mplang-nightly 0.1.dev277__py3-none-any.whl → 0.1.dev278__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mplang/backends/simp_worker/ops.py +6 -2
- mplang/runtime/interpreter.py +294 -36
- {mplang_nightly-0.1.dev277.dist-info → mplang_nightly-0.1.dev278.dist-info}/METADATA +1 -1
- {mplang_nightly-0.1.dev277.dist-info → mplang_nightly-0.1.dev278.dist-info}/RECORD +7 -7
- {mplang_nightly-0.1.dev277.dist-info → mplang_nightly-0.1.dev278.dist-info}/WHEEL +0 -0
- {mplang_nightly-0.1.dev277.dist-info → mplang_nightly-0.1.dev278.dist-info}/entry_points.txt +0 -0
- {mplang_nightly-0.1.dev277.dist-info → mplang_nightly-0.1.dev278.dist-info}/licenses/LICENSE +0 -0
|
@@ -84,16 +84,20 @@ def _shuffle_static_worker_impl(
|
|
|
84
84
|
my_rank = worker.rank
|
|
85
85
|
data = args[0]
|
|
86
86
|
|
|
87
|
+
exec_id = interpreter.current_op_exec_id()
|
|
88
|
+
graph_key = interpreter.current_graph_exec_key()
|
|
89
|
+
key_prefix = f"shuffle_{graph_key}_{op.name}_{exec_id}"
|
|
90
|
+
|
|
87
91
|
for tgt, src in routing.items():
|
|
88
92
|
if src == my_rank and tgt != my_rank:
|
|
89
|
-
key = f"
|
|
93
|
+
key = f"{key_prefix}_{tgt}"
|
|
90
94
|
comm.send(tgt, key, data)
|
|
91
95
|
|
|
92
96
|
if my_rank in routing:
|
|
93
97
|
src = routing[my_rank]
|
|
94
98
|
if src == my_rank:
|
|
95
99
|
return data
|
|
96
|
-
key = f"
|
|
100
|
+
key = f"{key_prefix}_{my_rank}"
|
|
97
101
|
return comm.recv(src, key)
|
|
98
102
|
else:
|
|
99
103
|
return None
|
mplang/runtime/interpreter.py
CHANGED
|
@@ -24,17 +24,19 @@ from __future__ import annotations
|
|
|
24
24
|
|
|
25
25
|
import collections
|
|
26
26
|
import concurrent.futures
|
|
27
|
+
import contextlib
|
|
28
|
+
import hashlib
|
|
27
29
|
import json
|
|
28
30
|
import os
|
|
29
31
|
import pathlib
|
|
30
32
|
import queue
|
|
31
33
|
import threading
|
|
32
34
|
import time
|
|
33
|
-
from collections.abc import Callable
|
|
35
|
+
from collections.abc import Callable, Iterator
|
|
34
36
|
from typing import TYPE_CHECKING, Any, cast
|
|
35
37
|
|
|
36
38
|
from mplang.edsl.context import AbstractInterpreter
|
|
37
|
-
from mplang.edsl.graph import Graph
|
|
39
|
+
from mplang.edsl.graph import Graph, Value
|
|
38
40
|
from mplang.edsl.object import Object
|
|
39
41
|
from mplang.edsl.registry import get_impl
|
|
40
42
|
from mplang.edsl.typing import BaseType
|
|
@@ -364,12 +366,201 @@ class Interpreter(AbstractInterpreter):
