+ mt_metadata/timeseries/station.py,sha256=fM6LZVYOjA18y8orPu4R_fV_oIDNqBJNWcD1aS4JoYA,10710
73
73
  mt_metadata/timeseries/survey.py,sha256=dTyFnjtmn4tzEjli_cebPeE6kOBTts1Un6HaqzjzpYI,11831
74
74
  mt_metadata/timeseries/time_period.py,sha256=eUFucwMY8Gsoi375pwuPlrg-HCBENU6UJ-sR6_SDxe0,1653
75
75
  mt_metadata/timeseries/timing_system.py,sha256=3Uvu_Ihk1b1SyPFMKHWCDe1_BUfiVYphpatRP3wwS-s,839
@@ -77,9 +77,9 @@ mt_metadata/timeseries/filters/__init__.py,sha256=9FaNM3OVQ1dMiAn5JyfSK8QtICqGXH
77
77
  mt_metadata/timeseries/filters/channel_response.py,sha256=yxPaukC2yyEJFayniSyH2IPNGgE4oDIFMmTp4o3jJ1I,17297
78
78
  mt_metadata/timeseries/filters/coefficient_filter.py,sha256=HryPmsFGr-SEkox85DBYc3q8A3M4C_Hmjc-CNvm6e-w,3322
79
79
  mt_metadata/timeseries/filters/filter_base.py,sha256=IiPhOkVvJUbdboFxWWeKyj1iKdW1HE061nvBdw6G8TM,12885
80
- mt_metadata/timeseries/filters/filtered.py,sha256=0o3aFYLhtSeBgpgi5ndSsKGbE5tBJhY_wEq5oQblhOg,6979
80
+ mt_metadata/timeseries/filters/filtered.py,sha256=1Yj85F2To98iIlXDFhs12-YfaB3m94Sd9vJ-r0KZ7q0,9100
81
81
  mt_metadata/timeseries/filters/fir_filter.py,sha256=jdjtaZjaTE5a27YlTVEEN-777bXIutjpmqcVLEw6F0o,6767
82
- mt_metadata/timeseries/filters/frequency_response_table_filter.py,sha256=oKlaQvtksQORvaF7QRD11qnqP4FFj63pYF8iWQNesJg,7396
82
+ mt_metadata/timeseries/filters/frequency_response_table_filter.py,sha256=36GqpOSAr3HhjXxFbtZ5iHMD5cdKa0hGYoPpY7otqa0,7734
83
83
  mt_metadata/timeseries/filters/helper_functions.py,sha256=u7YpnkuPiHwEb9Qrk2EyQ6HXofKkDNYLpC3GtlChyAk,4124
84
84
  mt_metadata/timeseries/filters/obspy_stages.py,sha256=7UYKEI6X2PUZQ9Apq1szW-kNvSNFrYx49ZltGZih2UQ,5916
85
85
  mt_metadata/timeseries/filters/plotting_helpers.py,sha256=LXkMTQaS1Ftp2iIE4GX-_qAcAXk1sytNhGo6EUtG7xM,6796
@@ -123,26 +123,26 @@ mt_metadata/timeseries/standards/timing_system.json,sha256=ikVKrlfzm6wIPvDcL_Ih6
123
123
  mt_metadata/timeseries/stationxml/__init__.py,sha256=zTL0jn2j7KZTF4i-k40RpXcvW_XzdG1WqieC39284Lc,525
124
124
  mt_metadata/timeseries/stationxml/fdsn_tools.py,sha256=6H1hZCxf5-skNSjPazMS_wKu4oB3LF_jTqq4xRfpRAw,9487
125
125
  mt_metadata/timeseries/stationxml/utils.py,sha256=16617e6snyrsNjletGbw-gLYQ2vt-7VfYPokz6dakts,7257
126
- mt_metadata/timeseries/stationxml/xml_channel_mt_channel.py,sha256=Pkyg3plhwOp02Yl_ymbsWU0eydpE-lA8OqAo-Yoo1HM,20289
126
+ mt_metadata/timeseries/stationxml/xml_channel_mt_channel.py,sha256=fQw13j8QAyZQoMJX5xX24nDC0Ub4EVfpOORKTnemLA0,22122
127
127
  mt_metadata/timeseries/stationxml/xml_equipment_mt_run.py,sha256=yRPk6lhnzkpgARe6lQkU_-vZrTDDmIIeRCTI9Wig9XY,5151
128
- mt_metadata/timeseries/stationxml/xml_inventory_mt_experiment.py,sha256=cmDJybDh6-JgzEHQM0CuLeDTIKoNnIyn9PnYrzV1RZs,14036
