mpcaHydro 2.1.0__py3-none-any.whl → 2.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
mpcaHydro/warehouse.py CHANGED
@@ -1,6 +1,7 @@
1
1
  import duckdb
2
2
  import pandas as pd
3
3
  from pathlib import Path
4
+ from mpcaHydro import outlets
4
5
 
5
6
  def init_db(db_path: str,reset: bool = False):
6
7
  """
@@ -14,14 +15,14 @@ def init_db(db_path: str,reset: bool = False):
14
15
  # Create all schemas
15
16
  create_schemas(con)
16
17
 
17
- # Create tables for observational data
18
- # Wrapped in try/except as they depend on tables that may not exist yet
19
- try:
20
- create_combined_observations_view(con)
21
- create_constituent_summary_report(con)
22
- except duckdb.CatalogException as e:
23
- print(f"Could not create observation views, likely because backing tables don't exist yet. This is safe to ignore on first run. Details: {e}")
18
+ # Create tables
19
+ create_outlets_tables(con)
20
+ create_mapping_tables(con)
21
+ create_analytics_tables(con)
24
22
 
23
+ # Create views
24
+ #update_views(con)
25
+
25
26
 
26
27
  def create_schemas(con: duckdb.DuckDBPyConnection):
27
28
  """
@@ -30,8 +31,245 @@ def create_schemas(con: duckdb.DuckDBPyConnection):
30
31
  con.execute("CREATE SCHEMA IF NOT EXISTS staging")
31
32
  con.execute("CREATE SCHEMA IF NOT EXISTS analytics")
32
33
  con.execute("CREATE SCHEMA IF NOT EXISTS reports")
33
- con.execute("CREATE SCHEMA IF NOT EXISTS hspf")
34
+ con.execute("CREATE SCHEMA IF NOT EXISTS outlets")
35
+ con.execute("CREATE SCHEMA IF NOT EXISTS mappings")
34
36
 