|
|
|
364
366
|
# 2. MIMO Optimization: When one output of a multi-output op is computed,
|
|
365
367
|
# all sibling outputs are cached here to avoid re-execution.
|
|
366
368
|
self._execution_cache: dict[Any, InterpObject] = {}
|
|
369
|
+
|
|
370
|
+
# -----------------------------------------------------------------
|
|
371
|
+
# Graph-local op execution ids (for deterministic communication tags)
|
|
372
|
+
# -----------------------------------------------------------------
|
|
373
|
+
# We assign a monotonically increasing exec_id to each op execution
|
|
374
|
+
# within a graph namespace, and keep it deterministic across parties.
|
|
375
|
+
#
|
|
376
|
+
# IMPORTANT:
|
|
377
|
+
# - We intentionally make exec_id grow across repeated executions of the
|
|
378
|
+
# same region graph (e.g., while_loop iterations) to avoid tag/key reuse.
|
|
379
|
+
#
|
|
380
|
+
# Implementation:
|
|
381
|
+
# - Each evaluate_graph(graph, ...) reserves a contiguous exec_id range
|
|
382
|
+
# [base, base + len(graph.operations)).
|
|
383
|
+
# - Op exec_id = base + op_index_in_graph.
|
|
384
|
+
# - Reservation is persisted per graph_exec_key (structural hash).
|
|
385
|
+
# - We forbid concurrent execution of the same graph_hash to avoid
|
|
386
|
+
# message tag confusion when a backend uses only per-op tags.
|
|
387
|
+
self._exec_id_lock = threading.Lock()
|
|
388
|
+
self._graph_next_exec_base: dict[str, int] = {}
|
|
389
|
+
self._active_graph_exec_keys: set[str] = set()
|
|
390
|
+
self._tls = threading.local()
|
|
367
391
|
self.executor = executor
|
|
368
392
|
self.async_ops: set[str] = set()
|
|
369
393
|
self.name = name
|
|
370
394
|
self.trace_pid = trace_pid
|
|
371
395
|
self.store: ObjectStore | None = store
|
|
372
396
|
|
|
397
|
+
@contextlib.contextmanager
|
|
398
|
+
def _tls_exec_context(
|
|
399
|
+
self,
|
|
400
|
+
*,
|
|
401
|
+
graph_exec_key: str | None = None,
|
|
402
|
+
op_exec_id: int | None = None,
|
|
403
|
+
) -> Iterator[None]:
|
|
404
|
+
"""Temporarily set execution context in thread-local storage."""
|
|
405
|
+
|
|
406
|
+
prev_graph_key = getattr(self._tls, "current_graph_exec_key", None)
|
|
407
|
+
prev_exec_id = getattr(self._tls, "current_op_exec_id", None)
|
|
408
|
+
|
|
409
|
+
if graph_exec_key is not None:
|
|
410
|
+
self._tls.current_graph_exec_key = graph_exec_key
|
|
411
|
+
if op_exec_id is not None:
|
|
412
|
+
self._tls.current_op_exec_id = op_exec_id
|
|
413
|
+
|
|
414
|
+
try:
|
|
415
|
+
yield
|
|
416
|
+
finally:
|
|
417
|
+
if graph_exec_key is not None:
|
|
418
|
+
if prev_graph_key is None:
|
|
419
|
+
delattr(self._tls, "current_graph_exec_key")
|
|
420
|
+
else:
|
|
421
|
+
self._tls.current_graph_exec_key = prev_graph_key
|
|
422
|
+
|
|
423
|
+
if op_exec_id is not None:
|
|
424
|
+
if prev_exec_id is None:
|
|
425
|
+
delattr(self._tls, "current_op_exec_id")
|
|
426
|
+
else:
|
|
427
|
+
self._tls.current_op_exec_id = prev_exec_id
|
|
428
|
+
|
|
429
|
+
def _graph_exec_key(self, graph: Graph) -> str:
|
|
430
|
+
"""Return a deterministic, structural hash for a graph.
|
|
431
|
+
|
|
432
|
+
Used for:
|
|
433
|
+
- Namespacing per-graph exec_id counters
|
|
434
|
+
- Communication tag disambiguation (worker ops may include this key)
|
|
435
|
+
|
|
436
|
+
Note: we cache on the Graph object assuming graphs are immutable during
|
|
437
|
+
execution (finalized graphs / regions).
|
|
438
|
+
"""
|
|
439
|
+
|
|
440
|
+
cached = getattr(graph, "_exec_key", None)
|
|
441
|
+
if cached is not None:
|
|
442
|
+
return cast(str, cached)
|
|
443
|
+
|
|
444
|
+
# NOTE: We intentionally do NOT use graph.to_json() here.
|
|
445
|
+
# graph.to_json() requires all attrs to be JSON-serializable via serde,
|
|
446
|
+
# but graphs may legitimately contain runtime-only objects (e.g. JAX
|
|
447
|
+
# PyTreeDef used by func.func). For communication tag namespaces we use
|
|
448
|
+
# a simple structural fingerprint that is deterministic across parties.
|
|
449
|
+
|
|
450
|
+
def _stable_attr_value(obj: Any) -> Any | None:
|
|
451
|
+
"""Return a JSON-compatible stable value or None if unsupported.
