msreport 0.0.27__py3-none-any.whl → 0.0.29__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,136 @@
1
+ Metadata-Version: 2.4
2
+ Name: msreport
3
+ Version: 0.0.29
4
+ Summary: Post processing and analysis of quantitative proteomics data
5
+ Author-email: "David M. Hollenstein" <hollenstein.david@gmail.com>
6
+ License-Expression: Apache-2.0
7
+ Project-URL: homepage, https://github.com/hollenstein/msreport
8
+ Project-URL: changelog, https://github.com/hollenstein/msreport/blob/main/CHANGELOG.md
9
+ Keywords: mass spectrometry,proteomics,post processing,data analysis
10
+ Classifier: Development Status :: 4 - Beta
11
+ Classifier: Programming Language :: Python :: 3.10
12
+ Classifier: Programming Language :: Python :: 3.11
13
+ Classifier: Programming Language :: Python :: 3.12
14
+ Classifier: Programming Language :: Python :: 3.13
15
+ Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
16
+ Requires-Python: >=3.10
17
+ Description-Content-Type: text/markdown
18
+ License-File: LICENSE.txt
19
+ Requires-Dist: adjustText<1.0.0,>=0.7.0
20
+ Requires-Dist: matplotlib>=3.5.2
21
+ Requires-Dist: numpy>=1.21.5
22
+ Requires-Dist: pandas>=1.4.4
23
+ Requires-Dist: profasta>=0.0.4
24
+ Requires-Dist: pyteomics>=4.6.0
25
+ Requires-Dist: pyyaml>=6.0.0
26
+ Requires-Dist: scikit-learn>=1.0.0
27
+ Requires-Dist: scipy>=1.9.1
28
+ Requires-Dist: seaborn>=0.12.0
29
+ Requires-Dist: statsmodels>=0.13.2
30
+ Requires-Dist: typing_extensions>=4
31
+ Provides-Extra: r
32
+ Requires-Dist: rpy2!=3.5.13,>=3.5.3; extra == "r"
33
+ Provides-Extra: dev
34
+ Requires-Dist: mypy>=1.15.0; extra == "dev"
35
+ Requires-Dist: pytest>=8.3.5; extra == "dev"
36
+ Provides-Extra: test
37
+ Requires-Dist: pytest>=8.3.5; extra == "test"
38
+ Dynamic: license-file
39
+
40
+ # MsReport
41
+
42
+ [![Project Status: WIP – Initial development is in progress, but there has not yet been a stable, usable release suitable for the public.](https://www.repostatus.org/badges/latest/wip.svg)](https://www.repostatus.org/#wip)
43
+ ![Python Version from PEP 621 TOML](https://img.shields.io/python/required-version-toml?tomlFilePath=https%3A%2F%2Fraw.githubusercontent.com%2Fhollenstein%2Fmsreport%2Fmain%2Fpyproject.toml)
44
+ [![Run tests](https://github.com/hollenstein/msreport/actions/workflows/run-tests.yml/badge.svg)](https://github.com/hollenstein/msreport/actions/workflows/run-tests.yml)
45
+
46
+ **MsReport** is a Python library for post-processing quantitative proteomics data from
47
+ bottom-up mass spectrometry experiments.
48
+
49
+ ## Table of Contents
50
+
51
+ - [What is MsReport?](#what-is-msreport)
52
+ - [Key features of MsReport](#key-features-of-msreport)
53
+ - [Installation](#installation)
54
+ - [Installation when using Anaconda](#installation-when-using-anaconda)
55
+ - [Additional requirements](#additional-requirements)
56
+ - [Optional Dependencies](#optional-dependencies)
57
+ - [Development status](#development-status)
58
+
59
+ ## What is MsReport?
60
+
61
+ MsReport is a Python library designed to simplify the post-processing and analysis of quantitative proteomics data from bottom-up mass spectrometry experiments. It provides a high-level, abstraction-focused API for efficient and standardized workflows. The modular design of the library provides the flexibility to meet project specific data processing needs and customize workflows as required.
62
+
63
+ The library supports importing protein and peptide-level quantification results from MaxQuant, FragPipe, and Spectronaut, as well as post-translational modification (PTM) data from MaxQuant and FragPipe. MsReport provides tools for data annotation, normalization and transformation, statistical testing, and data visualization.
64
+
65
+ ### Key features of MsReport
66
+
67
+ #### Data Import and Standardization
68
+
69
+ The `reader` module provides software-specific reader classes for importing data from MaxQuant, FragPipe, and Spectronaut that enable the import of protein, peptide and ion tables. During the import process, these classes transform tables column names and table values into a standardized format to ensure that the rest of the library can operate in a tool-agnostic manner.
70
+
71
+ #### Data management
72
+
73
+ The `qtable` module provides a structured approach to managing quantitative data through its central `Qtable` class. This class combines quantitative data with an experimental design table that defines the relationship between samples and experimental conditions. The quantitative data is stored in a wide format, where each sample's measurements are stored in separate columns. The `Qtable` class serves as the foundation for data analysis workflows in MsReport, providing the standardized data structure used by the `analyze`, `plot`, and `export` modules.