37
+ def create_analytics_tables(con: duckdb.DuckDBPyConnection):
38
+ """
39
+ Create necessary tables in the analytics schema.
40
+ """
41
+ con.execute("""
42
+ CREATE TABLE IF NOT EXISTS analytics.equis (
43
+ datetime TIMESTAMP,
44
+ value DOUBLE,
45
+ station_id TEXT,
46
+ station_origin TEXT,
47
+ constituent TEXT,
48
+ unit TEXT
49
+ );
50
+ """)
51
+ con.execute("""
52
+ CREATE TABLE IF NOT EXISTS analytics.wiski (
53
+ datetime TIMESTAMP,
54
+ value DOUBLE,
55
+ station_id TEXT,
56
+ station_origin TEXT,
57
+ constituent TEXT,
58
+ unit TEXT
59
+ );
60
+ """)
61
+
62
+ def create_mapping_tables(con: duckdb.DuckDBPyConnection):
63
+ """
64
+ Create and populate tables in the mappings schema from Python dicts and CSVs.
65
+ """
66
+ # WISKI parametertype_id -> constituent
67
+ wiski_parametertype_map = {
68
+ '11522': 'TP',
69
+ '11531': 'TP',
70
+ '11532': 'TSS',
71
+ '11523': 'TSS',
72
+ '11526': 'N',
73
+ '11519': 'N',
74
+ '11520': 'OP',
75
+ '11528': 'OP',
76
+ '11530': 'TKN',
77
+ '11521': 'TKN',
78
+ '11500': 'Q',
79
+ '11504': 'WT',
80
+ '11533': 'DO',
81
+ '11507': 'WL'
82
+ }
83
+ df_wiski_params = pd.DataFrame(wiski_parametertype_map.items(), columns=['parametertype_id', 'constituent'])
84
+ con.execute("CREATE TABLE IF NOT EXISTS mappings.wiski_parametertype AS SELECT * FROM df_wiski_params")
85
+
86
+ # EQuIS cas_rn -> constituent
87
+ equis_casrn_map = {
88
+ '479-61-8': 'CHLA',
89
+ 'CHLA-CORR': 'CHLA',
90
+ 'BOD': 'BOD',
91
+ 'NO2NO3': 'N',
92
+ '14797-55-8': 'NO3',
93
+ '14797-65-0': 'NO2',
94
+ '14265-44-2': 'OP',
95
+ 'N-KJEL': 'TKN',
96
+ 'PHOSPHATE-P': 'TP',
97
+ '7723-14-0': 'TP',
98
+ 'SOLIDS-TSS': 'TSS',
99
+ 'TEMP-W': 'WT',
100
+ '7664-41-7': 'NH3'
101
+ }
102
+ df_equis_cas = pd.DataFrame(equis_casrn_map.items(), columns=['cas_rn', 'constituent'])
103
+ con.execute("CREATE TABLE IF NOT EXISTS mappings.equis_casrn AS SELECT * FROM df_equis_cas")
104
+
105
+ # Load station cross-reference from CSV
106
+ # Assumes this script is run from a location where this relative path is valid
107
+ xref_csv_path = Path(__file__).parent / 'data/WISKI_EQUIS_XREF.csv'
108
+ if xref_csv_path.exists():
109
+ con.execute(f"CREATE TABLE IF NOT EXISTS mappings.station_xref AS SELECT * FROM read_csv_auto('{xref_csv_path.as_posix()}')")
110
+ else:
111
+ print(f"Warning: WISKI_EQUIS_XREF.csv not found at {xref_csv_path}")
112
+
113
+ # Load wiski_quality_codes from CSV
114
+ wiski_qc_csv_path = Path(__file__).parent / 'data/WISKI_QUALITY_CODES.csv'
115
+ if wiski_qc_csv_path.exists():
116
+ con.execute(f"CREATE TABLE IF NOT EXISTS mappings.wiski_quality_codes AS SELECT * FROM read_csv_auto('{wiski_qc_csv_path.as_posix()}')")
117
+ else:
118
+ print(f"Warning: WISKI_QUALITY_CODES.csv not found at {wiski_qc_csv_path}")
119
+
120
+ def create_outlets_tables(con: duckdb.DuckDBPyConnection):
121
+ """
122
+ Create tables in the outlets schema to define outlet-station-reach relationships.
123
+ """
124
+ con.execute("""-- schema.sql
125
+ -- Simple 3-table design to manage associations between model reaches and observation stations via outlets.
126
+ -- Compatible with DuckDB and SQLite.
127
+
128
+ -- Table 1: outlets
129
+ -- Represents a logical grouping that ties stations and reaches together.
130
+ CREATE TABLE IF NOT EXISTS outlets.outlets (
131
+ outlet_id TEXT PRIMARY KEY,
132
+ repository_name TEXT NOT NULL,
133
+ outlet_name TEXT,
134
+ notes TEXT -- optional: general notes about the outlet grouping
135
+ );
136
+
137
+ -- Table 2: outlet_stations
138
+ -- One-to-many: outlet -> stations
139
+ CREATE TABLE IF NOT EXISTS outlets.outlet_stations (
140
+ outlet_id TEXT NOT NULL,
141
+ station_id TEXT NOT NULL,
142
+ station_origin TEXT NOT NULL, -- e.g., 'wiski', 'equis'
143
+ repository_name TEXT NOT NULL, -- repository model the station is physically located in
144
+ true_opnid TEXT NOT NULL, -- The specific reach the station physically sits on (optional)
145
+ comments TEXT, -- Per-station comments, issues, etc.
146
+ CONSTRAINT uq_station_origin UNIQUE (station_id, station_origin),
147
+ FOREIGN KEY (outlet_id) REFERENCES outlets.outlets(outlet_id)
148
+ );
149
+
150
+ -- Table 3: outlet_reaches
151
+ -- One-to-many: outlet -> reaches
