mrio-toolbox 1.0.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mrio-toolbox might be problematic. Click here for more details.

Files changed (67) hide show
  1. __init__.py +21 -0
  2. {mrio_toolbox/_parts → _parts}/_Axe.py +95 -37
  3. {mrio_toolbox/_parts → _parts}/_Part.py +346 -111
  4. _parts/__init__.py +7 -0
  5. {mrio_toolbox/_parts → _parts}/part_operations.py +24 -17
  6. extractors/__init__.py +20 -0
  7. extractors/downloaders.py +36 -0
  8. extractors/emerging/__init__.py +3 -0
  9. extractors/emerging/emerging_extractor.py +117 -0
  10. extractors/eora/__init__.py +3 -0
  11. extractors/eora/eora_extractor.py +132 -0
  12. extractors/exiobase/__init__.py +3 -0
  13. extractors/exiobase/exiobase_extractor.py +270 -0
  14. extractors/extractors.py +81 -0
  15. extractors/figaro/__init__.py +3 -0
  16. extractors/figaro/figaro_downloader.py +280 -0
  17. extractors/figaro/figaro_extractor.py +187 -0
  18. extractors/gloria/__init__.py +3 -0
  19. extractors/gloria/gloria_extractor.py +202 -0
  20. extractors/gtap11/__init__.py +7 -0
  21. extractors/gtap11/extraction/__init__.py +3 -0
  22. extractors/gtap11/extraction/extractor.py +129 -0
  23. extractors/gtap11/extraction/harpy_files/__init__.py +6 -0
  24. extractors/gtap11/extraction/harpy_files/_header_sets.py +279 -0
  25. extractors/gtap11/extraction/harpy_files/har_file.py +262 -0
  26. extractors/gtap11/extraction/harpy_files/har_file_io.py +974 -0
  27. extractors/gtap11/extraction/harpy_files/header_array.py +300 -0
  28. extractors/gtap11/extraction/harpy_files/sl4.py +229 -0
  29. extractors/gtap11/gtap_mrio/__init__.py +6 -0
  30. extractors/gtap11/gtap_mrio/mrio_builder.py +158 -0
  31. extractors/icio/__init__.py +3 -0
  32. extractors/icio/icio_extractor.py +121 -0
  33. extractors/wiod/__init__.py +3 -0
  34. extractors/wiod/wiod_extractor.py +143 -0
  35. mrio_toolbox/mrio.py → mrio.py +254 -94
  36. {mrio_toolbox-1.0.0.dist-info → mrio_toolbox-1.1.2.dist-info}/METADATA +11 -7
  37. mrio_toolbox-1.1.2.dist-info/RECORD +59 -0
  38. {mrio_toolbox-1.0.0.dist-info → mrio_toolbox-1.1.2.dist-info}/WHEEL +1 -1
  39. mrio_toolbox-1.1.2.dist-info/top_level.txt +6 -0
  40. msm/__init__.py +6 -0
  41. msm/multi_scale_mapping.py +863 -0
  42. utils/__init__.py +3 -0
  43. utils/converters/__init__.py +5 -0
  44. {mrio_toolbox/utils → utils}/converters/pandas.py +5 -6
  45. {mrio_toolbox/utils → utils}/converters/xarray.py +6 -15
  46. utils/formatting/formatter.py +527 -0
  47. utils/loaders/__init__.py +7 -0
  48. {mrio_toolbox/utils → utils}/loaders/_loader.py +60 -4
  49. {mrio_toolbox/utils → utils}/loaders/_loader_factory.py +22 -1
  50. {mrio_toolbox/utils → utils}/loaders/_nc_loader.py +37 -1
  51. {mrio_toolbox/utils → utils}/loaders/_pandas_loader.py +29 -3
  52. {mrio_toolbox/utils → utils}/loaders/_parameter_loader.py +61 -16
  53. {mrio_toolbox/utils → utils}/savers/__init__.py +3 -0
  54. utils/savers/_path_checker.py +37 -0
  55. {mrio_toolbox/utils → utils}/savers/_to_folder.py +6 -1
  56. utils/savers/_to_nc.py +60 -0
  57. mrio_toolbox/__init__.py +0 -5
  58. mrio_toolbox/_parts/__init__.py +0 -3
  59. mrio_toolbox/utils/converters/__init__.py +0 -2
  60. mrio_toolbox/utils/loaders/__init__.py +0 -3
  61. mrio_toolbox/utils/savers/_path_checker.py +0 -19
  62. mrio_toolbox/utils/savers/_to_nc.py +0 -52
  63. mrio_toolbox-1.0.0.dist-info/RECORD +0 -26
  64. mrio_toolbox-1.0.0.dist-info/top_level.txt +0 -1
  65. {mrio_toolbox-1.0.0.dist-info → mrio_toolbox-1.1.2.dist-info/licenses}/LICENSE +0 -0
  66. {mrio_toolbox/utils → utils/formatting}/__init__.py +0 -0
  67. {mrio_toolbox/utils → utils}/loaders/_np_loader.py +0 -0
@@ -0,0 +1,202 @@
1
+ """
2
+ Extractor for GLORIA data.
