mps-flash-attn 0.2.7__cp314-cp314-macosx_15_0_arm64.whl → 0.3.1__cp314-cp314-macosx_15_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mps-flash-attn might be problematic. Click here for more details.

Binary file
@@ -4,13 +4,42 @@ MPS Flash Attention - Flash Attention for PyTorch on Apple Silicon
4
4
  This package provides memory-efficient attention using Metal Flash Attention kernels.
5
5
  """
6
6
 
7
- __version__ = "0.2.7"
7
+ __version__ = "0.3.1"
8
+
9
+ __all__ = [
10
+ # Core functions
11
+ "flash_attention",
12
+ "flash_attention_with_bias",
13
+ "flash_attention_chunked",
14
+ # Quantized attention
15
+ "flash_attention_fp8",
16
+ "flash_attention_int8",
17
+ "flash_attention_nf4",
18
+ "quantize_kv_fp8",
19
+ "quantize_kv_int8",
20
+ "quantize_kv_nf4",
21
+ # Utilities
22
+ "replace_sdpa",
23
+ "precompile",
24
+ "clear_cache",
25
+ "register_custom_op",
26
+ "is_available",
27
+ "convert_mask",
28
+ # Constants
29
+ "QUANT_FP8_E4M3",
30
+ "QUANT_FP8_E5M2",
31
+ "QUANT_INT8",
32
+ "QUANT_NF4",
33
+ # Version
34
+ "__version__",
35
+ ]
8
36
 
9
37
  import torch
10
- from typing import Optional
38
+ from typing import Optional, Tuple
11
39
  import math
12
40
  import threading
13
41
  import os
42
+ import warnings
14
43
 
15
44
  # Try to import the C++ extension
16
45
  try:
@@ -30,6 +59,20 @@ def is_available() -> bool:
30
59
  return _HAS_MFA and torch.backends.mps.is_available()
31
60
 
32
61
 
62
+ def _ensure_contiguous(tensor: torch.Tensor, name: str) -> torch.Tensor:
63
+ """Ensure tensor is contiguous, with a debug warning if conversion needed."""
64
+ if tensor.is_contiguous():
65
+ return tensor
66
+ # Auto-convert with debug info
67
+ if os.environ.get("MFA_DEBUG", "0") == "1":
68
+ warnings.warn(
69
+ f"MFA: {name} tensor was not contiguous (stride={tensor.stride()}), "
70
+ f"auto-converting. For best performance, ensure inputs are contiguous.",
71
+ UserWarning
72
+ )
73
+ return tensor.contiguous()
74
+
75
+
33
76
  def convert_mask(attn_mask: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
34
77
  """
35
78
  Convert attention mask to MFA's boolean format.
@@ -176,6 +219,20 @@ def flash_attention(
176
219
  if not torch.backends.mps.is_available():
177
220
  raise RuntimeError("MPS not available")
178
221
 
222
+ # Validate scale parameter
223
+ if scale is not None:
224
+ if scale <= 0:
225
+ raise ValueError(f"scale must be positive, got {scale}")
226
+ # Warn about extreme scale values that could cause numerical issues
227
+ default_scale = 1.0 / math.sqrt(query.shape[-1])
228
+ if scale < default_scale * 0.01 or scale > default_scale * 100:
229
+ warnings.warn(
230
+ f"scale={scale:.6g} is very different from default {default_scale:.6g}, "
231
+ "this may cause numerical issues",
232
+ UserWarning,
233
+ stacklevel=2
234
+ )
235
+
179
236
  # Validate device
180
237
  if query.device.type != 'mps':
181
238
  raise ValueError("query must be on MPS device")
@@ -186,6 +243,37 @@ def flash_attention(
186
243
  if attn_mask is not None and attn_mask.device.type != 'mps':
187
244
  raise ValueError("attn_mask must be on MPS device")
188
245
 