|
|
452
|
+
|
|
453
|
+
We include only values that are likely deterministic across parties.
|
|
454
|
+
Unknown runtime objects are skipped (e.g. PyTreeDef, callables, etc.).
|
|
455
|
+
"""
|
|
456
|
+
|
|
457
|
+
if obj is None or isinstance(obj, (bool, int, float, str)):
|
|
458
|
+
return obj
|
|
459
|
+
|
|
460
|
+
if isinstance(obj, (bytes, bytearray, memoryview)):
|
|
461
|
+
b = bytes(obj)
|
|
462
|
+
return {
|
|
463
|
+
"_kind": "bytes",
|
|
464
|
+
"len": len(b),
|
|
465
|
+
"sha256": hashlib.sha256(b).hexdigest(),
|
|
466
|
+
}
|
|
467
|
+
|
|
468
|
+
try:
|
|
469
|
+
import numpy as np # type: ignore
|
|
470
|
+
|
|
471
|
+
if isinstance(obj, np.ndarray):
|
|
472
|
+
b = obj.tobytes(order="C")
|
|
473
|
+
return {
|
|
474
|
+
"_kind": "ndarray",
|
|
475
|
+
"dtype": str(obj.dtype),
|
|
476
|
+
"shape": list(obj.shape),
|
|
477
|
+
"sha256": hashlib.sha256(b).hexdigest(),
|
|
478
|
+
}
|
|
479
|
+
if isinstance(obj, (np.integer, np.floating)):
|
|
480
|
+
return obj.item()
|
|
481
|
+
except Exception:
|
|
482
|
+
pass
|
|
483
|
+
|
|
484
|
+
if isinstance(obj, (list, tuple)):
|
|
485
|
+
items: list[Any] = []
|
|
486
|
+
for x in obj:
|
|
487
|
+
sx = _stable_attr_value(x)
|
|
488
|
+
if sx is None:
|
|
489
|
+
return None
|
|
490
|
+
items.append(sx)
|
|
491
|
+
return items
|
|
492
|
+
|
|
493
|
+
if isinstance(obj, dict):
|
|
494
|
+
stable_items: list[tuple[Any, Any]] = []
|
|
495
|
+
for k, v in obj.items():
|
|
496
|
+
sk = _stable_attr_value(k)
|
|
497
|
+
sv = _stable_attr_value(v)
|
|
498
|
+
if sk is None or sv is None:
|
|
499
|
+
return None
|
|
500
|
+
stable_items.append((sk, sv))
|
|
501
|
+
stable_items.sort(
|
|
502
|
+
key=lambda kv: json.dumps(
|
|
503
|
+
kv[0], sort_keys=True, separators=(",", ":"), ensure_ascii=False
|
|
504
|
+
)
|
|
505
|
+
)
|
|
506
|
+
return {"_kind": "dict", "items": stable_items}
|
|
507
|
+
|
|
508
|
+
return None
|
|
509
|
+
|
|
510
|
+
def _graph_fingerprint(g: Graph) -> Any:
