mt-metadata 0.3.4__py2.py3-none-any.whl → 0.3.6__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mt-metadata might be problematic. Click here for more details.

@@ -24,6 +24,7 @@ class Band(Base):
24
24
  def __init__(self, **kwargs):
25
25
 
26
26
  super().__init__(attr_dict=attr_dict, **kwargs)
27
+ self._name = None
27
28
 
28
29
  @property
29
30
  def lower_bound(self):
@@ -41,6 +42,21 @@ class Band(Base):
41
42
  def upper_closed(self):
42
43
  return self.to_interval().closed_right
43
44
 
45
+ @property
46
+ def name(self):
47
+ """
48
+ :return: The name of the frequency band (currently defaults to fstring with 6 decimal places.
49
+ :rtype: str
50
+ """
51
+ if self._name is None:
52
+ self._name = f"{self.center_frequency:.6f}"
53
+ return self._name
54
+
55
+
56
+ @name.setter
57
+ def name(self, value):
58
+ self._name = value
59
+
44
60
  def _indices_from_frequencies(self, frequencies):
45
61
  """
46
62
 
@@ -125,7 +141,7 @@ class Band(Base):
125
141
 
126
142
  class FrequencyBands(object):
127
143
  """
128
- This is just collection of FrequencyBand objects.
144
+ This is just collection of objects of class Band.
129
145
  It is intended to be used at a single decimation level
130
146
 
131
147
  The core underlying variable is "band_edges", a 2D array, with one row per
@@ -153,11 +169,9 @@ class FrequencyBands(object):
153
169
 
154
170
  def validate(self):
155
171
  """
156
- placeholder for sanity checks.
157
- Main reason this is here is in anticipation of supporting an append() method
158
- to this class that accepts FrequencyBand objects. In that case we may wish
159
- to re-order the band edges.
160
-
172
+ Placeholder for sanity checks.
173
+ Main reason for this is in anticipation of an append() method that accepts Band objects.
174
+ In that case we may wish to re-order the band edges.
161
175
 
162
176
  """
163
177
  band_centers = self.band_centers()
@@ -199,12 +213,10 @@ class FrequencyBands(object):
199
213
 
200
214
  Returns
201
215
  -------
202
- frequency_band: FrequencyBand() object
216
+ frequency_band: Band()
217
+ Class that represents a frequency band
203
218
  """
204
- # frequency_band = FrequencyBand(
205
- # self.band_edges[i_band, 0],
206
- # self.band_edges[i_band, 1],
207
- # )
219
+
208
220
  frequency_band = Band(
209
221
  frequency_min=self.band_edges[i_band, 0],
210
222
  frequency_max=self.band_edges[i_band, 1],
@@ -77,6 +77,10 @@ class ChannelNomenclature(Base):
77
77
  def hx_hy(self):
78
78
  return [self.hx, self.hy]
79
79
 
80
+ @property
81
+ def hx_hy_hz(self):
82
+ return [self.hx, self.hy, self.hz]
83
+
80
84
  @property
81
85
  def ex_ey_hz(self):
82
86
  return [self.ex, self.ey, self.hz]
@@ -4,7 +4,7 @@
4
4
  "required": true,
5
5
  "style": "number",
6
6
  "units": null,
7
- "description": "Decimation level, must be a positive integer starting at 0.",
7
+ "description": "Decimation level, must be a non-negative integer starting at 0",
8
8
  "options": [],
9
9
  "alias": [],
10
10
  "example": "1",
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mt-metadata
3
- Version: 0.3.4
3
+ Version: 0.3.6
4
4
  Summary: Metadata for magnetotelluric data
5
5
  Home-page: https://github.com/kujaku11/mt_metadata
6
6
  Author: Jared Peacock
@@ -28,7 +28,7 @@ Requires-Dist: matplotlib
28
28
  Requires-Dist: xarray
29
29
  Requires-Dist: loguru
30
30
 