246
+ # Ensure contiguous (auto-convert with debug warning)
247
+ query = _ensure_contiguous(query, "query")
248
+ key = _ensure_contiguous(key, "key")
249
+ value = _ensure_contiguous(value, "value")
250
+ if attn_mask is not None:
251
+ attn_mask = _ensure_contiguous(attn_mask, "attn_mask")
252
+ # Validate mask shape
253
+ B, H, N_q, D = query.shape
254
+ N_kv = key.shape[2]
255
+ if attn_mask.dim() != 4:
256
+ raise ValueError(f"attn_mask must be 4D (B, H, N_q, N_kv), got {attn_mask.dim()}D")
257
+ mb, mh, mq, mk = attn_mask.shape
258
+ # Allow broadcast: mq can be 1 (applies same mask to all query positions) or N_q
259
+ if (mq != 1 and mq != N_q) or (mk != 1 and mk != N_kv):
260
+ raise ValueError(
261
+ f"attn_mask shape mismatch: mask is ({mq}, {mk}) but expected ({N_q}, {N_kv}) or broadcastable (1, {N_kv})"
262
+ )
263
+ # Expand broadcast mask to full shape for Metal kernel
264
+ if mq == 1 and N_q > 1:
265
+ attn_mask = attn_mask.expand(mb, mh, N_q, mk)
266
+ if mk == 1 and N_kv > 1:
267
+ attn_mask = attn_mask.expand(mb, mh, mq if mq > 1 else N_q, N_kv)
268
+ if mb != 1 and mb != B:
269
+ raise ValueError(
270
+ f"attn_mask batch size must be 1 or {B}, got {mb}"
271
+ )
272
+ if mh != 1 and mh != H:
273
+ raise ValueError(
274
+ f"attn_mask head count must be 1 or {H}, got {mh}"
275
+ )
276
+
189
277
  # Fast path: inference mode (no grad) - skip autograd overhead and don't save tensors
190
278
  if not torch.is_grad_enabled() or (not query.requires_grad and not key.requires_grad and not value.requires_grad):
191
279
  # Apply scale if provided
@@ -213,6 +301,10 @@ def replace_sdpa():
213
301
  import torch.nn.functional as F
214
302
 
215
303
  original_sdpa = F.scaled_dot_product_attention
304
+ _debug = os.environ.get("MFA_DEBUG", "0") == "1"
305
+ _call_count = [0] # mutable for closure
306
+ _fallback_count = [0] # track fallbacks for warning
307
+ _last_fallback_error = [None]
216
308
 