128
+ mt_metadata/timeseries/stationxml/xml_inventory_mt_experiment.py,sha256=M_k6rENVd9eHv92QNkcd7Yua9bnwYZtjKj9mpjKhkEs,14085
129
129
  mt_metadata/timeseries/stationxml/xml_network_mt_survey.py,sha256=RciEmnFGb8kMf1mA1lLn9d0R7WiOW2BeoV1bDB-eJuU,7124
130
130
  mt_metadata/timeseries/stationxml/xml_station_mt_station.py,sha256=pelvkiQios4gz8gHebWY1MPSsfBhfTz6uTgC92Yz9-4,11112
131
131
  mt_metadata/timeseries/tools/__init__.py,sha256=loPgjYnajbOX2rQTlLBh79cG2eaUNpI3KaCjp7SB4ik,78
132
132
  mt_metadata/timeseries/tools/from_many_mt_files.py,sha256=rtx5NAPBUmOgrMXUT-YJxznqfI1qdRkS4B2SWjrU_1c,14405
133
- mt_metadata/transfer_functions/__init__.py,sha256=wpGghfoqFj4nuFOoHeR8PFGQGMzkWvTb3T_KfmMWswQ,42
134
- mt_metadata/transfer_functions/core.py,sha256=70hxEFszjZzed-OKFcmF-B_Tm_Zy7212dPJPCF0_lMA,79933
133
+ mt_metadata/transfer_functions/__init__.py,sha256=7F_9sev0KlRfswx_H0j8-1PJs-ZTpD04qwjYh1jst8w,1288
134
+ mt_metadata/transfer_functions/core.py,sha256=AmWmH2-k-2W2uGTsaozZkq6p3KURWWgfMHCbEMZiTU8,80641
135
135
  mt_metadata/transfer_functions/io/__init__.py,sha256=8DKEQZrpF0RK_MTjR0_w0UQfgVf9VwuJrzy7eann1N8,215
136
136
  mt_metadata/transfer_functions/io/tools.py,sha256=xatyc0RN8-KKS1PmpjATDAOHln9HIEP-iNAN0Njjyv4,6024
137
137
  mt_metadata/transfer_functions/io/edi/__init__.py,sha256=5pgyFFwRezvlxxcsSQsvCmeShJe97TdY6F37T7FiNWA,61
138
- mt_metadata/transfer_functions/io/edi/edi.py,sha256=E7zH1VgAVcAB1BjpTZe_g9fqnwSNjwubWzm5hpMdzAg,53305
138
+ mt_metadata/transfer_functions/io/edi/edi.py,sha256=mFUahyjiIZnh45masDsue4pJkU4FifnZOi4I8rlvXh0,53798
139
139
  mt_metadata/transfer_functions/io/edi/metadata/__init__.py,sha256=ndXcOh7eN4adnXS7fAtvZg6i4K_gY3VT7zbNzeGjsaM,395
140
140
  mt_metadata/transfer_functions/io/edi/metadata/data_section.py,sha256=RhelbBN83LhRvItlVrBKuQoFLBaPonENp0KyIkW79X0,7751
141
- mt_metadata/transfer_functions/io/edi/metadata/define_measurement.py,sha256=5x0ATVKNG4kfxJU7MbY750cdo0_PlBAlwcQC0QJ77gk,16264
142
- mt_metadata/transfer_functions/io/edi/metadata/emeasurement.py,sha256=_6U3zgSb0njXNTHM98CrXowJiFVmPIoFq9mH7DxnNp0,3138
143
- mt_metadata/transfer_functions/io/edi/metadata/header.py,sha256=wmYi1Z9foNL_WmxFcDJozVGwRz3kMdQZiZGkMO_Vk6o,9203
141
+ mt_metadata/transfer_functions/io/edi/metadata/define_measurement.py,sha256=AQfJQSTVs-iOuEyiCnBFjMwqgowD0dkL2Bp5mSAhQ8s,16318
142
+ mt_metadata/transfer_functions/io/edi/metadata/emeasurement.py,sha256=IE0FJnVYM-MU0qT_H10wWaeaZJmfCDBr32jtVJMKY8g,3175
143
+ mt_metadata/transfer_functions/io/edi/metadata/header.py,sha256=uECGOQ4qD3LkBtzHbxw67heSFH20lfWlfKk4vj0ME94,9271
144
144
  mt_metadata/transfer_functions/io/edi/metadata/hmeasurement.py,sha256=5w3fbcSRasSaSrLq3qm6TJPXgkOIGXrIeclmhh3KMTc,2245