3
+
4
+ This extractor loads GLORIA raw data files and converts them to NetCDF
5
+ files.
6
+
7
+ Supports GLORIA version 059
8
+ https://ielab.info/labs/ielab-gloria
9
+
10
+ Created on Fr Dez 20, 2024
11
+ @author: wirth, based on code of beaufils
12
+
13
+ """
14
+
15
+ import os
16
+ import logging
17
+ import numpy as np
18
+ import pandas as pd
19
+ from mrio_toolbox import MRIO
20
+ from mrio_toolbox.utils.savers._to_nc import save_to_nc
21
+
22
+ log = logging.getLogger(__name__)
23
+
24
+ def extract_gloria(
25
+ year,
26
+ source,
27
+ markup = 1,
28
+ parts = "all",
29
+ precision=32):
30
+ """
31
+ Extract GLORIA data.
32
+
33
+ Loads GLORIA tables and labels and store them as NetCDF for further use with
34
+ the mrio_toolbox library. Currrently, this extractor supports loading T, Y,
35
+ VA, Q, and QY tables.
36
+
37
+ Put all tables (including emission satellite accounts) as well as the
38
+ 'GLORIA_ReadMe_059a.xlsx' file in the same source folder.
39
+
40
+
41
+ Parameters
42
+ ----------
43
+ year : str
44
+ Data year to load.
45
+ parts : str
46
+ Data blocks to load:
47
+ basic : T, Y
48
+ all : T, Y, VA, Q, QY
49
+ markup : int
50
+ Version of prices to load. Available versions:
51
+ 1 : basic prices
52
+ 2 : trade margins
53
+ 3 : transport margins
54
+ 4 : taxes on products
55
+ 5 : subsidies on products
56
+ source : path-like
57
+ Path to folder where raw data is stored
58
+ precision : int
59
+ Floating point precision in bits. Default is 32.
60
+ This introduces some rounding error for large numbers.
61
+ """
62
+
63
+ #Check source path
64
+ source = source + f"/GLORIA_MRIOs_59_{year}"
65
+ if not os.path.exists(source):
66
+ log.error(f"{os.path.abspath(source)} does not exist.")
67
+ raise NotADirectoryError(f"{os.path.abspath(source)} does not exist.")
68
+
69
+ # Gloria comes with 164 regions (160 countries + rest of americas,
70
+ # rest of europe, rest of africa, rest of asia-pacific) and 120 sectors.
71
+
72
+ if parts == "all":
73
+ parts = ["T","Y","V","TQ","YQ"]
74
+ elif parts == "basic":
75
+ parts = ["T","Y", "V"]
76
+
77
+ tables = {}
78
+
79
+ if precision == 32:
80
+ log.info("Data precision is 32 bits")
81
+ dt = np.float32
82
+ elif precision == 64:
83
+ log.info("Data precision is 64 bits")
84
+ dt = np.float64
85
+
86
+ log.info("Loading Gloria labels...")