217
309
  def patched_sdpa(query, key, value, attn_mask=None, dropout_p=0.0,
218
310
  is_causal=False, scale=None, enable_gqa=False, **kwargs):
@@ -224,28 +316,92 @@ def replace_sdpa():
224
316
  # seq=1024: 2.3-3.7x (MFA much faster)
225
317
  # seq=2048: 2.2-3.9x (MFA much faster)
226
318
  # seq=4096: 2.1-3.7x (MFA much faster)
319
+ # Determine seq_len based on tensor dimensionality
320
+ # 4D: (B, H, S, D) -> seq_len = shape[2]
321
+ # 3D: (B, S, D) -> seq_len = shape[1] (single-head attention, e.g., VAE)
322
+ is_3d = query.ndim == 3
323
+ seq_len = query.shape[1] if is_3d else query.shape[2]
324
+
227
325
  if (query.device.type == 'mps' and
228
326
  dropout_p == 0.0 and
229
327
  _HAS_MFA and
230
- query.shape[2] >= 512):
328
+ query.ndim >= 3 and
329
+ seq_len >= 512):
231
330
  try:
331
+ q, k, v = query, key, value
332
+
333
+ # Handle 3D tensors (B, S, D) - treat as single-head attention
334
+ # Unsqueeze to (B, 1, S, D) for MFA, squeeze back after
335
+ if is_3d:
336
+ q = q.unsqueeze(1) # (B, S, D) -> (B, 1, S, D)
337
+ k = k.unsqueeze(1)
338
+ v = v.unsqueeze(1)
339
+
340
+ # Handle GQA (Grouped Query Attention) - expand K/V heads to match Q heads
341
+ # Common in Llama 2/3, Mistral, Qwen, etc.
342
+ # NOTE: Always expand when heads mismatch, not just when enable_gqa=True
343
+ # Transformers may pass enable_gqa=True on MPS (torch>=2.5, no mask) even though
344
+ # MPS SDPA doesn't support native GQA - we handle it here
345
+ if q.shape[1] != k.shape[1]:
346
+ # Expand KV heads: (B, kv_heads, S, D) -> (B, q_heads, S, D)
347
+ n_rep = q.shape[1] // k.shape[1]
348
+ k = k.repeat_interleave(n_rep, dim=1)
349
+ v = v.repeat_interleave(n_rep, dim=1)
350
+
232
351
  # Convert float mask to bool mask if needed
233
352
  # PyTorch SDPA uses additive masks (0 = attend, -inf = mask)
234
353
  # MFA uses boolean masks (False/0 = attend, True/non-zero = mask)
235
354
  mfa_mask = None
236
355
  if attn_mask is not None:
356
+ if _debug:
357
+ print(f"[MFA MASK] dtype={attn_mask.dtype} shape={tuple(attn_mask.shape)} min={attn_mask.min().item():.2f} max={attn_mask.max().item():.2f}")
237
358
  if attn_mask.dtype == torch.bool:
238
- # Boolean mask: True means masked (don't attend)
239
- mfa_mask = attn_mask
359
+ # PyTorch SDPA bool mask: True = ATTEND, False = MASKED
360
+ # MFA bool mask: True = MASKED, False = ATTEND
361
+ # They're opposite! Invert it.
362
+ mfa_mask = ~attn_mask
240
363
  else:
241
364
  # Float mask: typically -inf for masked positions, 0 for unmasked
242
365
  # Convert: positions with large negative values -> True (masked)
243
366
  # Use -1e3 threshold to catch -1000, -10000, -inf, etc.
244
367
  mfa_mask = attn_mask <= -1e3
245
- return flash_attention(query, key, value, is_causal=is_causal, scale=scale, attn_mask=mfa_mask)
246
- except Exception:
247
- # Fall back to original on any error
248
- pass
368
+ if _debug:
369
+ print(f"[MFA MASK] converted: True(masked)={mfa_mask.sum().item()} False(attend)={(~mfa_mask).sum().item()}")
370
+
371
+ out = flash_attention(q, k, v, is_causal=is_causal, scale=scale, attn_mask=mfa_mask)
372
+
373
+ # Squeeze back for 3D input
374
+ if is_3d:
375
+ out = out.squeeze(1) # (B, 1, S, D) -> (B, S, D)
376
+
377
+ if _debug:
378
+ _call_count[0] += 1
379
+ print(f"[MFA #{_call_count[0]}] shape={tuple(query.shape)} is_3d={is_3d} gqa={enable_gqa} mask={attn_mask is not None} causal={is_causal}")
380
+
381
+ return out
382
+ except Exception as e:
383
+ # Fall back to original on any error, but track it
384
+ _fallback_count[0] += 1
385
+ _last_fallback_error[0] = str(e)
386
+ if _debug:
387
+ import traceback
388
+ print(f"[MFA FALLBACK #{_fallback_count[0]}] shape={tuple(query.shape)}\n{traceback.format_exc()}")
389
+ # Warn user after repeated fallbacks (likely a real problem)
390
+ if _fallback_count[0] == 10:
391
+ warnings.warn(
392
+ f"MFA has fallen back to native SDPA {_fallback_count[0]} times. "
393
+ f"Last error: {_last_fallback_error[0]}. "
394
+ f"Set MFA_DEBUG=1 for details.",
395
+ UserWarning
396
+ )
397
+
398
+ if _debug and query.device.type == 'mps':
399
+ _call_count[0] += 1
400
+ reason = []
401
+ if dropout_p != 0.0: reason.append(f"dropout={dropout_p}")
402
+ if query.ndim < 3: reason.append(f"ndim={query.ndim}")
403
+ if seq_len < 512: reason.append(f"seq={seq_len}<512")
404
+ print(f"[NATIVE #{_call_count[0]}] shape={tuple(query.shape)} reason={','.join(reason) or 'unknown'}")
249
405
 
250
406
  return original_sdpa(query, key, value, attn_mask, dropout_p, is_causal, scale=scale, enable_gqa=enable_gqa, **kwargs)
251
407
 
@@ -452,13 +608,13 @@ def flash_attention_chunked(
452
608
  return _C.forward(query, key, value, is_causal, None, 0)
453
609
 
454
610
  # Initialize running statistics for online softmax
455
- # m = running max, l = running sum of exp, acc = accumulated output
456
611
  device = query.device
457
612
  dtype = query.dtype
458
613
 