|
|
511
|
+
# Map SSA Values to stable indices independent of their textual names.
|
|
512
|
+
value_to_index: dict[Value, int] = {}
|
|
513
|
+
|
|
514
|
+
def _index(v: Value) -> int:
|
|
515
|
+
if v in value_to_index:
|
|
516
|
+
return value_to_index[v]
|
|
517
|
+
value_to_index[v] = len(value_to_index)
|
|
518
|
+
return value_to_index[v]
|
|
519
|
+
|
|
520
|
+
for v in g.inputs:
|
|
521
|
+
_index(v)
|
|
522
|
+
for op in g.operations:
|
|
523
|
+
for out in op.outputs:
|
|
524
|
+
_index(out)
|
|
525
|
+
|
|
526
|
+
ops_fp: list[dict[str, Any]] = []
|
|
527
|
+
for op in g.operations:
|
|
528
|
+
attr_keys = sorted(op.attrs.keys())
|
|
529
|
+
stable_attr_items: list[tuple[str, Any]] = []
|
|
530
|
+
for k in attr_keys:
|
|
531
|
+
attr_val = op.attrs.get(k)
|
|
532
|
+
sv = _stable_attr_value(attr_val)
|
|
533
|
+
if sv is not None:
|
|
534
|
+
stable_attr_items.append((k, sv))
|
|
535
|
+
|
|
536
|
+
ops_fp.append({
|
|
537
|
+
"opcode": op.opcode,
|
|
538
|
+
"inputs": [_index(v) for v in op.inputs],
|
|
539
|
+
"outputs": [str(v.type) for v in op.outputs],
|
|
540
|
+
"attrs": {"keys": attr_keys, "stable": stable_attr_items},
|
|
541
|
+
"regions": [_graph_fingerprint(r) for r in op.regions],
|
|
542
|
+
})
|
|
543
|
+
|
|
544
|
+
return {
|
|
545
|
+
"inputs": [str(v.type) for v in g.inputs],
|
|
546
|
+
"ops": ops_fp,
|
|
547
|
+
"outputs": [_index(v) for v in g.outputs],
|
|
548
|
+
}
|
|
549
|
+
|
|
550
|
+
fingerprint = _graph_fingerprint(graph)
|
|
551
|
+
|
|
552
|
+
payload = json.dumps(
|
|
553
|
+
fingerprint,
|
|
554
|
+
sort_keys=True,
|
|
555
|
+
separators=(",", ":"),
|
|
556
|
+
ensure_ascii=False,
|
|
557
|
+
).encode("utf-8")
|
|
558
|
+
key = hashlib.sha256(payload).hexdigest()
|
|
559
|
+
|
|
560
|
+
# Store on graph to avoid id(graph) reuse pitfalls.
|
|
561
|
+
graph._exec_key = key # type: ignore[attr-defined]
|
|
562
|
+
return key
|
|
563
|
+
|
|
373
564
|
def shutdown(self) -> None:
|
|
374
565
|
"""Shutdown the interpreter and release resources.
|
|
375
566
|
|
|
@@ -641,18 +832,70 @@ class Interpreter(AbstractInterpreter):
|
|
|
641
832
|
Returns:
|
|
642
833
|
List of runtime execution results corresponding to graph.outputs.
|
|
643
834
|
"""
|
|
644
|
-
|
|
645
|
-
|
|
646
|
-
|
|
647
|
-
|
|
648
|
-
|
|
649
|
-
|
|
650
|
-
|
|
651
|
-
|
|
652
|
-
|
|
653
|
-
|
|
654
|
-
|
|
655
|
-
|
|
835
|
+
graph_exec_key = self._graph_exec_key(graph)
|
|
836
|
+
|
|
837
|
+
# Prevent concurrent execution of the same graph hash.
|
|
838
|
+
with self._exec_id_lock:
|
|
839
|
+
if graph_exec_key in self._active_graph_exec_keys:
|
|
840
|
+
raise RuntimeError(
|
|
841
|
+
"Concurrent execution of the same graph is not allowed. "
|
|
842
|
+
f"graph_exec_key={graph_exec_key}"
|
|
843
|
+
)
|
|
844
|
+
self._active_graph_exec_keys.add(graph_exec_key)
|
|
845
|
+
|
|
846
|
+
try:
|
|
847
|
+
with self._tls_exec_context(graph_exec_key=graph_exec_key):
|
|
848
|
+
logger.debug(
|
|
849
|
+
"Evaluating graph: %d inputs, %d ops, %d outputs (job_id=%s, async=%s, graph_key=%s)",
|
|
850
|
+
len(inputs),
|
|
851
|
+
len(graph.operations),
|
|
852
|
+
len(graph.outputs),
|
|
853
|
+
job_id,
|
|
854
|
+
self.executor is not None,
|
|
855
|
+
graph_exec_key,
|
|
856
|
+
)
|
|
857
|
+
if self.executor:
|
|
858
|
+
return self._evaluate_graph_async(graph, inputs, job_id)
|
|
859
|
+
else:
|
|
860
|
+
return self._evaluate_graph_sync(graph, inputs, job_id)
|
|
861
|
+
finally:
|
|
862
|
+
with self._exec_id_lock:
|
|
863
|
+
self._active_graph_exec_keys.discard(graph_exec_key)
|
|
864
|
+
|
|
865
|
+
def _reserve_op_exec_base(self, graph: Graph) -> int:
|
|
866
|
+
"""Reserve a contiguous exec_id range for a single evaluate_graph call.