145
- mt_metadata/transfer_functions/io/edi/metadata/information.py,sha256=2EYkSiEffcvy3KHbzaOokkfvjpvHd9J9Bc1bGUA-ZaQ,17062
145
+ mt_metadata/transfer_functions/io/edi/metadata/information.py,sha256=BaqNLN4vByGTHHiioMTY6XNG7gEIIzJOshzUNOubyK4,17389
146
146
  mt_metadata/transfer_functions/io/edi/metadata/standards/__init__.py,sha256=Y3rdyXKOgxbSh9FQxQCCplsbqxwWmFIGm6yZG1cj0Uw,135
147
147
  mt_metadata/transfer_functions/io/edi/metadata/standards/data_section.json,sha256=HmEpRxnJ5HPwXdWjpmDnwReVucPu2Zm1saClauEUP2c,3045
148
148
  mt_metadata/transfer_functions/io/edi/metadata/standards/define_measurement.json,sha256=uyiTHtX6UsO_gIQxtRMVExI7-1T73ESkX-LAPScQybU,2572
@@ -150,14 +150,14 @@ mt_metadata/transfer_functions/io/edi/metadata/standards/emeasurement.json,sha25
150
150
  mt_metadata/transfer_functions/io/edi/metadata/standards/header.json,sha256=fj0wzxyYB5HmgqpExaiJMWen8vVjRvZh7bWD2PPANt8,6444
151
151
  mt_metadata/transfer_functions/io/edi/metadata/standards/hmeasurement.json,sha256=0m7EkHrrWlq8r96aMF1M1NhrtkyYJBgA7gYtnuyj_gY,2450
152
152
  mt_metadata/transfer_functions/io/emtfxml/__init__.py,sha256=V5N_vahhWUH8A3R_xd66CMEVM1adcUeG2RqGWrDCBks,73
153
- mt_metadata/transfer_functions/io/emtfxml/emtfxml.py,sha256=cLwEel5DbXUuYzJ-Ry_SII3j2apim92riTkMbyJB-Hw,53432
153
+ mt_metadata/transfer_functions/io/emtfxml/emtfxml.py,sha256=iqjZvfmnp8Ib02MJge4z255iOf56enBzQPP46YzRSq4,53751
154
154
  mt_metadata/transfer_functions/io/emtfxml/metadata/__init__.py,sha256=mSVzB8ghPaBJgwVcKJyQ75CJEUF5k0VoZQxkvV01_00,2364
155
155
  mt_metadata/transfer_functions/io/emtfxml/metadata/attachment.py,sha256=U_2DxKJHKqZqldq-XHiLbes_UT4u708xgoPAyc0xl5c,2459
156
156
  mt_metadata/transfer_functions/io/emtfxml/metadata/channels.py,sha256=FENaOpoElNezd0ESZgk01-KGxHbv6Euhyq8O6YImF-c,889
157
157
  mt_metadata/transfer_functions/io/emtfxml/metadata/citation.py,sha256=VN_VmnLJ-FOAnp_i3Ap9tpBUMB6pfaMdlJW8_9hhYHU,1500
158
158
  mt_metadata/transfer_functions/io/emtfxml/metadata/comment.py,sha256=DywmSp9-0Z6gAX9UPzkCzSxlXWi6AWZ_s_BGubZslmw,2409
159
159
  mt_metadata/transfer_functions/io/emtfxml/metadata/copyright.py,sha256=qNLs4AyIferfT6Q1rftX77UkfRD21WecpKCOx6tbUUg,1802
160
- mt_metadata/transfer_functions/io/emtfxml/metadata/data.py,sha256=lWTnnK-Apd3JA2QFzunNW66ZxAk7yoFjg4Zh4GqeF5U,14720
160
+ mt_metadata/transfer_functions/io/emtfxml/metadata/data.py,sha256=LqAflYpEXeNvcZNYzfp8QwPzkv1Hl_m3sRJrO-vLs7k,14715
161
161
  mt_metadata/transfer_functions/io/emtfxml/metadata/data_quality_notes.py,sha256=I2A_4yg_iJXaRl-TuBjwb8E_eweKTQf-zFAv-cLfq_4,2325
162
162