87
+ labels = {}
88
+ countries = pd.read_excel(
89
+ io = os.path.join(source, "GLORIA_ReadMe_059a.xlsx"),
90
+ sheet_name = "Regions")
91
+ countries = countries["Region_acronyms"].tolist()
92
+ sectors = pd.read_excel(
93
+ io = os.path.join(source, "GLORIA_ReadMe_059a.xlsx"),
94
+ sheet_name = "Sectors")
95
+ sectors = sectors["Sector_names"].tolist()
96
+ va_and_y_labs = pd.read_excel(
97
+ io = os.path.join(source, "GLORIA_ReadMe_059a.xlsx"),
98
+ sheet_name = "Value added and final demand")
99
+ va_labs= va_and_y_labs["Value_added_names"].tolist()
100
+ y_labs = va_and_y_labs["Final_demand_names"].tolist()
101
+ q_labs = pd.read_excel(
102
+ io = os.path.join(source, "GLORIA_ReadMe_059a.xlsx"),
103
+ sheet_name = "Satellites")
104
+ q_labs["combined"] = q_labs["Sat_head_indicator"] + " - " + q_labs["Sat_indicator"] + " - " + q_labs["Sat_unit"]
105
+ q_labs = q_labs["combined"].tolist()
106
+
107
+ labels["countries"] = countries
108
+ labels["sectors"] = sectors
109
+ labels["y_labs"] = y_labs
110
+ labels["q_labs"] = q_labs
111
+ labels["va_labs"] = va_labs
112
+ log.info("Loaded Gloria labels")
113
+
114
+ log.info("Loading Gloria tables, this can take a while...")
115
+ for part in parts:
116
+ if part == "T" or part == "Y":
117
+ path = os.path.join(source, f'20240111_120secMother_AllCountries_002_{part}-Results_{year}_059_Markup00{markup}(full).csv')
118
+ elif part == "V":
119
+ path = os.path.join(source, f'20240419_120secMother_AllCountries_002_{part}-Results_{year}_059_Markup001(full).csv')
120
+ elif part == "TQ" or part == "YQ":
121
+ path = os.path.join(source, f'20240417_120secMother_AllCountries_002_{part}-Results_{year}_059_Markup00{markup}(full).csv')
122
+ log.info(f"Loading {part} table...")
123
+ tables[part] = load_and_transform_to_IO_structure(path, part, dt)
124
+ log.info(f"Loaded {part} table")
125
+
126
+
127
+ # build an MRIO object from labels and tables
128
+ m = MRIO()
129
+ m.add_dimensions(labels)
130
+
131
+ m.parts["T"] = m.new_part(name="t",
132
+ data= tables["T"],
133
+ dimensions = [["countries","sectors"],["countries", "sectors"]])
134
+ log.info("Added T table")
135
+
136
+ m.parts["Y"] = m.new_part(name="y",
137
+ data= tables["Y"],
138
+ dimensions = [["countries","sectors"],["countries", "y_labs"]])
139
+ log.info("Added Y table")
140
+
141
+ m.parts["VA"] = m.new_part(name="va",
142
+ data= tables["V"],
143
+ dimensions = ["va_labs",["countries","sectors"]])
144
+ log.info("Added VA table")
145
+
146
+ if parts == "all":
147
+ m.parts["Q"] = m.new_part(name="q",
148
+ data= tables["TQ"],
149
+ dimensions = ["q_labs",["countries","sectors"]])
150
+ log.info("Added Q table")
151
+
152
+ m.parts["QY"] = m.new_part(name="qy",
153
+ data= tables["YQ"],
154
+ dimensions = ["q_labs",["countries","y_labs"]])
155
+ log.info("Added QY table")
156
+
157
+ m.name = f"gloria_{year}_markup00{markup}"
158
+ return m
159
+
160
+ def load_and_transform_to_IO_structure(path, part, dt):
161
+ c = 164 # number of countries
162
+ s = 120 # number of sectors
163
+
164
+ table = np.loadtxt(path, dtype=dt, delimiter=',')
165
+
166
+ rows = np.arange(table.shape[0])
167
+ columns = np.arange(table.shape[1])
168
+
169
+ if part == "T":
170
+ selected_rows = (rows // s) % 2 == 1 # Starts with 120 off, then 120 on
171
+ selected_columns = (columns // s) % 2 == 0 # starts with 120 on, then 120 off
172
+ elif part == "Y":
173
+ selected_rows = (rows // s) % 2 == 1
174
+ selected_columns = columns
175
+ elif part == "V":
176
+ selected_rows = rows
177
+ selected_columns = (columns // s) % 2 == 0
178
+ elif part == "TQ":
179
+ selected_rows = rows
180
+ selected_columns = (columns // s) % 2 == 0
181
+ elif part == "YQ":
182
+ selected_rows = rows
183
+ selected_columns = columns
184
+
185
+ table = table[selected_rows][:, selected_columns]
186
+
187
+ if part == "V":
188
+ # Stack the entries to transform the pseudo-diagonalized 984x19680 shape into a 6x19680 shape
189
+
190
+ block_height = 6
191
+ block_width = 120
192
+ blocks = []
193
+
194
+ for i in range (0, int(table.shape[0]/block_height)):
195
+ block = table[i*block_height:(i+1)*block_height,
196
+ i*block_width:(i+1)*block_width]
197
+ blocks.append(block)
198
+
199
+ table = np.hstack(blocks)
200
+
201
+ return table
202
+
@@ -0,0 +1,7 @@
1
+ """
2
+ This module contains the extractor for raw GTAP 11 data and the IO builder to transform it into an MRIO object.