459
614
  # Use float32 for numerical stability of softmax statistics
460
- running_max = torch.full((B, H, seq_len_q, 1), float('-inf'), device=device, dtype=torch.float32)
461
- running_sum = torch.zeros((B, H, seq_len_q, 1), device=device, dtype=torch.float32)
615
+ # running_L: base-2 logsumexp of all attention scores seen so far (-inf means no data yet)
616
+ # output_acc: weighted combination of outputs (weights sum to 1 after each update)
617
+ running_L = torch.full((B, H, seq_len_q, 1), float('-inf'), device=device, dtype=torch.float32)
462
618
  output_acc = torch.zeros((B, H, seq_len_q, D), device=device, dtype=torch.float32)
463
619
 
464
620
  # Process K/V in chunks
@@ -479,51 +635,81 @@ def flash_attention_chunked(
479
635
  # - Partial chunk (up to q) if start_idx <= q < end_idx
480
636
  # - None of chunk if q < start_idx
481
637
 
482
- chunk_is_causal = is_causal and (end_idx <= seq_len_q)
483
-
484
- # Compute attention for this chunk
485
- # forward_with_lse returns (output, logsumexp) where logsumexp = m + log(l)
486
- chunk_out, chunk_lse = _C.forward_with_lse(query, k_chunk, v_chunk, chunk_is_causal, None, 0)
638
+ if is_causal:
639
+ # Create explicit causal mask for this chunk
640
+ # Query positions: 0 to seq_len_q-1
641
+ # Key positions in chunk: start_idx to end_idx-1
642
+ chunk_len = end_idx - start_idx
487
643
 
488
- # chunk_lse shape: (B, H, seq_len_q)
489
- # We need to convert logsumexp to (max, sum) for online algorithm
490
- chunk_lse = chunk_lse.unsqueeze(-1) # (B, H, seq_len_q, 1)
644
+ # Build mask: mask[q, k_local] = True means DON'T attend
645
+ # We want to attend when global_k_pos <= q
646
+ # global_k_pos = start_idx + k_local
647
+ # So: attend when start_idx + k_local <= q
648
+ # mask = start_idx + k_local > q
491
649
 
492
- # Convert chunk output to float32 for accumulation
493
- chunk_out = chunk_out.float()
494
-
495
- # Online softmax update:
496
- # new_max = max(running_max, chunk_max)
497
- # For flash attention, chunk_lse ≈ chunk_max + log(chunk_sum)
498
- # We approximate chunk_max ≈ chunk_lse (valid when exp sum dominates)
650
+ q_pos = torch.arange(seq_len_q, device=device).view(1, 1, seq_len_q, 1)
651
+ k_pos = torch.arange(chunk_len, device=device).view(1, 1, 1, chunk_len) + start_idx
652
+ causal_mask = k_pos > q_pos # True = masked (don't attend)
499
653
 
500
- chunk_max = chunk_lse # Approximation: logsumexp max when sum is dominated by max
654
+ # Expand to batch and heads
655
+ causal_mask = causal_mask.expand(B, H, seq_len_q, chunk_len)
501
656
 
502
- # Compute new max
503
- new_max = torch.maximum(running_max, chunk_max)
657
+ # Call forward with explicit mask (is_causal=False since we handle it)
658
+ chunk_out, chunk_lse = _C.forward_with_lse(query, k_chunk, v_chunk, False, causal_mask, 0)
659
+ else:
660
+ # Non-causal: just process the chunk directly
661
+ chunk_out, chunk_lse = _C.forward_with_lse(query, k_chunk, v_chunk, False, None, 0)
504
662
 
505
- # Rescale previous accumulator
506
- # correction_old = exp(running_max - new_max)
507
- correction_old = torch.exp(running_max - new_max)
508
- # Clip to avoid inf * 0 issues when running_max was -inf
509
- correction_old = torch.where(running_max == float('-inf'), torch.zeros_like(correction_old), correction_old)
663
+ # chunk_L shape: (B, H, seq_len_q)
664
+ # The kernel returns L = m + log2(l) where:
665
+ # m = max(scores * log2(e) / sqrt(D))
666
+ # l = sum(exp2(scores * log2(e) / sqrt(D) - m))
667
+ # This is a base-2 logsumexp: L = log2(sum(exp2(scaled_scores)))
668
+ chunk_L = chunk_lse.unsqueeze(-1).float() # (B, H, seq_len_q, 1)
510
669
 