31
- # mt_metadata version 0.3.4
31
+ # mt_metadata version 0.3.6
32
32
  Standard MT metadata
33
33
 
34
34
  [![PyPi version](https://img.shields.io/pypi/v/mt_metadata.svg)](https://pypi.python.org/pypi/mt-metadata)
@@ -58,7 +58,7 @@ MT Metadata is a project led by [IRIS-PASSCAL MT Software working group](https:/
58
58
 
59
59
  Most people will be using the transfer functions, but a lot of that metadata comes from the time series metadata. This module supports both and has tried to make them more or less seamless to reduce complication.
60
60
 
61
- * **Version**: 0.3.4
61
+ * **Version**: 0.3.6
62
62
  * **Free software**: MIT license
63
63
  * **Documentation**: https://mt-metadata.readthedocs.io.
64
64
  * **Examples**: Click the `Binder` badge above and Jupyter Notebook examples are in **mt_metadata/examples/notebooks** and **docs/source/notebooks**
@@ -1,7 +1,7 @@
1
- mt_metadata/__init__.py,sha256=yDD8tnPwN4hjj0ZOfrtCtW41zqGbBWK2pjAbrleQ_yQ,5588
1
+ mt_metadata/__init__.py,sha256=qSrpytMuLQIb26AmmXoMDnOxrWw80RoURCl-wEqPDTI,5588
2
2
  mt_metadata/base/__init__.py,sha256=bylCGBoJkeytxeQgMnuqivqFAvbyNE5htvP-3yu1GEY,184
3
3
  mt_metadata/base/helpers.py,sha256=oS4s7OysTQZ5J8VVPUJYYuVkqviSIlOwnNFKZe5FWIc,19721
4
- mt_metadata/base/metadata.py,sha256=xl_GwpCfB7qFXR05VjFsCLz5dE0qAoYKl9GuSmvtGVw,27012
4
+ mt_metadata/base/metadata.py,sha256=obOFdU6FPf2o-SbdxOxZ60LvzbI6Cp-bbRXw8KdkBao,27145
5
5
  mt_metadata/base/schema.py,sha256=MvZBvy2elYia5VLRXqOV9x0GIklEWLM4qpTdqo820P4,12842
6
6
  mt_metadata/data/__init__.py,sha256=PECwullCdCwKGpd1fkQc1jL8CboaSQfy_Cdm-obl-Y8,217
7
7
  mt_metadata/data/mt_xml/__init__.py,sha256=fsW8De_Dhrjp55R12F2RH5M6QHoPO3Qf51yR3AFWztg,26
@@ -75,12 +75,11 @@ mt_metadata/timeseries/time_period.py,sha256=eUFucwMY8Gsoi375pwuPlrg-HCBENU6UJ-s
75
75
  mt_metadata/timeseries/timing_system.py,sha256=3Uvu_Ihk1b1SyPFMKHWCDe1_BUfiVYphpatRP3wwS-s,839
76
76
  mt_metadata/timeseries/filters/__init__.py,sha256=9FaNM3OVQ1dMiAn5JyfSK8QtICqGXH6TaKhPYjbpgj8,474
77
77
  mt_metadata/timeseries/filters/channel_response.py,sha256=yxPaukC2yyEJFayniSyH2IPNGgE4oDIFMmTp4o3jJ1I,17297
78
- mt_metadata/timeseries/filters/channel_response_filter.py,sha256=8qcQF4UUd_W1FVKQcq_4rII1ZR-sImYhwo6ALhtSoWs,15626
79
78
  mt_metadata/timeseries/filters/coefficient_filter.py,sha256=HryPmsFGr-SEkox85DBYc3q8A3M4C_Hmjc-CNvm6e-w,3322
80
79