3
+ """
4
+ from .extraction.extractor import extract_gtap11
5
+ from .gtap_mrio import build_io
6
+
7
+ __all__ = ["extract_gtap11","build_io"]
@@ -0,0 +1,3 @@
1
+ """
2
+ This module contains the GTAP 11 extractor.
3
+ """
@@ -0,0 +1,129 @@
1
+ """
2
+ Extracts the data from the .har file and saves it as .npy files.
3
+ """
4
+
5
+ import os
6
+ from mrio_toolbox.extractors.gtap11.extraction.harpy_files.har_file import HarFileObj
7
+
8
+ import xarray as xr
9
+ import logging
10
+ import mrio_toolbox.extractors.gtap11.gtap_mrio.mrio_builder as mrio_builder
11
+
12
+ log = logging.getLogger(__name__)
13
+
14
+ def extract_gtap11(
15
+ year = 2017,
16
+ source = "",
17
+ files = "all",
18
+ name = "gtap",
19
+ build_io = True,
20
+ save_raw = True
21
+ ):
22
+ """
23
+ Extract GTAP data from .har files and save it as .nc file.
24
+
25
+ Parameters
26
+ ----------
27
+ source : str, optional
28
+ Location of the source files, by default the current directory
29
+ save_raw : str, optional
30
+ Where to save the raw files, by default the current directory
31
+ files : list, optional
32
+ List of files to extract, by default, all files in the source directory
33
+ name : str, optional
34
+ Name under which the files are saved, by default "gtap"
35
+ build_io : bool, optional
36
+ Whether to build the input-output table, by default False
37
+
38
+ Raises
39
+ ------
40
+ NotADirectoryError
41
+ Exception raised when the source directory does not exist
42
+ FileNotFoundError
43
+ Exception raised when the destination directory does not contain any .har files
44
+ If only some files are missing, a warning is issued but the extraction continues
45
+ """
46
+ #Check source path
47
+ if not os.path.exists(source):
48
+ log.error(f"{os.path.abspath(source)} does not exist.")
49
+ raise NotADirectoryError(f"{os.path.abspath(source)} does not exist.")
50
+
51
+ log.info(f"Extracting GTAP data from {os.path.abspath(source)}")
52
+
53
+ #List available har files
54
+ har_files = [f for f in os.listdir(source) if f.endswith(".har")]
55
+ if len(har_files) == 0:
56
+ log.error(f"No .har files found in {os.path.abspath(source)}")
57
+ raise FileNotFoundError(f"No .har files found in {os.path.abspath(source)}")
58
+ log.info(f"Found {len(har_files)} .har files in {os.path.abspath(source)}")
59
+
60
+ if isinstance(files, str) and files == "all":
61
+ files = har_files
62
+
63
+ ds = xr.Dataset()
64
+ for file in files:
65
+ if file not in har_files:
66
+ log.warning(f"{file} not found in {os.path.abspath(source)}")
67
+ continue
68
+ log.info(f" Extracting {file}")
69
+ filename = os.path.join(source, file)
70
+ data = HarFileObj(filename = filename)
71
+ variables = data.getHeaderArrayNames()
72
+ for variable in variables:
73
+ log.info(f" Extracting {variable}")
74
+ ds = convert_variable(data, variable, ds)
75
+
76
+ if save_raw:
77
+ log.info(f"Saving {name}_raw.nc")
78
+ if save_raw is True:
79
+ #By default, save in the source folder
80
+ save_raw = source
81
+ ds.to_netcdf(os.path.join(save_raw, f"{name}_raw.nc"))
82
+ if build_io:
83
+ log.info("Building input-output table")
84
+ mrio = mrio_builder.build_io(ds)
85
+ mrio.name = f"{name}_{year}"
86
+ return mrio
87
+
88
+ def convert_variable(file, variable, ds):
89
+ """
90
+ Convert a variable from a .har file to a xarray DataArray.