511
- # Rescale chunk output
512
- # correction_new = exp(chunk_max - new_max)
513
- correction_new = torch.exp(chunk_max - new_max)
670
+ # Convert chunk output to float32 for accumulation
671
+ chunk_out = chunk_out.float()
514
672
 
515
- # For the sum, we need exp(chunk_lse - new_max) = exp(chunk_max + log(chunk_sum) - new_max)
516
- # = exp(chunk_max - new_max) * chunk_sum
517
- # But we only have logsumexp, so: exp(chunk_lse - new_max)
518
- chunk_sum_scaled = torch.exp(chunk_lse - new_max)
673
+ # Online softmax algorithm using base-2 representation
674
+ #
675
+ # Flash attention returns: chunk_out = softmax(scores) @ V
676
+ # The output is already normalized. For online combination:
677
+ # new_L = log2(2^running_L + 2^chunk_L)
678
+ # = max(running_L, chunk_L) + log2(2^(running_L - max) + 2^(chunk_L - max))
679
+ #
680
+ # The weights for combining outputs are:
681
+ # old_weight = 2^(running_L - new_L)
682
+ # new_weight = 2^(chunk_L - new_L)
683
+ # These weights sum to 1, so: output = old_weight * old_out + new_weight * new_out
684
+
685
+ # Compute new base-2 logsumexp
686
+ max_L = torch.maximum(running_L, chunk_L)
687
+
688
+ # Handle -inf case (no previous data)
689
+ # Use exp2 for base-2 (matches kernel's internal representation)
690
+ running_exp2 = torch.where(
691
+ running_L == float('-inf'),
692
+ torch.zeros_like(running_L),
693
+ torch.exp2(running_L - max_L)
694
+ )
695
+ chunk_exp2 = torch.exp2(chunk_L - max_L)
696
+ new_L = max_L + torch.log2(running_exp2 + chunk_exp2)
697
+
698
+ # Compute correction factors using base-2 exp
699
+ old_weight = torch.where(
700
+ running_L == float('-inf'),
701
+ torch.zeros_like(running_L),
702
+ torch.exp2(running_L - new_L)
703
+ )
704
+ new_weight = torch.exp2(chunk_L - new_L)
519
705
 
520
706
  # Update accumulator
521
- output_acc = output_acc * correction_old + chunk_out * correction_new
522
- running_sum = running_sum * correction_old + chunk_sum_scaled
523
- running_max = new_max
707
+ # Update accumulator
708
+ output_acc = output_acc * old_weight + chunk_out * new_weight
709
+ running_L = new_L
524
710
 
525
- # Final normalization
526
- output = output_acc / running_sum
711
+ # No final normalization needed - weights already sum to 1
712
+ output = output_acc
527
713
 
528
714
  # Convert back to original dtype
529
715
  return output.to(dtype)
@@ -14,6 +14,8 @@
14
14
  #include <dlfcn.h>
15
15
  #include <string>
16
16
  #include <vector>
17
+ #include <mutex>
18
+ #include <atomic>
17
19
 
18
20
  // ============================================================================
19
21
  // MFA Bridge Function Types
@@ -67,7 +69,8 @@ static mfa_forward_fn g_mfa_forward = nullptr;
67
69
  static mfa_backward_fn g_mfa_backward = nullptr;
68
70
  static mfa_release_kernel_fn g_mfa_release_kernel = nullptr;
69
71
  static void* g_dylib_handle = nullptr;
70
- static bool g_initialized = false;
72
+ static std::atomic<bool> g_initialized{false};
73
+ static std::mutex g_init_mutex;
71
74
 
72
75
  // ============================================================================
73
76
  // Load MFA Bridge Library
@@ -141,6 +144,24 @@ static bool load_mfa_bridge() {
141
144
  return true;
142
145
  }
143
146
 