  mt_metadata/timeseries/filters/filter_base.py,sha256=IiPhOkVvJUbdboFxWWeKyj1iKdW1HE061nvBdw6G8TM,12885
81
80
  mt_metadata/timeseries/filters/filtered.py,sha256=0o3aFYLhtSeBgpgi5ndSsKGbE5tBJhY_wEq5oQblhOg,6979
82
81
  mt_metadata/timeseries/filters/fir_filter.py,sha256=jdjtaZjaTE5a27YlTVEEN-777bXIutjpmqcVLEw6F0o,6767
83
- mt_metadata/timeseries/filters/frequency_response_table_filter.py,sha256=oKlaQvtksQORvaF7QRD11qnqP4FFj63pYF8iWQNesJg,7396
82
+ mt_metadata/timeseries/filters/frequency_response_table_filter.py,sha256=36GqpOSAr3HhjXxFbtZ5iHMD5cdKa0hGYoPpY7otqa0,7734
84
83
  mt_metadata/timeseries/filters/helper_functions.py,sha256=u7YpnkuPiHwEb9Qrk2EyQ6HXofKkDNYLpC3GtlChyAk,4124
85
84
  mt_metadata/timeseries/filters/obspy_stages.py,sha256=7UYKEI6X2PUZQ9Apq1szW-kNvSNFrYx49ZltGZih2UQ,5916
86
85
  mt_metadata/timeseries/filters/plotting_helpers.py,sha256=LXkMTQaS1Ftp2iIE4GX-_qAcAXk1sytNhGo6EUtG7xM,6796
@@ -124,19 +123,19 @@ mt_metadata/timeseries/standards/timing_system.json,sha256=ikVKrlfzm6wIPvDcL_Ih6
124
123
  mt_metadata/timeseries/stationxml/__init__.py,sha256=zTL0jn2j7KZTF4i-k40RpXcvW_XzdG1WqieC39284Lc,525
125
124
  mt_metadata/timeseries/stationxml/fdsn_tools.py,sha256=6H1hZCxf5-skNSjPazMS_wKu4oB3LF_jTqq4xRfpRAw,9487
126
125
  mt_metadata/timeseries/stationxml/utils.py,sha256=16617e6snyrsNjletGbw-gLYQ2vt-7VfYPokz6dakts,7257
127
- mt_metadata/timeseries/stationxml/xml_channel_mt_channel.py,sha256=Pkyg3plhwOp02Yl_ymbsWU0eydpE-lA8OqAo-Yoo1HM,20289
126
+ mt_metadata/timeseries/stationxml/xml_channel_mt_channel.py,sha256=fQw13j8QAyZQoMJX5xX24nDC0Ub4EVfpOORKTnemLA0,22122
128
127
  mt_metadata/timeseries/stationxml/xml_equipment_mt_run.py,sha256=yRPk6lhnzkpgARe6lQkU_-vZrTDDmIIeRCTI9Wig9XY,5151
129
- mt_metadata/timeseries/stationxml/xml_inventory_mt_experiment.py,sha256=XUjXQBJg_94ZP-FDyOHPVJWeNPV2oR8oh20hsaJDZeE,13893
128
+ mt_metadata/timeseries/stationxml/xml_inventory_mt_experiment.py,sha256=cmDJybDh6-JgzEHQM0CuLeDTIKoNnIyn9PnYrzV1RZs,14036
130
129
  mt_metadata/timeseries/stationxml/xml_network_mt_survey.py,sha256=RciEmnFGb8kMf1mA1lLn9d0R7WiOW2BeoV1bDB-eJuU,7124
131
130
  mt_metadata/timeseries/stationxml/xml_station_mt_station.py,sha256=pelvkiQios4gz8gHebWY1MPSsfBhfTz6uTgC92Yz9-4,11112
132
131
  mt_metadata/timeseries/tools/__init__.py,sha256=loPgjYnajbOX2rQTlLBh79cG2eaUNpI3KaCjp7SB4ik,78
133
- mt_metadata/timeseries/tools/from_many_mt_files.py,sha256=qx_sRPlPe5-VkaqNpC_lHtmgN4FI6Hmd2F1WANPZBC8,14300