91
+
92
+ Data descriptor variables are stored as attributes of the dataset.
93
+
94
+ Parameters
95
+ ----------
96
+ file : harpy.HarFileObj
97
+ Representation of the .har file
98
+ variable : str
99
+ Name of the variable to extract
100
+ ds : xarray.Dataset
101
+ Dataset to which the variable is added
102
+
103
+ Returns
104
+ -------
105
+ ds : xarray.Dataset
106
+ Updated dataset
107
+ """
108
+ data = file[variable]
109
+ coords = dict()
110
+ dims = []
111
+ for dim in data.sets.dims:
112
+ if dim.name is None:
113
+ #Intercepts descriptive variables
114
+ log.info(f" {variable} is a descriptive variable")
115
+ ds.attrs[variable] = str(data.array)
116
+ return ds
117
+ dims.append(dim.name)
118
+ coords[dim.name] = dim.dim_desc
119
+ ds[variable] = xr.DataArray(
120
+ data.array,
121
+ coords = coords,
122
+ dims = dims,
123
+ attrs = {
124
+ "long_name": data.long_name,
125
+ "name" : variable
126
+ }
127
+ )
128
+ return ds
129
+
@@ -0,0 +1,6 @@
1
+ """
2
+ The code in this module is copied from the HARPY package, which you can visit on github:
3
+ https://github.com/GEMPACKsoftware/HARPY/tree/master
4
+
5
+ Both the HARPY library and the MRIO toolbox library are licenced under the GPL 3 license.
6
+ """
@@ -0,0 +1,279 @@
1
+ """
2
+ Created on Jun 29 14:46:48 2018
3
+
4
+ """
5
+
6
+ import numpy as np
7
+ from typing import List, Union
8
+
9
+ class _HeaderSet:
10
+ """
11
+ This class is used to represent sets associated with header arrays.
12
+ """
13
+
14
+ # Status is unknown elements but set, element index, known set elements, no set just numeric
15
+ _valid_status = ["u", "e", "k", "n"]
16
+ _genSetID = 0
17
+
18
+ def __init__(self, name: 'Union[str,None]',
19
+ status: str,
20
+ dim_desc: 'Union[List[str],str,None]',
21
+ dim_size: int):
22
+
23
+ self.name = name
24
+ self.status = status
25
+ self.dim_desc = dim_desc
26
+ if not dim_desc is None:
27
+ if any([len(el) > 12 for el in dim_desc]):
28
+ raise ValueError("Set Element too long (maximum 12 Characters for set Elements)")
29
+ self.elemPosDict={} if self.dim_desc is None else dict(zip( [elem.strip().lower() for elem in dim_desc], range(0,len(self.dim_desc))))
30
+ self.dim_size = dim_size
31
+
32
+ def transform_index(self,index):
33
+ if isinstance(index,(str,int)):
34
+ return self.name_to_ind(index), None
35
+
36
+ elif isinstance(index,slice):
37
+ newslice=self.convertSlice(index)
38
+ npIndList=list(range(self.dim_size))[newslice]
39
+ SetName=self._newname() if not all(p is None for p in [newslice.start,newslice.stop,newslice.step]) else self.name
40
+ if self.dim_desc:
41
+ return npIndList, _HeaderSet(SetName, self.status, self.dim_desc[newslice], len(npIndList))
42
+ else:
43
+ return npIndList, _HeaderSet(SetName, self.status, dim_desc=None, dim_size=len(npIndList))
44
+
45
+
46
+ elif isinstance(index,list):
47
+ useElem=self.status in ["e","k"]
48
+ setElList=[] if useElem else None
49
+ npIndList=[]
50
+ for ind in index:
51
+ if isinstance(ind, (str,int) ):
52
+ idx=self.name_to_ind(ind)
53
+ npIndList.append(idx)
54
+ if useElem: setElList.append(self.dim_desc[idx])
55
+ elif isinstance(ind,slice):
56
+ newslice = self.convertSlice(ind)
57
+ npIndList.append(list(range(self.dim_size))[newslice])
58
+ if useElem: setElList.extend(self.dim_desc[newslice])
59
+ else:
60
+ raise TypeError("Only slice, str, int allowed in list indexing")
61
+ if useElem:
62
+ if len(set(setElList)) != len(setElList):
63
+ raise ValueError("Indexing leads to duplicate set elements which is not permitted")