152
+ -- A reach can appear in multiple outlets, enabling many-to-many overall.
153
+ CREATE TABLE IF NOT EXISTS outlets.outlet_reaches (
154
+ outlet_id TEXT NOT NULL,
155
+ reach_id TEXT NOT NULL, -- model reach identifier (aka opind)
156
+ repository_name TEXT NOT NULL, -- optional: where the mapping comes from
157
+ exclude INTEGER DEFAULT 0, -- flag to indicate if this reach should be excluded (1) or included (0)
158
+ FOREIGN KEY (outlet_id) REFERENCES outlets.outlets(outlet_id)
159
+ );
160
+
161
+ -- Useful views:
162
+
163
+ -- View: station_reach_pairs
164
+ -- Derives the implicit many-to-many station <-> reach relationship via shared outlet_id
165
+ CREATE VIEW IF NOT EXISTS outlets.station_reach_pairs AS
166
+ SELECT
167
+ s.outlet_id,
168
+ s.station_id,
169
+ s.station_origin,
170
+ r.reach_id,
171
+ r.exclude,
172
+ r.repository_name,
173
+ FROM outlets.outlet_stations s
174
+ JOIN outlets.outlet_reaches r
175
+ ON s.outlet_id = r.outlet_id;
176
+
177
+ """)
178
+
179
+ def create_normalized_wiski_view(con: duckdb.DuckDBPyConnection):
180
+ """
181
+ Create a view in the database that contains normalized WISKI data.
182
+ Units converted to standard units.
183
+ columns renamed.
184
+ constituents mapped.
185
+ """
186
+ con.execute("""
187
+ -- Create a single view with all transformations
188
+ CREATE OR REPLACE VIEW analytics.wiski_normalized AS
189
+ SELECT
190
+
191
+ -- Convert °C to °F and keep other values unchanged
192
+ CASE
193
+ WHEN LOWER(ts_unitsymbol) = '°c' THEN (value * 9.0 / 5.0) + 32
194
+ WHEN ts_unitsymbol = 'kg' THEN value * 2.20462 -- Convert kg to lb
195
+ ELSE value
196
+ END AS value,
197
+
198
+ -- Normalize units
199
+ CASE
200
+ WHEN LOWER(ts_unitsymbol) = '°c' THEN 'degf' -- Normalize °C to degF
201
+ WHEN ts_unitsymbol = 'kg' THEN 'lb' -- Normalize kg to lb
202
+ WHEN ts_unitsymbol = 'ft³/s' THEN 'cfs' -- Rename ft³/s to cfs
203
+ ELSE ts_unitsymbol
204
+ END AS unit,
205
+
206
+ -- Normalize column names
207
+ station_no AS station_id, -- Rename station_no to station_id
208
+ Timestamp AS datetime, -- Rename Timestamp to datetime
209
+ "Quality Code" AS quality_code, -- Rename Quality Code to quality_code
210
+ "Quality Code Name" AS quality_code_name, -- Rename Quality Code Name to quality_code_name
211
+ parametertype_id, -- Keeps parametertype_id as is
212
+ constituent -- Keeps constituent as is
213
+ FROM staging.wiski_raw;""")
214
+
215
+
216
+ def create_filtered_wiski_view(con: duckdb.DuckDBPyConnection, data_codes: list):
217
+ """
218
+ Create a view in the database that filters WISKI data based on specified data codes.
219
+ """
220
+ query = f"""
221
+ CREATE OR REPLACE VIEW analytics.wiski_filtered AS
222
+ SELECT *
223
+ FROM analytics.wiski_normalized
224
+ WHERE quality_code IN ({placeholders});
225
+ """
226
+
227
+ placeholders = ', '.join(['?'] * len(data_codes))
228
+ query = query.format(placeholders=placeholders)
229
+ con.execute(query, data_codes)
230
+
231
+
232
+ def create_aggregated_wiski_view(con: duckdb.DuckDBPyConnection):
233
+ """
234
+ Create a view in the database that aggregates WISKI data by hour, station, and constituent.
235
+ """
236
+ con.execute("""
237
+ CREATE OR REPLACE Table analytics.wiski_aggregated AS
238
+ SELECT
239
+ station_id,
240
+ constituent,
241
+ time_bucket(INTERVAL '1 hour', datetime) AS hour_start,
242
+ AVG(value) AS value,
243
+ unit
244
+ FROM analytics.wiski_normalized
245
+ GROUP BY
246
+ station_id,
247
+ constituent,
248
+ hour_start,
249
+ unit;
250
+ """)
251
+
252
+ def create_staging_qc_count_view(con: duckdb.DuckDBPyConnection):
253
+ """
254
+ Create a view in staging schema that counts quality codes for each station and constituent.
255
+ """
256
+ con.execute("""
257
+ CREATE OR REPLACE VIEW staging.wiski_qc_count AS (
258
+ SELECT
259
+ w.station_no,
260
+ w.parametertype_name,
261
+ w."Quality Code",
262
+ w."Quality Code Name",
263
+ COUNT(w."Quality Code") AS count
264
+ FROM staging.wiski_raw w
265
+ GROUP BY
266
+ w."Quality Code",w."Quality Code Name",w.parametertype_name, w.station_no
267
+ );
268
+ """)
269
+ # ORDER BY
270
+ # w.station_no,w.parametertype_name, w."Quality Code"
271
+ # )
272
+ # """)
35
273
 