74
+
75
+ #### Data processing and analysis
76
+
77
+ The `analyze` module provides tools for post-processing of mass spectrometry data generated by software such as MaxQuant, FragPipe, or Spectronaut. It includes functions for filtering, normalization, imputation of missing values, and statistical testing. The library integrates with the R package LIMMA to enable differential expression analysis.
78
+
79
+ > [!NOTE]
80
+ > In order to use the R integration you need to install msreport with optional dependencies, see [Optional Dependencies](#optional-dependencies) for more information.
81
+
82
+ #### Data visualization
83
+
84
+ The `plot` module supports the generation of visualizations for quality control and data analysis. It includes functions for creating various plots, such as intensity and ratio distributions, heatmaps, volcano plots, and PCA plots.
85
+
86
+ #### Data export
87
+
88
+ Finally, the `export` module enables the conversion and export into formats compatible with external tools. This includes generating input files for [Amica](https://bioapps.maxperutzlabs.ac.at/app/amica) and exporting tables for easier integration with Perseus.
89
+
90
+ ## Installation
91
+
92
+ If you do not already have a Python installation, we recommend installing the [Anaconda distribution](https://www.anaconda.com/download) or [Miniconda](https://docs.anaconda.com/free/miniconda/index.html) distribution from Continuum Analytics, which already contains a large number of popular Python packages for Data Science. Alternatively, you can also get Python from the [Python homepage](https://www.python.org/downloads/windows). Note that MsReport requires Python version 3.10 or higher.
93
+
94
+ The following command will install MsReport and its dependencies by using a wheel file.
95
+
96
+ ```shell
97
+ pip install msreport
98
+ ```
99
+
100
+ To uninstall the MsReport library use:
101
+
102
+ ```shell
103
+ pip uninstall msreport
104
+ ```
105
+
106
+ ### Installation when using Anaconda
107
+
108
+ To install the MsReport library using Anaconda, you need to either activate a custom conda environment or install it into the default base environment. Open the Anaconda Navigator, activate the desired conda environment or use the base environment, and then open a command line by running the "CMD.exe" application. Finally, use the `pip install` command as before.
109
+
110
+ ### Optional Dependencies
111
+
112
+ #### R Integration
113
+
114
+ MsReport provides an interface to the R package LIMMA for differential expression analysis. To use this functionality, you need:
115
+
116
+ - A local installation of **R (version 4.0 or higher)**.
117
+ - The system environment variable R_HOME set to the R home directory.
118
+ - To install msreport with the optional dependencies for R integration.
119
+
120
+ ```shell
121
+ pip install msreport[R]
122
+ ```
123
+
124
+ #### Setting the R_HOME environment variable
125
+
126
+ On Windows, you may need to restart your computer after modifying the system environment variables for the changes to take effect. To find the R home directory, you can run the following command in R:
127
+
128
+ ```R
129
+ normalizePath(R.home("home"))
130
+ ```
131
+
132
+ For example, the R home directory might look like this on Windows: `C:\Program Files\R\R-4.2.1`
133
+
134
+ ## Development status
135
+
136
+ MsReport is a stable and reliable library that has been used on a daily basis for over two years in the Mass Spectrometry Facility at the Max Perutz Labs and the Mass Spectrometry Facility of IMP/IMBA/GMI. While the current interface of MsReport is stable, the library is still under active development, with new features being added regularly. Please note that a major rewrite is planned, which may introduce changes to the API in the future.