|
|
867
|
+
|
|
868
|
+
Counter is namespaced by the current graph_exec_key.
|
|
869
|
+
"""
|
|
870
|
+
key = self.current_graph_exec_key()
|
|
871
|
+
with self._exec_id_lock:
|
|
872
|
+
base = self._graph_next_exec_base.get(key, 0)
|
|
873
|
+
self._graph_next_exec_base[key] = base + len(graph.operations)
|
|
874
|
+
return base
|
|
875
|
+
|
|
876
|
+
def current_graph_exec_key(self) -> str:
|
|
877
|
+
"""Return current graph execution key during evaluate_graph execution."""
|
|
878
|
+
|
|
879
|
+
key = getattr(self._tls, "current_graph_exec_key", None)
|
|
880
|
+
if key is None:
|
|
881
|
+
raise RuntimeError(
|
|
882
|
+
"current_graph_exec_key() called outside of evaluate_graph execution"
|
|
883
|
+
)
|
|
884
|
+
return cast(str, key)
|
|
885
|
+
|
|
886
|
+
def current_op_exec_id(self) -> int:
|
|
887
|
+
"""Return current op exec_id during graph execution.
|
|
888
|
+
|
|
889
|
+
Worker-side implementations can use this to build deterministic,
|
|
890
|
+
unique communication tags without coupling to any specific op.
|
|
891
|
+
"""
|
|
892
|
+
|
|
893
|
+
exec_id = getattr(self._tls, "current_op_exec_id", None)
|
|
894
|
+
if exec_id is None:
|
|
895
|
+
raise RuntimeError(
|
|
896
|
+
"current_op_exec_id() called outside of evaluate_graph execution"
|
|
897
|
+
)
|
|
898
|
+
return cast(int, exec_id)
|
|
656
899
|
|
|
657
900
|
def _evaluate_graph_sync(
|
|
658
901
|
self, graph: Graph, inputs: list[Any], job_id: str | None = None
|
|
@@ -661,7 +904,10 @@ class Interpreter(AbstractInterpreter):
|
|
|
661
904
|
# Local environment: Value -> Runtime Object
|
|
662
905
|
env = dict(zip(graph.inputs, inputs, strict=True))
|
|
663
906
|
|
|
664
|
-
|
|
907
|
+
op_exec_base = self._reserve_op_exec_base(graph)
|
|
908
|
+
|
|
909
|
+
for op_index, op in enumerate(graph.operations):
|
|
910
|
+
exec_id = op_exec_base + op_index
|
|
665
911
|
# Resolve inputs
|
|
666
912
|
try:
|
|
667
913
|
args = [env[val] for val in op.inputs]
|
|
@@ -685,15 +931,16 @@ class Interpreter(AbstractInterpreter):
|
|
|
685
931
|
if not handler:
|
|
686
932
|
handler = get_impl(op.opcode)
|
|
687
933
|
|
|
688
|
-
|
|
689
|
-
|
|
690
|
-
|
|
691
|
-
|
|
692
|
-
|
|
693
|
-
|
|
694
|
-
|
|
695
|
-
|
|
696
|
-
|
|
934
|
+
with self._tls_exec_context(op_exec_id=exec_id):
|
|
935
|
+
if handler:
|
|
936
|
+
# Pass interpreter to support recursive execution (HOFs)
|
|
937
|
+
# Pass op to access attributes and regions
|
|
938
|
+
# Pass args as runtime values
|
|
939
|
+
results = handler(self, op, *args)
|
|
940
|
+
else:
|
|
941
|
+
raise NotImplementedError(
|
|
942
|
+
f"No implementation registered for opcode: {op.opcode}"
|
|
943
|
+
)
|
|
697
944
|
|
|
698
945
|
# Update environment with outputs
|
|
699
946
|
# Handler should return a single value or a tuple/list of values
|
|
@@ -719,6 +966,9 @@ class Interpreter(AbstractInterpreter):
|
|
|
719
966
|
self, graph: Graph, inputs: list[Any], job_id: str | None = None
|
|
720
967
|
) -> list[Any]:
|
|
721
968
|
"""Asynchronous execution with non-blocking DAG scheduling."""