36
274
  def create_combined_observations_view(con: duckdb.DuckDBPyConnection):
37
275
  """
@@ -47,6 +285,87 @@ def create_combined_observations_view(con: duckdb.DuckDBPyConnection):
47
285
  """)
48
286
 
49
287
 
288
+ def create_outlet_observations_view(con: duckdb.DuckDBPyConnection):
289
+ """
290
+ Create a view in analytics schema that links observations to model reaches via outlets.
291
+ """
292
+ con.execute("""
293
+ CREATE OR REPLACE VIEW analytics.outlet_observations AS
294
+ SELECT
295
+ o.datetime,
296
+ os.outlet_id,
297
+ o.constituent,
298
+ AVG(o.value) AS value,
299
+ COUNT(o.value) AS count
300
+ FROM
301
+ analytics.observations AS o
302
+ LEFT JOIN
303
+ outlets.outlet_stations AS os ON o.station_id = os.station_id AND o.station_origin = os.station_origin
304
+ GROUP BY
305
+ os.outlet_id,
306
+ o.constituent,
307
+ o.datetime; -- Group by the truncated date
308
+ """)
309
+ # ORDER BY
310
+ # os.outlet_id,
311
+ # o.constituent,
312
+ # datetime);
313
+
314
+
315
+
316
+ def create_outlet_observations_with_flow_view(con: duckdb.DuckDBPyConnection):
317
+
318
+ con.execute("""
319
+ CREATE OR REPLACE VIEW analytics.outlet_observations_with_flow AS
320
+ WITH baseflow_data AS (
321
+ SELECT
322
+ outlet_id,
323
+ datetime,
324
+ "value" AS baseflow_value
325
+ FROM
326
+ analytics.outlet_observations
327
+ WHERE
328
+ (constituent = 'QB')),
329
+ flow_data AS (
330
+ SELECT
331
+ outlet_id,
332
+ datetime,
333
+ "value" AS flow_value
334
+ FROM
335
+ analytics.outlet_observations
336
+ WHERE
337
+ (constituent = 'Q')),
338
+ constituent_data AS (
339
+ SELECT
340
+ outlet_id,
341
+ datetime,
342
+ constituent,
343
+ "value",
344
+ count
345
+ FROM
346
+ analytics.outlet_observations
347
+ WHERE
348
+ (constituent NOT IN ('Q', 'QB')))
349
+ SELECT
350
+ constituent_data.outlet_id,
351
+ constituent_data.constituent,
352
+ constituent_data.datetime,
353
+ constituent_data."value",
354
+ flow_data.flow_value,
355
+ baseflow_data.baseflow_value
356
+ FROM
357
+ constituent_data
358
+ FULL JOIN flow_data ON
359
+ (((constituent_data.outlet_id = flow_data.outlet_id)
360
+ AND (constituent_data.datetime = flow_data.datetime)))
361
+ LEFT JOIN baseflow_data ON
362
+ (((constituent_data.outlet_id = baseflow_data.outlet_id)
363
+ AND (constituent_data.datetime = baseflow_data.datetime)));""")
364
+ # ORDER BY
365
+ # constituent_data.outlet_id,
366
+ # constituent_data.datetime;
367
+ #
368
+
50
369
  def create_constituent_summary_report(con: duckdb.DuckDBPyConnection):
51
370
  """
52
371
  Create a constituent summary report in the reports schema that groups observations by constituent and station.
@@ -66,11 +385,54 @@ def create_constituent_summary_report(con: duckdb.DuckDBPyConnection):
66
385
  FROM
67
386
  analytics.observations
68
387
  GROUP BY
69
- constituent,station_id,station_origin
70
- ORDER BY
71
- constituent,sample_count;''')
388
+ constituent,station_id,station_origin;
389
+ ''')
390
+
391
+ # ORDER BY
392
+ # constituent,sample_count;''')
393
+
394
+ def create_outlet_summary_report(con: duckdb.DuckDBPyConnection):
395
+ con.execute("""
396
+ CREATE VIEW reports.outlet_constituent_summary AS
397
+ SELECT
398
+ outlet_id,
399
+ constituent,
400
+ count_star() AS sample_count,
401
+ avg("value") AS average_value,
402
+ min("value") AS min_value,
403
+ max("value") AS max_value,
404
+ "year"(min(datetime)) AS start_date,
405
+ "year"(max(datetime)) AS end_date
406
+ FROM
407
+ analytics.outlet_observations
408
+ GROUP BY
409
+ constituent,
410
+ outlet_id
411
+ """)
72
412
 