  mt_metadata/transfer_functions/io/emtfxml/metadata/data_quality_warnings.py,sha256=t236kiGYXsKQvWba4L-o01xtUuk2M2IjloUlFRRljlQ,1769
163
163
  mt_metadata/transfer_functions/io/emtfxml/metadata/data_type.py,sha256=6OVVvjyxb9PScBxkfGsLbJYhwL-KAMLhY-4wphxZtSI,1919
@@ -166,7 +166,7 @@ mt_metadata/transfer_functions/io/emtfxml/metadata/dipole.py,sha256=U8DrDXh_wDql
166
166
  mt_metadata/transfer_functions/io/emtfxml/metadata/electric.py,sha256=GiYdILYZowjaejkVvkKFlhyadbynOK2gkCbwBAjCoKE,1952
167
167
  mt_metadata/transfer_functions/io/emtfxml/metadata/electrode.py,sha256=7Y5XTQX-30z6rqMJ8BUAWAH9Gg6DkJDIPF-7Awof9eM,1398
168
168
  mt_metadata/transfer_functions/io/emtfxml/metadata/emtf.py,sha256=7X9rIF3glRRITpAvs1LbVOsgmeOa5ex_9GQxqGtIMFs,773
169
- mt_metadata/transfer_functions/io/emtfxml/metadata/estimate.py,sha256=NVVh-Jt6UVHGE9A5K0KMxJot8to8BQ4zovn0c4LpSJ8,2038
169
+ mt_metadata/transfer_functions/io/emtfxml/metadata/estimate.py,sha256=BLn1dg7fy3W3nCDaWISClCxrsSlnNpOQCAB6SXgWQZk,2046
170
170
  mt_metadata/transfer_functions/io/emtfxml/metadata/external_url.py,sha256=ZA9wCbGBHlbPXaYTvTgMncT9BfNkvQm9w28zuaHVSw4,1172
171
171
  mt_metadata/transfer_functions/io/emtfxml/metadata/field_notes.py,sha256=mn4Vz6A57KuPNpU5ZD9lrB_rClzeKSKcjLwOdsVoBlE,1766
172
172
  mt_metadata/transfer_functions/io/emtfxml/metadata/helpers.py,sha256=TDEYCLAgdu9Shjhyig14roId1TuaPjjUiX19VPouXuk,4494
@@ -175,11 +175,11 @@ mt_metadata/transfer_functions/io/emtfxml/metadata/location.py,sha256=MctHGyQt19
175
175
  mt_metadata/transfer_functions/io/emtfxml/metadata/magnetic.py,sha256=LaSiVNlZ5c-tsvMTxmbPAuATlR0EKT7R7olVGivNmdk,1807
176
176
  mt_metadata/transfer_functions/io/emtfxml/metadata/magnetometer.py,sha256=110rVKp3pWvtQkrOJFvp5K28KCPogPra6dGA8M1nzH4,1343
177
177
  mt_metadata/transfer_functions/io/emtfxml/metadata/orientation.py,sha256=57Vk4_pa6MrjzU18ifNXTr7GcCFK2w6sxosW7mzp5oI,2493
178
- mt_metadata/transfer_functions/io/emtfxml/metadata/period_range.py,sha256=zLKeWDk2HibmWW42vLsZjN3XSqipYLmAU2MRL-W8TlI,1633
178
+ mt_metadata/transfer_functions/io/emtfxml/metadata/period_range.py,sha256=SE4ZpK2kpDDbtu3pQRWPlLVvd4dUm8zxeYNeDeM87Vg,1709
179
179
  mt_metadata/transfer_functions/io/emtfxml/metadata/person.py,sha256=tawfhoVOZ35sjjwEVSDOmL49_1V0n32mHMSfmvtmzjA,830
180
180
  mt_metadata/transfer_functions/io/emtfxml/metadata/primary_data.py,sha256=m83_SmZxE_t9CwgPmInv6fUKwbtzr_QQNxr9I6MA0QE,1018
181
181
  mt_metadata/transfer_functions/io/emtfxml/metadata/processing_info.py,sha256=5ZO2nMSBliB_ILBbIzk_CpoqP4bOHxEOhOYVJo9f3n8,3208
182
- mt_metadata/transfer_functions/io/emtfxml/metadata/provenance.py,sha256=ETKGfNO_pXJvfNJimtuGUceuQECiOMWjeSgqRejmQks,2425
182