132
+ mt_metadata/timeseries/tools/from_many_mt_files.py,sha256=rtx5NAPBUmOgrMXUT-YJxznqfI1qdRkS4B2SWjrU_1c,14405
134
133
  mt_metadata/transfer_functions/__init__.py,sha256=wpGghfoqFj4nuFOoHeR8PFGQGMzkWvTb3T_KfmMWswQ,42
135
- mt_metadata/transfer_functions/core.py,sha256=70hxEFszjZzed-OKFcmF-B_Tm_Zy7212dPJPCF0_lMA,79933
134
+ mt_metadata/transfer_functions/core.py,sha256=AmWmH2-k-2W2uGTsaozZkq6p3KURWWgfMHCbEMZiTU8,80641
136
135
  mt_metadata/transfer_functions/io/__init__.py,sha256=8DKEQZrpF0RK_MTjR0_w0UQfgVf9VwuJrzy7eann1N8,215
137
136
  mt_metadata/transfer_functions/io/tools.py,sha256=xatyc0RN8-KKS1PmpjATDAOHln9HIEP-iNAN0Njjyv4,6024
138
137
  mt_metadata/transfer_functions/io/edi/__init__.py,sha256=5pgyFFwRezvlxxcsSQsvCmeShJe97TdY6F37T7FiNWA,61
139
- mt_metadata/transfer_functions/io/edi/edi.py,sha256=E7zH1VgAVcAB1BjpTZe_g9fqnwSNjwubWzm5hpMdzAg,53305
138
+ mt_metadata/transfer_functions/io/edi/edi.py,sha256=IOc5mDIqC2Fn6kRix0wBLDQGA2MvdQ4Wz6lPsybr6uY,53321
140
139
  mt_metadata/transfer_functions/io/edi/metadata/__init__.py,sha256=ndXcOh7eN4adnXS7fAtvZg6i4K_gY3VT7zbNzeGjsaM,395
141
140
  mt_metadata/transfer_functions/io/edi/metadata/data_section.py,sha256=RhelbBN83LhRvItlVrBKuQoFLBaPonENp0KyIkW79X0,7751
142
141
  mt_metadata/transfer_functions/io/edi/metadata/define_measurement.py,sha256=5x0ATVKNG4kfxJU7MbY750cdo0_PlBAlwcQC0QJ77gk,16264
@@ -151,7 +150,7 @@ mt_metadata/transfer_functions/io/edi/metadata/standards/emeasurement.json,sha25
151
150
  mt_metadata/transfer_functions/io/edi/metadata/standards/header.json,sha256=fj0wzxyYB5HmgqpExaiJMWen8vVjRvZh7bWD2PPANt8,6444
152
151
  mt_metadata/transfer_functions/io/edi/metadata/standards/hmeasurement.json,sha256=0m7EkHrrWlq8r96aMF1M1NhrtkyYJBgA7gYtnuyj_gY,2450
153
152
  mt_metadata/transfer_functions/io/emtfxml/__init__.py,sha256=V5N_vahhWUH8A3R_xd66CMEVM1adcUeG2RqGWrDCBks,73
154
- mt_metadata/transfer_functions/io/emtfxml/emtfxml.py,sha256=cLwEel5DbXUuYzJ-Ry_SII3j2apim92riTkMbyJB-Hw,53432
153
+ mt_metadata/transfer_functions/io/emtfxml/emtfxml.py,sha256=vkcoB8NS4_QGhSVvpj_N59IdC38iDcFZVti-WpWQbNo,53440
155
154
  mt_metadata/transfer_functions/io/emtfxml/metadata/__init__.py,sha256=mSVzB8ghPaBJgwVcKJyQ75CJEUF5k0VoZQxkvV01_00,2364
156
155
  mt_metadata/transfer_functions/io/emtfxml/metadata/attachment.py,sha256=U_2DxKJHKqZqldq-XHiLbes_UT4u708xgoPAyc0xl5c,2459