413
+
414
+
415
+ def drop_station_id(con: duckdb.DuckDBPyConnection, station_id: str,station_origin: str):
416
+ """
417
+ Drop all data for a specific station from staging and analytics schemas.
418
+ """
419
+ con.execute(f"DELETE FROM staging.equis_raw WHERE station_id = '{station_id}' AND station_origin = '{station_origin}'")
420
+ con.execute(f"DELETE FROM staging.wiski_raw WHERE station_id = '{station_id}' AND station_origin = '{station_origin}'")
421
+ con.execute(f"DELETE FROM analytics.equis WHERE station_id = '{station_id}' AND station_origin = '{station_origin}'")
422
+ con.execute(f"DELETE FROM analytics.wiski WHERE station_id = '{station_id}' AND station_origin = '{station_origin}'")
423
+ update_views(con)
73
424
 
425
+ def update_views(con: duckdb.DuckDBPyConnection):
426
+ """
427
+ Update all views in the database.
428
+ """
429
+ create_staging_qc_count_view(con)
430
+ create_combined_observations_view(con)
431
+ create_constituent_summary_report(con)
432
+ create_outlet_observations_view(con)
433
+ create_outlet_observations_with_flow_view(con)
434
+ create_outlet_summary_report(con)
435
+
74
436
  def connect(db_path: str, read_only: bool = False) -> duckdb.DuckDBPyConnection:
75
437
  """
76
438
  Returns a DuckDB connection to the given database path.
@@ -106,6 +468,22 @@ def load_df_to_staging(con: duckdb.DuckDBPyConnection, df: pd.DataFrame, table_n
106
468
  con.execute(f"CREATE TABLE staging.{table_name} AS SELECT * FROM tmp_df")
107
469
  con.unregister("tmp_df")
108
470
 
471
+ def add_df_to_staging(con: duckdb.DuckDBPyConnection, df: pd.DataFrame, table_name: str):
472
+ """
473
+ Append a pandas DataFrame into a staging table. This will create the staging
474
+ table if it does not exist.
475
+ """
476
+ # register pandas DF and create table if not exists
477
+ con.register("tmp_df", df)
478
+ con.execute(f"""
479
+ CREATE TABLE IF NOT EXISTS staging.{table_name} AS
480
+ SELECT * FROM tmp_df
481
+ """)
482
+ con.execute(f"""
483
+ INSERT INTO staging.{table_name}
484
+ SELECT * FROM tmp_df
485
+ """)
486
+ con.unregister("tmp_df")
109
487
 