+ mt_metadata/transfer_functions/io/emtfxml/metadata/provenance.py,sha256=QkF5NFT1DA2u21iBVR0Bzc5FQtrYsO2-uEvYnnXzJws,2460
183
183
  mt_metadata/transfer_functions/io/emtfxml/metadata/remote_info.py,sha256=cx_bvR2Oy2uXnAm20i-AC_cr-xO1WkfncTJz0vtxNPU,2291
184
184
  mt_metadata/transfer_functions/io/emtfxml/metadata/remote_ref.py,sha256=DJYXIkGdHCXDHW5eDiDvj6_h1sg4YbbyQnV_wTtNSgQ,1724
185
185
  mt_metadata/transfer_functions/io/emtfxml/metadata/run.py,sha256=AtcPoAHn6FPoPitwjXuJGRnjwgvVJBgBIO4wlOGVCT8,4848
@@ -192,7 +192,7 @@ mt_metadata/transfer_functions/io/emtfxml/metadata/standards/attachment.json,sha
192
192
  mt_metadata/transfer_functions/io/emtfxml/metadata/standards/channels.json,sha256=cSc7GIT8GYVxDCETrFOu-HLnaGqRYUA9aWU5ngTD0Jg,565
193
193
  mt_metadata/transfer_functions/io/emtfxml/metadata/standards/citation.json,sha256=L_NXO3zbJGEM31ePsaZCtaV8TjWbrrVNHHY2nalEMMs,2269
194
194
  mt_metadata/transfer_functions/io/emtfxml/metadata/standards/comment.json,sha256=E9_GO681t7OZTOctGrDm7QaujS2VY7HEha76CjY3avo,880
195
- mt_metadata/transfer_functions/io/emtfxml/metadata/standards/copyright.json,sha256=RQa2d0cAublDfRV01NTguLY90qSH0lJMBF0Ve9wXYgg,2477
195
+ mt_metadata/transfer_functions/io/emtfxml/metadata/standards/copyright.json,sha256=eYj5YnKa6e2bX4GLzdrY3xS8CN7nO6UdcQW4UsUp4RU,2516
196
196
  mt_metadata/transfer_functions/io/emtfxml/metadata/standards/data_quality_notes.json,sha256=VBIMMzIgPFKMNLMQ1YB1m2ysg-IoFmen_LYsCXQqxMo,942
197
197
  mt_metadata/transfer_functions/io/emtfxml/metadata/standards/data_quality_warnings.json,sha256=afT-uIAwKNM5SsumxANsICXOe_Zz_Ttpn9RHK461oRs,273
198
198
  mt_metadata/transfer_functions/io/emtfxml/metadata/standards/data_type.json,sha256=wd_8NSn7biExKr8GEOCu95KasmbIzJf3ushAkRkWAuk,2995
@@ -275,18 +275,18 @@ mt_metadata/transfer_functions/io/zonge/metadata/standards/survey.json,sha256=zb
275
275
  mt_metadata/transfer_functions/io/zonge/metadata/standards/tx.json,sha256=W0ITo4QyhkXvShRN8na0LJKdG_l-fsQJBH4_hDRmMjI,323
276
276
  mt_metadata/transfer_functions/io/zonge/metadata/standards/unit.json,sha256=A2KIoTXBANiqp8Mjxg3VDZbjNPgASnS7QVdK7KOJ0y8,953
277
277
  mt_metadata/transfer_functions/processing/__init__.py,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
278
- mt_metadata/transfer_functions/processing/aurora/__init__.py,sha256=zczI5zoF7ceLEdu0gkmsLbBYJ2rxuyWsYIjZtxwQP8g,668
279
- mt_metadata/transfer_functions/processing/aurora/band.py,sha256=pBk8fYXhJ0S_lyWH3JQIbUr3ZeDKkU93pybSUy5jtbE,8509
278
+ mt_metadata/transfer_functions/processing/aurora/__init__.py,sha256=5ALxSEnzNkITVvK4yPCoadLdCv_VNnr3UuvVDOu92Ck,646
279
+ mt_metadata/transfer_functions/processing/aurora/band.py,sha256=mNDkpJQbf7F7aF-FFma2zfUj2foiwNoTNkG-i3pwIUo,8355