157
156
  mt_metadata/transfer_functions/io/emtfxml/metadata/channels.py,sha256=FENaOpoElNezd0ESZgk01-KGxHbv6Euhyq8O6YImF-c,889
@@ -276,10 +275,10 @@ mt_metadata/transfer_functions/io/zonge/metadata/standards/survey.json,sha256=zb
276
275
  mt_metadata/transfer_functions/io/zonge/metadata/standards/tx.json,sha256=W0ITo4QyhkXvShRN8na0LJKdG_l-fsQJBH4_hDRmMjI,323
277
276
  mt_metadata/transfer_functions/io/zonge/metadata/standards/unit.json,sha256=A2KIoTXBANiqp8Mjxg3VDZbjNPgASnS7QVdK7KOJ0y8,953
278
277
  mt_metadata/transfer_functions/processing/__init__.py,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
279
- mt_metadata/transfer_functions/processing/aurora/__init__.py,sha256=zczI5zoF7ceLEdu0gkmsLbBYJ2rxuyWsYIjZtxwQP8g,668
280
- mt_metadata/transfer_functions/processing/aurora/band.py,sha256=YaVSXxjjlw0zJgZ-KlMadAFU4mKqYM_6urXU7OHjaPs,8100
278
+ mt_metadata/transfer_functions/processing/aurora/__init__.py,sha256=5ALxSEnzNkITVvK4yPCoadLdCv_VNnr3UuvVDOu92Ck,646
279
+ mt_metadata/transfer_functions/processing/aurora/band.py,sha256=mNDkpJQbf7F7aF-FFma2zfUj2foiwNoTNkG-i3pwIUo,8355
281
280
  mt_metadata/transfer_functions/processing/aurora/channel.py,sha256=TZHfy-XgrijdNVd4Sjbq3tjORFsJNZIzwa4_J7tDOHM,773
282
- mt_metadata/transfer_functions/processing/aurora/channel_nomenclature.py,sha256=GD6teHAtBUKTkGGDWX2clZwk1Fac8ndCOZ3r8TJDGrY,4264
281
+ mt_metadata/transfer_functions/processing/aurora/channel_nomenclature.py,sha256=IP-jS00Vit7tr477SZCjBO3u19lfzFDdt5d1akb4mDg,4350
283
282
  mt_metadata/transfer_functions/processing/aurora/decimation.py,sha256=AF7vdU-Q7W4yfnJoPDbhDqgxJTtHiLCLEUDLBEzfmFM,785
284
283
  mt_metadata/transfer_functions/processing/aurora/decimation_level.py,sha256=cZhV9BPM7kj3qSDg7HCM2vyV7VW1-jWOTE7ISASKRsA,10657
285
284
  mt_metadata/transfer_functions/processing/aurora/estimator.py,sha256=9I2Rs3guO7sc9HEpLbYI8nYZfQ7IayosKvsrE6etBac,781
@@ -309,7 +308,7 @@ mt_metadata/transfer_functions/processing/fourier_coefficients/decimation.py,sha
309
308
  mt_metadata/transfer_functions/processing/fourier_coefficients/fc.py,sha256=bN3S_0uoMqXDcJcw_7oYN3YQqsWITD2UX0aRcgdY7fw,10450
310
309
  mt_metadata/transfer_functions/processing/fourier_coefficients/fc_channel.py,sha256=HFFo2XoqaKJOae3mtRSMZ80_AZ6wDx0KKq3oBfIbJKg,926
311
310
  mt_metadata/transfer_functions/processing/fourier_coefficients/standards/__init__.py,sha256=Y3rdyXKOgxbSh9FQxQCCplsbqxwWmFIGm6yZG1cj0Uw,135