110
488
  def load_csv_to_staging(con: duckdb.DuckDBPyConnection, csv_path: str, table_name: str, replace: bool = True, **read_csv_kwargs):
111
489
  """
@@ -0,0 +1,47 @@
1
+
2
+ import pandas as pd
3
+ #from abc import abstractmethod
4
+ from pathlib import Path
5
+ from mpcaHydro import equis, wiski, warehouse
6
+ import duckdb
7
+
8
+
9
+
10
+
11
+
12
+ #%%
13
+ '''
14
+ This modules contains classes and functions to manage data downloads and storage into a local data warehouse.
15
+
16
+
17
+ '''
18
+
19
+ def get_db_path(warehouse_path:Path,db_name:str = 'observations')->Path:
20
+ '''
21
+ Constructs the full path to the database file within the warehouse directory.
22
+
23
+ Parameters:
24
+ warehouse_path (Path): The path to the warehouse directory.
25
+ db_name (str): The name of the database file.
26
+
27
+ Returns:
28
+ Path: The full path to the database file.
29
+ '''
30
+ return Path(warehouse_path) / db_name
31
+
32
+ def construct_database(db_path:Path,db_name:str = 'observations')->Path:
33
+ '''
34
+ Constructs the full path to the database file within the warehouse directory.
35
+
36
+ Parameters:
37
+ warehouse_path (Path): The path to the warehouse directory.
38
+ db_name (str): The name of the database file.
39
+
40
+ Returns:
41
+ Path: The full path to the database file.
42
+ '''
43
+ db_path = Path(db_path) / db_name
44
+ warehouse.init_db(warehouse_path=db_path)
45
+
46
+
47
+
@@ -157,7 +157,7 @@ def download_chunk(ts_id,start_year = 1996,end_year = 2030, interval = 4, as_jso
157
157
  end = end_year
158
158
  df = pywisk.get_ts(ts_id,start_date = f'{start}-01-01',end_date = f'{end}-12-31',as_json = as_json)
159
159
  if not df.empty: frames.append(df)
160
- df.index = pd.to_datetime(df['Timestamp'])
160
+ df['Timestamp'] = pd.to_datetime(df['Timestamp']).dt.tz_localize(None)
161
161
  time.sleep(.1)
162
162
  return pd.concat(frames)
163
163
 
@@ -197,11 +197,8 @@ def tkn(station_nos,start_year = 1996,end_year = 2030):
197
197
  return _download('TKN',station_nos,start_year,end_year)
198
198
 
199
199
 
200
- def filter_quality_codes(df):
201
- '''
202
- Filter dataframe by valid quality codes
203
- '''
204
- return df.loc[df['Quality Code'].isin(DATA_CODES)]
200
+
201
+
205
202
 
206
203
  def convert_units(df):
207
204
  '''
@@ -233,12 +230,22 @@ def normalize_columns(df):
233
230
  'station_no':'station_id',
234
231
  'Timestamp':'datetime',
235
232
  'Value':'value',
236
- 'ts_unitsymbol':'unit'}, inplace=True)
233
+ 'ts_unitsymbol':'unit',
234
+ 'Quality Code':'quality_code',
235
+ 'Quality Code Name':'quality_code_name'}, inplace=True)
237
236
  return df
238
237
 
238
+
239
+
240
+ def filter_quality_codes(df, data_codes):
241
+ '''
242
+ Filter dataframe by valid quality codes
243
+ '''
244
+ return df.loc[df['quality_code'].isin(data_codes)]
245
+
239
246
  def average_results(df):
240
- df['datetime'] = pd.to_datetime(df.loc[:,'datetime'])
241
- df['datetime'] = df['datetime'].dt.round('h')
247
+ #df['datetime'] = pd.to_datetime(df.loc[:,'datetime'])
248
+ df.loc[:,'datetime'] = df.loc[:,'datetime'].dt.round('h')
242
249
  return df.groupby(['station_id', 'datetime', 'constituent', 'unit']).agg(value=('value', 'mean')).reset_index()
243
250
  # Convert units
244
251
 