280
280
  mt_metadata/transfer_functions/processing/aurora/channel.py,sha256=TZHfy-XgrijdNVd4Sjbq3tjORFsJNZIzwa4_J7tDOHM,773
281
- mt_metadata/transfer_functions/processing/aurora/channel_nomenclature.py,sha256=GD6teHAtBUKTkGGDWX2clZwk1Fac8ndCOZ3r8TJDGrY,4264
281
+ mt_metadata/transfer_functions/processing/aurora/channel_nomenclature.py,sha256=Y7rQTH3YsTB8KFIMk6vQZWFrRKQWlnwoQNZOZjZImbk,3038
282
282
  mt_metadata/transfer_functions/processing/aurora/decimation.py,sha256=AF7vdU-Q7W4yfnJoPDbhDqgxJTtHiLCLEUDLBEzfmFM,785
283
283
  mt_metadata/transfer_functions/processing/aurora/decimation_level.py,sha256=cZhV9BPM7kj3qSDg7HCM2vyV7VW1-jWOTE7ISASKRsA,10657
284
284
  mt_metadata/transfer_functions/processing/aurora/estimator.py,sha256=9I2Rs3guO7sc9HEpLbYI8nYZfQ7IayosKvsrE6etBac,781
285
285
  mt_metadata/transfer_functions/processing/aurora/processing.py,sha256=BCKXGu_iVValVyE0EbsR9_gYkwv0I4GxS61AqXUtc8s,10320
286
286
  mt_metadata/transfer_functions/processing/aurora/regression.py,sha256=NIgivJx11-ZVsVfQgdIODfsPeyMPmhRXA6bSNiarA8c,783
287
287
  mt_metadata/transfer_functions/processing/aurora/run.py,sha256=DxpKHdNRGaE4VPqzVnue9NMF6PPd3kAPHKEkv7t2xzA,4123
288
- mt_metadata/transfer_functions/processing/aurora/station.py,sha256=q9IQBWwwXF47AsBJuwbTIdkAivIks1dCqN8cqLzRZjw,5163
289
- mt_metadata/transfer_functions/processing/aurora/stations.py,sha256=jZ8_oTIPymbYX6I3OUDN2BmOoDlNJeZBcVadY39un4o,4564
288
+ mt_metadata/transfer_functions/processing/aurora/station.py,sha256=TokM12LFlcTnNHaXHId8Lj5Ie1kwmx6dWRkFfAj1SVE,5236
289
+ mt_metadata/transfer_functions/processing/aurora/stations.py,sha256=lbRs80-zL0jmIB7ISVczu61Rt_vxl99cBXJ4gP0TBT8,4552
290
290
  mt_metadata/transfer_functions/processing/aurora/window.py,sha256=Z96nK50Fg00KkCKNVC08E-6bCoMe2uF_6agF5rQf9Vo,1210
291
291
  mt_metadata/transfer_functions/processing/aurora/standards/__init__.py,sha256=Y3rdyXKOgxbSh9FQxQCCplsbqxwWmFIGm6yZG1cj0Uw,135
292
292
  mt_metadata/transfer_functions/processing/aurora/standards/band.json,sha256=duX9-GpjopKdccxgLYfCBhhw2j28oTRmV_mCuN5cl2o,2105
@@ -298,7 +298,7 @@ mt_metadata/transfer_functions/processing/aurora/standards/decimation.json,sha25
298
298
  mt_metadata/transfer_functions/processing/aurora/standards/decimation_level.json,sha256=YD6kCi0OmSLBv-v5Vf6L-pEJcLgW7ImA0he7aHJFRhA,4176
299
299
  mt_metadata/transfer_functions/processing/aurora/standards/estimator.json,sha256=NPzjnTLuq11xGMYK9F6WGlj-dI2nwWN_jXD-ArJJqy4,628
300
300
  mt_metadata/transfer_functions/processing/aurora/standards/processing.json,sha256=UEItryn1KidAsBnXNu3YyqoR2b51N0aSPlJrIDG5cmU,1211
301