312
- mt_metadata/transfer_functions/processing/fourier_coefficients/standards/decimation.json,sha256=Ws10Rs8AL77Sm6KWlRDV5htYZtfm_VBCDj9uqV1uKdQ,3769
311
+ mt_metadata/transfer_functions/processing/fourier_coefficients/standards/decimation.json,sha256=aatnDixbOC_lPsBE26iXuGTxCnT6uBZAU_VX6iLosbg,3772
313
312
  mt_metadata/transfer_functions/processing/fourier_coefficients/standards/fc.json,sha256=ZiIvXRkYIU3tOcUKeIhBwZtDIdm4rlnG4zUMdiKzOT0,1523
314
313
  mt_metadata/transfer_functions/processing/fourier_coefficients/standards/fc_channel.json,sha256=pdR6r2BQTmrw8udtjaVz0Z9zmeX_Jd1uezuBQfKd7kY,1873
315
314
  mt_metadata/transfer_functions/tf/__init__.py,sha256=rJN-VGiGjCWBzFpruDOQitM8v-dfON9tKgZzX8zAhsI,3890
@@ -331,9 +330,9 @@ mt_metadata/utils/mttime.py,sha256=6XRIlY6eaSwLqNnRTeaDraQz4sk0PN27Z7z6BMeZkbk,1
331
330
  mt_metadata/utils/summarize.py,sha256=KisJt2PWz1-_FOBH8NQtidgxjdWPAbIDwPzEB197uhs,4109
332
331
  mt_metadata/utils/units.py,sha256=OdALLmytoPvjJ8rYf7QsGq1b8nrNt85A8wUhjqRyTOo,6405
333
332
  mt_metadata/utils/validators.py,sha256=vj55VvH11A0H9SeUcVy9lJCDKNzwCiMTSra-_Ws1Ojk,16264
334
- mt_metadata-0.3.4.dist-info/AUTHORS.rst,sha256=3RKy4std2XZQLNF6xYIiA8S5A0bBPqNO7ypJsuEhiN8,706
335
- mt_metadata-0.3.4.dist-info/LICENSE,sha256=P33RkFPriIBxsgZtVzSn9KxYa2K7Am42OwMV0h_m5e0,1080
336
- mt_metadata-0.3.4.dist-info/METADATA,sha256=CTPVq3wSMWfy548axtCT2ifis4Q1eXkEg3pJ2Hg8KMI,17286
337
- mt_metadata-0.3.4.dist-info/WHEEL,sha256=iYlv5fX357PQyRT2o6tw1bN-YcKFFHKqB_LwHO5wP-g,110
338
- mt_metadata-0.3.4.dist-info/top_level.txt,sha256=fxe_q_GEd9h6iR3050ZnrhSfxUSO5pR8u65souS4RWM,12
339
- mt_metadata-0.3.4.dist-info/RECORD,,
333
+ mt_metadata-0.3.6.dist-info/AUTHORS.rst,sha256=3RKy4std2XZQLNF6xYIiA8S5A0bBPqNO7ypJsuEhiN8,706
334
+ mt_metadata-0.3.6.dist-info/LICENSE,sha256=P33RkFPriIBxsgZtVzSn9KxYa2K7Am42OwMV0h_m5e0,1080
335
+ mt_metadata-0.3.6.dist-info/METADATA,sha256=CAeW-Ubcinln-nM11WkLXHM-eJj5H8Yg_e8RwQQfoI4,17286
336
+ mt_metadata-0.3.6.dist-info/WHEEL,sha256=DZajD4pwLWue70CAfc7YaxT1wLUciNBvN_TTcvXpltE,110
337
+ mt_metadata-0.3.6.dist-info/top_level.txt,sha256=fxe_q_GEd9h6iR3050ZnrhSfxUSO5pR8u65souS4RWM,12
338
+ mt_metadata-0.3.6.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.41.2)
2
+ Generator: bdist_wheel (0.43.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py2-none-any
5
5
  Tag: py3-none-any