@@ -0,0 +1,38 @@
1
+ msreport/__init__.py,sha256=mwpJ3VkH0wctK3CzSQwaywF-mkOC8revi1Ra82apJ3U,339
2
+ msreport/analyze.py,sha256=I1sfxvXy02AjFcfLRlvC-F_bg0J8ePKoSIU8yDWxLs0,31313
3
+ msreport/errors.py,sha256=X9yFxMiIOCWQdxuqBGr8L7O3vRV2KElXdX1uHbFcZMk,421
4
+ msreport/export.py,sha256=YvY3Nly5JC2CUM-JY1gydU1g2eqnennzToZfQQ5phO0,20156
5
+ msreport/fasta.py,sha256=eXTmA4WGX4dT9wcTw7AdrvybLWG47p7ur48CxIjxjfg,1161
6
+ msreport/impute.py,sha256=bf2Zy8VQNJ0Oh1sKn84Xp9iV5svi_Hp7iHxwRrFBwsI,10327
7
+ msreport/isobar.py,sha256=m6NhLaKBiItIXuBhly_z2wEslxQGFC2f3-e1bzYXB78,6575
8
+ msreport/normalize.py,sha256=K1x3DjL5Rep3t_eDIKIghMr0sAJiROnX6skHnOMPZ_k,20160
9
+ msreport/peptidoform.py,sha256=26USj6WPrMgMIc7LttQ2n6Oq5jo1o7ayUQLR6gsRmZY,12015
10
+ msreport/qtable.py,sha256=0e-TXmuiKBU6W5TL3tz06nNrjtEyT-CI9bvUq8W6qME,26768
11
+ msreport/reader.py,sha256=Dqm3Ii9RKiQ61RNATXIqWzD8eOfQyPQQ7lddl-thLQA,112075
12
+ msreport/aggregate/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
+ msreport/aggregate/condense.py,sha256=eIh5A3RUvXrmoFUjRXagiPl0m-ucuRwYD8kDBI7voVs,5862
14
+ msreport/aggregate/pivot.py,sha256=rn8li-FrtOZS4oWA8COk0uV2m71GCEbNu1ALNoMuHOA,5081
15
+ msreport/aggregate/summarize.py,sha256=aYXi_i7MkqjA8k9WWpOgn029TeJ3H5Qo899msDVw89M,12165
16
+ msreport/helper/__init__.py,sha256=UbBHKMcapSXCyNmfQm6rg-2OgS303txkgILtboE05KI,535
17
+ msreport/helper/calc.py,sha256=J4XltEnMrFR9IQlPtrZhyxlSTj15072huHCMA_nqQ6E,4245
18
+ msreport/helper/maxlfq.py,sha256=EP1UjV3IAz4NSpGOQSsWGbuxtGLmtw92dvXUwgBYmF0,14943
19
+ msreport/helper/table.py,sha256=x-Wo8mTENsUxc_gtF-wgOyQa9g7W2fK6tuRiEX7bda0,11430
20
+ msreport/helper/temp.py,sha256=jNulgDATf9sKXEFWMXAhjflciOZPAqlxg_7QZS7IkW8,3736
21
+ msreport/plot/__init__.py,sha256=SnoQORfrjgz9SmqPZ-1J1aeVC5xu-cFfZINP4aYVCmY,1488
22
+ msreport/plot/_partial_plots.py,sha256=tqZTSXEPuruMgVakaGR2tUQl5OrHgo2cROJ0S4cqkR0,5598
23
+ msreport/plot/comparison.py,sha256=J8zWyQrzx7rxDLxeZQkfAlcSmLY3e_7wwPG-cGuWo2M,18564
24
+ msreport/plot/distribution.py,sha256=a2Rw6HxQwGfDwRSy8dwpT7zvEQ968wYHjcVPOdXI3l8,10150
25
+ msreport/plot/multivariate.py,sha256=0xzxggqbIGQYOfgiij93DTRWfG6GvvhqI9u1GNPHarY,13111
26
+ msreport/plot/quality.py,sha256=dIo_dpdexEN_vp35WpUTt626E-QJ2qNbJmjUai_8uck,15861
27
+ msreport/plot/style.py,sha256=67jWf4uA1ub9RJDu4xhuSoXAW0lbLj6SMP4QXQO76Pc,10591
28
+ msreport/plot/style_sheets/msreport-notebook.mplstyle,sha256=SPYO_7vYT8Ha7tQ0KCTLtykiRQ13-_igAm7kyvsZj1I,1266
29
+ msreport/plot/style_sheets/seaborn-whitegrid.mplstyle,sha256=eC8Zboy8R7ybBwbHPKvKbMIHACystN6X6I0lqm7B80U,833
30
+ msreport/rinterface/__init__.py,sha256=Zs6STvbDqaVZVPRM6iU0kKjq0TWz_2p2ChvNAveRdTA,616
31
+ msreport/rinterface/limma.py,sha256=fxYRUkkJKI-JpDvivjWj8bUS0ug7RRTMnaf2UOgRsXQ,5421
32
+ msreport/rinterface/rinstaller.py,sha256=AGs6NFMSwTLrzrIJz1E5BE5jFUz8eQBHlpM_MWVChzA,1370
33
+ msreport/rinterface/rscripts/limma.R,sha256=gr_yjMm_YoG45irDhWOo6gkRQSTwj_7uU_p3NBRHPm8,4331
34
+ msreport-0.0.29.dist-info/licenses/LICENSE.txt,sha256=Pd-b5cKP4n2tFDpdx27qJSIq0d1ok0oEcGTlbtL6QMU,11560
35
+ msreport-0.0.29.dist-info/METADATA,sha256=pI4CU6ol8LHTgkVEAGs-5HrCNefD52o-VdrZakKtwE4,8008
36
+ msreport-0.0.29.dist-info/WHEEL,sha256=ooBFpIzZCPdw3uqIQsOo4qqbA4ZRPxHnOH7peeONza0,91
37
+ msreport-0.0.29.dist-info/top_level.txt,sha256=Drl8mCckJHFIw-Ovh5AnyjKnqvLJltDOBUr1JAcHAlI,9
38
+ msreport-0.0.29.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.0.0)
2
+ Generator: setuptools (80.0.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5