- mt_metadata/transfer_functions/processing/aurora/standards/regression.json,sha256=jVy4T-yRuHGkL0LZQdcLgYUZoFOvH4PHHS9nuCdMfeA,901
301
+ mt_metadata/transfer_functions/processing/aurora/standards/regression.json,sha256=wAME7-4SiTVptXn4spdTAMq9-G6Rtm1Pk9PqMVKSEkE,2186
302
302
  mt_metadata/transfer_functions/processing/aurora/standards/run.json,sha256=o4Oe3QrWH7g1r8Z4cRQMk0bTf9Tp02dMLpVPER7QI5I,1423
303
303
  mt_metadata/transfer_functions/processing/aurora/standards/station.json,sha256=kVlj3AVKs3rbLPnTZkPPaBoMthpZVJkz4JoO0q4z0us,1173
304
304
  mt_metadata/transfer_functions/processing/aurora/standards/stations.json,sha256=-ZAipnSnZ3IT4fUgsHt9xUTA_yPA_lN3i9p4nHfZcrs,276
@@ -326,13 +326,13 @@ mt_metadata/transfer_functions/tf/standards/transfer_function.json,sha256=yTPACc
326
326
  mt_metadata/utils/__init__.py,sha256=5TWhar2ujJY_pYkwDdggX8jU9CFXcxc9jX1yXc8TqJs,35
327
327
  mt_metadata/utils/exceptions.py,sha256=PKWdjKfR95NJ-Rgx3rzu9Qmdj0thVHjcmEvHoC9HuBE,462
328
328
  mt_metadata/utils/list_dict.py,sha256=BguxnQuNPf8aOMwULaaam22L4RUQ3SNzIkLqVh_gUQs,7668
329
- mt_metadata/utils/mttime.py,sha256=6XRIlY6eaSwLqNnRTeaDraQz4sk0PN27Z7z6BMeZkbk,18719
329
+ mt_metadata/utils/mttime.py,sha256=v71TCPjtoY_0GTsJ39WCD8kwIZDNzE679m96a3QGgPE,18725
330
330
  mt_metadata/utils/summarize.py,sha256=KisJt2PWz1-_FOBH8NQtidgxjdWPAbIDwPzEB197uhs,4109
331
331
  mt_metadata/utils/units.py,sha256=OdALLmytoPvjJ8rYf7QsGq1b8nrNt85A8wUhjqRyTOo,6405
332
- mt_metadata/utils/validators.py,sha256=vj55VvH11A0H9SeUcVy9lJCDKNzwCiMTSra-_Ws1Ojk,16264
333
- mt_metadata-0.3.5.dist-info/AUTHORS.rst,sha256=3RKy4std2XZQLNF6xYIiA8S5A0bBPqNO7ypJsuEhiN8,706
334
- mt_metadata-0.3.5.dist-info/LICENSE,sha256=P33RkFPriIBxsgZtVzSn9KxYa2K7Am42OwMV0h_m5e0,1080
335
- mt_metadata-0.3.5.dist-info/METADATA,sha256=Vz1gxXzTNbwIH3WLimJ5zd2jyQt5QBO5gZHDmWYOWAk,17286
336
- mt_metadata-0.3.5.dist-info/WHEEL,sha256=DZajD4pwLWue70CAfc7YaxT1wLUciNBvN_TTcvXpltE,110
337
- mt_metadata-0.3.5.dist-info/top_level.txt,sha256=fxe_q_GEd9h6iR3050ZnrhSfxUSO5pR8u65souS4RWM,12
338
- mt_metadata-0.3.5.dist-info/RECORD,,
332
+ mt_metadata/utils/validators.py,sha256=jQf0VBtfT5GMXlEUI5Hg1zILqSir9Ra4Moi4dL54KeM,16380
333
+ mt_metadata-0.3.7.dist-info/AUTHORS.rst,sha256=3RKy4std2XZQLNF6xYIiA8S5A0bBPqNO7ypJsuEhiN8,706
334
+ mt_metadata-0.3.7.dist-info/LICENSE,sha256=P33RkFPriIBxsgZtVzSn9KxYa2K7Am42OwMV0h_m5e0,1080
335
+ mt_metadata-0.3.7.dist-info/METADATA,sha256=dCuqaycFVp396z1u2LdlwnYTOI36qMNpu5i8sfk8_vI,20438
336
+ mt_metadata-0.3.7.dist-info/WHEEL,sha256=DZajD4pwLWue70CAfc7YaxT1wLUciNBvN_TTcvXpltE,110
337
+ mt_metadata-0.3.7.dist-info/top_level.txt,sha256=fxe_q_GEd9h6iR3050ZnrhSfxUSO5pR8u65souS4RWM,12
338
+ mt_metadata-0.3.7.dist-info/RECORD,,