64
+ if setElList != self.dim_desc:
65
+ return npIndList, _HeaderSet(self._newname(), self.status, setElList, len(npIndList))
66
+ else:
67
+ return npIndList, self
68
+ else:
69
+ return npIndList, _HeaderSet(self._newname(), self.status, None, len(npIndList))
70
+
71
+
72
+ def convertSlice(self,index):
73
+ if not isinstance(index.step, int) and not index.step is None:
74
+ raise ValueError("step in slice has to be integer")
75
+ start=self.name_to_ind(index.start)
76
+ start= None if start==0 else start
77
+ stop = self.name_to_ind(index.stop)
78
+ stop = None if stop==self.dim_size else stop
79
+ step= None if index.step == 1 else index.step
80
+ return slice(start, stop, step)
81
+
82
+ def name_to_ind(self,idx):
83
+ if idx is None:
84
+ return None
85
+ elif isinstance(idx,str):
86
+ if idx.strip().lower() in self.elemPosDict:
87
+ return self.elemPosDict[idx.strip().lower()]
88
+ else:
89
+ raise ValueError("Element not in set")
90
+ elif isinstance(idx,int):
91
+ if idx >= self.dim_size:
92
+ raise ValueError("Index Out Of bounds")
93
+ return idx
94
+
95
+ def _newname(self):
96
+ _HeaderSet._genSetID+=1
97
+ return "S@"+str(_HeaderSet._genSetID)
98
+
99
+
100
+ class _HeaderDims:
101
+
102
+ def __init__(self, setList):
103
+ self._dims=setList
104
+
105
+ @staticmethod
106
+ def fromShape(shape):
107
+ setList=[_HeaderSet(None, 'n', None, dim) for dim in shape]
108
+ return _HeaderDims(setList)
109
+
110
+ @staticmethod
111
+ def fromSetShape(sets, setElDict, shape):
112
+ setObjList=[]
113
+ lowerDict=dict(zip([key.strip().lower() for key in setElDict.keys()], setElDict.keys() ))
114
+ for idim, setName in enumerate(sets):
115
+ lowSet=setName.strip().lower()
116
+ if lowSet in lowerDict:
117
+ setObjList.append(_HeaderSet(setName,'k',setElDict[lowerDict[lowSet]],shape[idim]))
118
+ else:
119
+ setObjList.append(_HeaderSet(setName, 'u', None, shape[idim]))
120
+ return _HeaderDims(setObjList)
121
+
122
+
123
+ @property
124
+ def dims(self) -> List[_HeaderSet]:
125
+ return self._dims
126
+
127
+ @dims.setter
128
+ def dims(self, obj) -> None:
129
+ self._dims = obj
130
+
131
+ def ndim(self):
132
+ """
133
+ Number of dimensions
134
+ """
135
+ return len(self._dims)
136
+
137
+ def defined(self):
138
+ """
139
+ Tells whether dimensensions have sets defined or are just array like
140
+ """
141
+ return not all([dim.name is None for dim in self._dims])
142
+
143
+ @property
144
+ def setNames(self):
145
+ return [dim.name for dim in self.dims]
146
+
147
+ @setNames.setter
148
+ def setNames(self, sNames):
149
+ if not isinstance(sNames,list): raise TypeError("set Names needs to be given as a list of strings")
150
+ if len(sNames) != len(self.dims) : raise ValueError("wrong length of set List. Header is rank "+str(len(self.dims))+ "but received list size "+ len(sNames))
151
+ for name in sNames:
152
+ if not isinstance(name,str): raise TypeError("set Names contains a non string object: "+str(name))
153
+ if len(name.strip()) > 12 : raise ValueError("Set names are limited to 12 characters. received '"+name+"'")
154
+ for newName, dim in zip(sNames,self.dims):
155
+ dim.name=newName.strip()
156
+
157
+ @property
158
+ def setElements(self):
159
+ return [dim.dim_desc for dim in self.dims]
160
+
161
+ @property
162
+ def shape(self):
163
+ return tuple([sets.dim_size for sets in self._dims])
164
+
165
+ def __str__(self):
166
+ outputstr=""
167
+ for setDim in self._dims:
168
+ if setDim.status in "keu":
169
+ outputstr+=" " + setDim.name.ljust(12) + ": \n"