|
|
969
|
+
graph_exec_key = self.current_graph_exec_key()
|
|
970
|
+
op_exec_base = self._reserve_op_exec_base(graph)
|
|
971
|
+
op_to_index = {op: i for i, op in enumerate(graph.operations)}
|
|
722
972
|
# Tracer setup (if not provided, use a disabled stub)
|
|
723
973
|
tracer: ExecutionTracer | _NullTracer
|
|
724
974
|
if self.tracer:
|
|
@@ -817,6 +1067,8 @@ class Interpreter(AbstractInterpreter):
|
|
|
817
1067
|
# Extract args from env (must be ready)
|
|
818
1068
|
args = [env[val] for val in op.inputs]
|
|
819
1069
|
|
|
1070
|
+
exec_id = op_exec_base + op_to_index[op]
|
|
1071
|
+
|
|
820
1072
|
handler = self.handlers.get(op.opcode)
|
|
821
1073
|
if not handler:
|
|
822
1074
|
handler = get_impl(op.opcode)
|
|
@@ -833,12 +1085,15 @@ class Interpreter(AbstractInterpreter):
|
|
|
833
1085
|
|
|
834
1086
|
# Submit to executor
|
|
835
1087
|
def task() -> Any:
|
|
836
|
-
|
|
837
|
-
|
|
838
|
-
)
|
|
839
|
-
|
|
840
|
-
|
|
841
|
-
|
|
1088
|
+
with self._tls_exec_context(
|
|
1089
|
+
graph_exec_key=graph_exec_key, op_exec_id=exec_id
|
|
1090
|
+
):
|
|
1091
|
+
start_ts = tracer.log_start(
|
|
1092
|
+
op, pid=self.trace_pid, namespace=self.trace_pid
|
|
1093
|
+
)
|
|
1094
|
+
res = handler(self, op, *args)
|
|
1095
|
+
tracer.log_end(op, start_ts, pid=self.trace_pid)
|
|
1096
|
+
return res
|
|
842
1097
|
|
|
843
1098
|
def callback(fut: Any) -> None:
|
|
844
1099
|
try:
|
|
@@ -852,12 +1107,15 @@ class Interpreter(AbstractInterpreter):
|
|
|
852
1107
|
else:
|
|
853
1108
|
# Sync execution (run immediately)
|
|
854
1109
|
try:
|
|
855
|
-
|
|
856
|
-
|
|
857
|
-
)
|
|
858
|
-
|
|
859
|
-
|
|
860
|
-
|
|
1110
|
+
with self._tls_exec_context(
|
|
1111
|
+
graph_exec_key=graph_exec_key, op_exec_id=exec_id
|
|
1112
|
+
):
|
|
1113
|
+
start_ts = tracer.log_start(
|
|
1114
|
+
op, pid=self.trace_pid, namespace=self.trace_pid
|
|
1115
|
+
)
|
|
1116
|
+
res = handler(self, op, *args)
|
|
1117
|
+
tracer.log_end(op, start_ts, pid=self.trace_pid)
|
|
1118
|
+
on_op_done(op, res)
|
|
861
1119
|
except Exception as e:
|
|
862
1120
|
on_op_done(op, None, error=e)
|
|
863
1121
|
|
|
@@ -26,7 +26,7 @@ mplang/backends/simp_driver/values.py,sha256=Lz1utNSIzH-dCzZAEjU6JRcxPsfKGfUJrYl
|
|
|
26
26
|
mplang/backends/simp_worker/__init__.py,sha256=gdrSY1-MDkupCoJ8xwwH7em7fgVWv3J4gBJ45uHdzgg,961
|
|
27
27
|
mplang/backends/simp_worker/http.py,sha256=90nJnNLSM9TUVRxhAFq9pyNk0LwmSmvgnv3Tb8KFWSE,12660