147
+ // Thread-safe initialization helper
148
+ static void ensure_initialized() {
149
+ // Fast path: already initialized
150
+ if (g_initialized.load(std::memory_order_acquire)) {
151
+ return;
152
+ }
153
+ // Slow path: need to initialize with lock
154
+ std::lock_guard<std::mutex> lock(g_init_mutex);
155
+ // Double-check after acquiring lock
156
+ if (!g_initialized.load(std::memory_order_relaxed)) {
157
+ load_mfa_bridge();
158
+ if (!g_mfa_init()) {
159
+ throw std::runtime_error("Failed to initialize MFA");
160
+ }
161
+ g_initialized.store(true, std::memory_order_release);
162
+ }
163
+ }
164
+
144
165
  // ============================================================================
145
166
  // Get MTLBuffer from PyTorch MPS Tensor
146
167
  // ============================================================================
@@ -359,14 +380,8 @@ std::tuple<at::Tensor, at::Tensor> mps_flash_attention_forward_with_lse(
359
380
  const c10::optional<at::Tensor>& attn_mask, // Optional (B, 1, N_q, N_kv) or (B, H, N_q, N_kv)
360
381
  int64_t window_size // 0 = full attention, >0 = sliding window
361
382
  ) {
362
- // Initialize MFA on first call
363
- if (!g_initialized) {
364
- load_mfa_bridge();
365
- if (!g_mfa_init()) {
366
- throw std::runtime_error("Failed to initialize MFA");
367
- }
368
- g_initialized = true;
369
- }
383
+ // Thread-safe initialization
384
+ ensure_initialized();
370
385
 
371
386
  // Validate inputs
372
387
  TORCH_CHECK(query.dim() == 4, "Query must be 4D (B, H, N, D)");
@@ -562,14 +577,8 @@ at::Tensor mps_flash_attention_forward_with_bias(
562
577
  int64_t window_size,
563
578
  int64_t bias_repeat_count // >0 means bias repeats every N batches (for window attention)
564
579
  ) {
565
- // Initialize MFA on first call
566
- if (!g_initialized) {
567
- load_mfa_bridge();
568
- if (!g_mfa_init()) {
569
- throw std::runtime_error("Failed to initialize MFA");
570
- }
571
- g_initialized = true;
572
- }
580
+ // Thread-safe initialization
581
+ ensure_initialized();
573
582
 
574
583
  // Check that v6/v7 API is available
575
584
  TORCH_CHECK(g_mfa_create_kernel_v6 || g_mfa_create_kernel_v7,
@@ -735,14 +744,8 @@ at::Tensor mps_flash_attention_forward_quantized(
735
744
  const c10::optional<at::Tensor>& attn_mask,
736
745
  int64_t window_size
737
746
  ) {
738
- // Initialize MFA on first call
739
- if (!g_initialized) {
740
- load_mfa_bridge();
741
- if (!g_mfa_init()) {
742
- throw std::runtime_error("Failed to initialize MFA");
743
- }
744
- g_initialized = true;
745
- }
747
+ // Thread-safe initialization
748
+ ensure_initialized();
746
749
 
747
750
  // Check that v4 API is available
748
751
  TORCH_CHECK(g_mfa_create_kernel_v4, "Quantized attention requires MFA v4 API (update libMFABridge.dylib)");
@@ -992,14 +995,8 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> mps_flash_attention_backward(
992
995
  int64_t window_size, // 0 = full attention, >0 = sliding window
993
996
  bool bf16_backward // true = use BF16 intermediates for ~2x faster backward
994
997
  ) {
995
- // Initialize MFA on first call
996
- if (!g_initialized) {
997
- load_mfa_bridge();
998
- if (!g_mfa_init()) {
999
- throw std::runtime_error("Failed to initialize MFA");
1000
- }
1001
- g_initialized = true;
1002
- }
998
+ // Thread-safe initialization
999
+ ensure_initialized();
1003
1000
 