170
+ else:
171
+ outputstr+=" "+"Not Specified"
172
+ if setDim.status in "ke":
173
+ outputstr+=" " +", ".join(setDim.dim_desc) + "\n"
174
+ return outputstr
175
+
176
+
177
+
178
+ def compatible_shape(self,other):
179
+ return self.shape == other
180
+
181
+ def matchSets(self,sets=None, shape:tuple=None):
182
+ if sets is None and shape is None : raise KeyError("Only one argument allowed")
183
+ newSets = []
184
+ if not sets is None:
185
+ # Try to match the shape of the dimensions
186
+ iset=len(self.dims)-1; jset=len(sets.dims)-1
187
+ while iset >=0 and jset >=0:
188
+ if jset < 0 :
189
+ newSets.append(self.dims[iset])
190
+ iset -=1
191
+ elif iset < 0 :
192
+ newSets.append(sets.dims[jset])
193
+ jset -=1
194
+ if self.dims[iset].dim_size == sets.dims[jset].dim_size or self.dims[iset].dim_size == 1 or sets.dims[jset].dim_size == 1:
195
+ if self.dims[iset].status != 'n':
196
+ newSets.append(self.dims[iset])
197
+ else:
198
+ newSets.append(sets.dims[jset])
199
+ iset-= 1 ; jset -=1
200
+ newSets.reverse()
201
+ elif not shape is None:
202
+ iset = len(self.dims) - 1; jset=len(shape)-1
203
+ while iset >=0 and jset >=0:
204
+ if jset < 0 :
205
+ newSets.append(self.dims[iset])
206
+ iset -=1
207
+ elif iset < 0 :
208
+ newSets.append(_HeaderSet(None , 'n' , None, shape[jset]))
209
+ jset -=1
210
+ if self.dims[iset].dim_size == shape[jset] or self.dims[iset].dim_size == 1 or shape[jset] == 1:
211
+ newSets.append(self.dims[iset])
212
+ iset-= 1 ; jset -=1
213
+ newSets.reverse()
214
+ else:
215
+ return KeyError("Either sets o shape have to be defined")
216
+
217
+ return _HeaderDims(newSets)
218
+
219
+
220
+ def transform_index(self,index_tuple):
221
+ if not isinstance(index_tuple,tuple):
222
+ index_tuple=(index_tuple,)
223
+
224
+ trueLen=len([x for x in index_tuple if x is not None])
225
+ if trueLen != self.ndim() and not Ellipsis in index_tuple:
226
+ raise ValueError("Rank mismatch in indexing")
227
+ if index_tuple.count(Ellipsis)>1:
228
+ raise ValueError("Only single Ellipsis (...) allowed in indexing")
229
+
230
+ thisIndex=[]
231
+ for ind in index_tuple:
232
+ if ind == Ellipsis:
233
+ for i in range(0,self.ndim()-trueLen+1):
234
+ thisIndex.append(slice(None,None,None))
235
+ elif isinstance(ind,(list,str,int,slice)) or ind is None:
236
+ thisIndex.append(ind)
237
+ else:
238
+ raise TypeError("Only ...,list,str,int,slice and None allowed as indices")
239
+
240
+ npIndex=[]
241
+ newSets=[]
242
+
243
+ iset=0
244
+ for index in thisIndex:
245
+ if index is None:
246
+ npInd=np.newaxis
247
+ newSet=_HeaderSet(None , 'n' , None, 1)
248
+ else:
249
+ setDim=self._dims[iset]
250
+ npInd, newSet = setDim.transform_index(index)
251
+ iset+=1
252
+ npIndex.append(npInd)
253
+ newSets.append(newSet)
254
+
255
+ rankIndex=tuple([slice(None) if isinstance(ind,list) or ind is None else 0 for ind in npIndex])
256
+ newSets = [setDim for ri, setDim in zip(rankIndex,newSets) if ri != 0]
257
+ return self._makeNPIndex(npIndex), rankIndex, _HeaderDims(newSets)
258
+
259
+
260
+ @staticmethod
261
+ def _makeNPIndex(indexList):
262
+ newinds = []
263
+ for i, item in enumerate(indexList):
264
+ if isinstance(item, list):
265
+ newinds.append(item)
266
+ elif isinstance(item,int):
267
+ newinds.append([item])
268
+
269
+ numpyInd = list(np.ix_(*newinds))
270
+ newinds=[]
271
+ for item in indexList:
272
+ if not item is None:
273
+ newinds.append(numpyInd.pop(0))
274
+ else:
275
+ newinds.append(None)
276
+
277
+ return tuple(newinds)
278
+
279
+