|
|
28
28
|
mplang/backends/simp_worker/mem.py,sha256=tMGiRppeca0TnY8WdqYQMQvsx5UVswCqdeOhiDlLQBs,3574
|
|
29
|
-
mplang/backends/simp_worker/ops.py,sha256=
|
|
29
|
+
mplang/backends/simp_worker/ops.py,sha256=ntxfkD4e6Il4w7FshK1ODcUCUPMlipt33pDY_x5iC0U,5661
|
|
30
30
|
mplang/backends/simp_worker/state.py,sha256=nIu0ybvdYqRqp0TkoSneUF2u31evDHucCRduVBaDals,1445
|
|
31
31
|
mplang/dialects/__init__.py,sha256=CYMmkeQVU0Znr9n3_5clZKb16u7acJ5jl5Zjbx4Tn1U,1478
|
|
32
32
|
mplang/dialects/bfv.py,sha256=m5YfobFCBqn0lg2zBM9RNs2AC7i4PUQH2qXjHLHwSy4,22332
|
|
@@ -91,13 +91,13 @@ mplang/libs/mpc/vole/ldpc.py,sha256=gOmIbyOjkGE5lewyatl3p6FizNNH8LZ_1oOhp_-TOck,
|
|
|
91
91
|
mplang/libs/mpc/vole/silver.py,sha256=EIxhpFIVNBemgeIZzCu5Cz_4wysxRm9b1Xfu0xiweVQ,12218
|
|
92
92
|
mplang/runtime/__init__.py,sha256=VdUwJ3kDaI46FvGw7iMGwcsjt0HTGmmRmaBwj99xKIw,620
|
|
93
93
|
mplang/runtime/dialect_state.py,sha256=HxO1i4kSOujS2tQzAF9-WmI3nChSaGgupf2_07dHetY,1277
|
|
94
|
-
mplang/runtime/interpreter.py,sha256=
|
|
94
|
+
mplang/runtime/interpreter.py,sha256=wcCWXpAGylqdw_HecR4suJtwmozHLrK5x6Q8xM-Pn24,43593
|
|
95
95
|
mplang/runtime/object_store.py,sha256=yT6jtKG2GUEJVmpq3gnQ8mCMvUFYzgBciC5A-J5KRdk,5998
|
|
96
96
|
mplang/runtime/value.py,sha256=EqlhSgxLTJi_FF3ppyKjMe4eHS6-ROx-zK1YesG1U4o,4311
|
|
97
97
|
mplang/utils/__init__.py,sha256=toubeyISiT6WDdITdfAvdY2iXVZU3PKVNWVeC9sYxuA,947
|
|
98
98
|
mplang/utils/func_utils.py,sha256=aZ-X43w8JKJgiF-IUMS0G7QqrNeoTM5ZPzRNd-tKxpw,5180
|
|
99
|
-
mplang_nightly-0.1.
|
|
100
|
-
mplang_nightly-0.1.
|
|
101
|
-
mplang_nightly-0.1.
|
|
102
|
-
mplang_nightly-0.1.
|
|
103
|
-
mplang_nightly-0.1.
|
|
99
|
+
mplang_nightly-0.1.dev278.dist-info/METADATA,sha256=_Oqywn7lgVIsrzHL__BPIIq8WUu-W1a2YWiweqrTDOE,16783
|
|
100
|
+
mplang_nightly-0.1.dev278.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
|
|
101
|
+
mplang_nightly-0.1.dev278.dist-info/entry_points.txt,sha256=mG1oJT-GAjQR834a62_QIWb7litzWPPyVnwFqm-rWuY,55
|
|
102
|
+
mplang_nightly-0.1.dev278.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
103
|
+
mplang_nightly-0.1.dev278.dist-info/RECORD,,
|
|
File without changes
|
{mplang_nightly-0.1.dev277.dist-info → mplang_nightly-0.1.dev278.dist-info}/entry_points.txt
RENAMED
|
File without changes
|
{mplang_nightly-0.1.dev277.dist-info → mplang_nightly-0.1.dev278.dist-info}/licenses/LICENSE
RENAMED
|
File without changes
|