1004
1001
  // Validate inputs
1005
1002
  TORCH_CHECK(grad_output.dim() == 4, "grad_output must be 4D (B, H, N, D)");
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mps-flash-attn
3
- Version: 0.2.7
3
+ Version: 0.3.1
4
4
  Summary: Flash Attention for PyTorch on Apple Silicon (M1/M2/M3/M4)
5
5
  Author: imperatormk
6
6
  License-Expression: MIT
@@ -1,7 +1,7 @@
1
- mps_flash_attn/_C.cpython-314-darwin.so,sha256=9U9aAjoASDux_snVgLmM1Nu60wLUZmj_Z_lp0pFXom4,313160
2
- mps_flash_attn/__init__.py,sha256=dFVCwyXy97kU3TgiIEvB6TC-exv8lw0x0q3cE9MMcuU,39714
1
+ mps_flash_attn/_C.cpython-314-darwin.so,sha256=V9bjj53KRFmbMSslzTf7YV8N2l9NPa9_Ia2dORgRjqA,313448
2
+ mps_flash_attn/__init__.py,sha256=Esm5wd3As4es3ne1GjUtlQGfBtj0LB05UuND-SaIRXo,47730
3
3
  mps_flash_attn/benchmark.py,sha256=qHhvb8Dmh07OEa_iXuPuJSEnRJlrjVF5nKzVwbWypWE,24141
4
- mps_flash_attn/csrc/mps_flash_attn.mm,sha256=d7Bjcm2VOTNANmdqUevN-mqa5aOEVMMxAuTYINAeSr0,51215
4
+ mps_flash_attn/csrc/mps_flash_attn.mm,sha256=mR4S8SHLtRiksrmoFH6s2118q662SMNlFU8HmxAE3YY,51204
5
5
  mps_flash_attn/kernels/06c421e7a01418cf64aafa07f6b1df0558148583959c596d9a7ce260987f89f0.metallib,sha256=_oig6f2I6ZxBCKWbJF3ofmZMySm8gB399_M-lD2NOfM,13747
6
6
  mps_flash_attn/kernels/09b9615289be632fdf05444004a0b3b67fb1b70b05a7e0fce8e0ba3a95e3921c.metallib,sha256=1fsmVvB5EubhN-y6s5CB-eVk_wuO2tfrabiQTwXvJJc,13171
7
7
  mps_flash_attn/kernels/0c36461301fb52cbad786d0642b020ad2bfc7229b487ccb5dff44d198423b347.metallib,sha256=5WKo_yAU-PgmulBUQhnzvt0DZRteVmo4-nc4U-T6G2g,17507
@@ -26,8 +26,8 @@ mps_flash_attn/kernels/eab4f40de4b0ebd2765b41c25dba7ccab5db4abf6a6eb87d76fff7b5e
26
26
  mps_flash_attn/kernels/f08fe0efd72e055177e068154dae01e08c4d52d3cb883330a04f1431d274aece.metallib,sha256=qyOaQtRVwL_Wc6GGdu6z-ftf0iX84XexuY09-lNLl5o,13747
27
27
  mps_flash_attn/kernels/manifest.json,sha256=d5MkE_BjqDQuMNm1jZiwWkQKfB-yfFml3lLSeR-wCLo,1867
28
28
  mps_flash_attn/lib/libMFABridge.dylib,sha256=iKgfYISSKMSNt_iXnljjUr_hZZHyCAg2tdS3_ZjmLkc,605696
29
- mps_flash_attn-0.2.7.dist-info/licenses/LICENSE,sha256=F_XmXSab2O-hHcqLpYJWeFaqB6GA_qiTEN23p2VfZWU,1237
30
- mps_flash_attn-0.2.7.dist-info/METADATA,sha256=kMSkb-hYD8JpO7CV8td5J5RV8wVM5BqPFZ00n1ppNVc,5834
31
- mps_flash_attn-0.2.7.dist-info/WHEEL,sha256=uAzMRtb2noxPlbYLbRgeD25pPgKOo3k59IS71Dg5Qjs,110
32
- mps_flash_attn-0.2.7.dist-info/top_level.txt,sha256=zbArDcWhJDnJfMUKnOUhs5TjsMgSxa2GzOlscTRfobE,15
33
- mps_flash_attn-0.2.7.dist-info/RECORD,,
29
+ mps_flash_attn-0.3.1.dist-info/licenses/LICENSE,sha256=F_XmXSab2O-hHcqLpYJWeFaqB6GA_qiTEN23p2VfZWU,1237
30
+ mps_flash_attn-0.3.1.dist-info/METADATA,sha256=hp_w8UG_IpMF6BfS7STV69sM0Ss01-n6nWz9s1S2JzM,5834
31
+ mps_flash_attn-0.3.1.dist-info/WHEEL,sha256=uAzMRtb2noxPlbYLbRgeD25pPgKOo3k59IS71Dg5Qjs,110
32
+ mps_flash_attn-0.3.1.dist-info/top_level.txt,sha256=zbArDcWhJDnJfMUKnOUhs5TjsMgSxa2GzOlscTRfobE,15
33
+ mps_flash_attn-0.3.1.dist-info/RECORD,,