@@ -267,14 +274,35 @@ def calculate_baseflow(df, method = 'Boughton'):
267
274
  return pd.concat(dfs)
268
275
 
269
276
 
270
- def transform(df, baseflow_method = 'Boughton'):
277
+ def normalize(df):
271
278
  '''
272
- Transform raw WISKI data into standardized format
279
+ Standardize raw WISKI data into standardized format without transformations.
280
+ The standardized format includes normalized column names and units.
281
+ ---
282
+ Parameters:
283
+ df (pandas.DataFrame): Raw WISKI data
284
+ Returns:
285
+ pandas.DataFrame: Normalized WISKI data
273
286
  '''
274
- df = filter_quality_codes(df)
287
+
275
288
  df = convert_units(df)
276
289
  df = normalize_columns(df)
290
+ return df
291
+
292
+ def transform(df, filter_qc_codes = True, data_codes = None, baseflow_method = 'Boughton'):
293
+ '''
294
+ Transform normalized WISKI data into standardized format
295
+ '''
296
+ df = normalize(df)
297
+ if filter_qc_codes:
298
+ if data_codes is None:
299
+ data_codes = DATA_CODES
300
+ df = filter_quality_codes(df, data_codes)
277
301
  df = average_results(df)
278
302
  df = calculate_baseflow(df, method = baseflow_method)
279
303
  df['station_origin'] = 'wiski'
304
+ #df.set_index('datetime',inplace=True)
280
305
  return df
306
+
307
+
308
+
mpcaHydro/xref.py ADDED
@@ -0,0 +1,74 @@
1
+ import pandas as pd
2
+ from pathlib import Path
3
+
4
+ WISKI_EQUIS_XREF = pd.read_csv(Path(__file__).parent/'data/WISKI_EQUIS_XREF.csv')
5
+ #WISKI_EQUIS_XREF = pd.read_csv('C:/Users/mfratki/Documents/GitHub/hspf_tools/WISKI_EQUIS_XREF.csv')
6
+
7
+
8
+ def are_lists_identical(nested_list):
9
+ # Sort each sublist
10
+ sorted_sublists = [sorted(sublist) for sublist in nested_list]
11
+ # Compare all sublists to the first one
12
+ return all(sublist == sorted_sublists[0] for sublist in sorted_sublists)
13
+
14
+ def get_wiski_stations():
15
+ return list(WISKI_EQUIS_XREF['WISKI_STATION_NO'].unique())
16
+
17
+ def get_equis_stations():
18
+ return list(WISKI_EQUIS_XREF['EQUIS_STATION_ID'].unique())
19
+
20
+ def wiski_equis_alias(wiski_station_id):
21
+ equis_ids = list(set(WISKI_EQUIS_XREF.loc[WISKI_EQUIS_XREF['WISKI_STATION_NO'] == wiski_station_id,'WISKI_EQUIS_ID'].to_list()))
22
+ equis_ids = [equis_id for equis_id in equis_ids if not pd.isna(equis_id)]
23
+ if len(equis_ids) == 0:
24
+ return []
25
+ elif len(equis_ids) > 1:
26
+ print(f'Too Many Equis Stations for {wiski_station_id}')
27
+ raise
28
+ else:
29
+ return equis_ids[0]
30
+
31
+ def wiski_equis_associations(wiski_station_id):
32
+ equis_ids = list(WISKI_EQUIS_XREF.loc[WISKI_EQUIS_XREF['WISKI_STATION_NO'] == wiski_station_id,'EQUIS_STATION_ID'].unique())
33
+ equis_ids = [equis_id for equis_id in equis_ids if not pd.isna(equis_id)]
34
+ if len(equis_ids) == 0:
35
+ return []
36
+ else:
37
+ return equis_ids
38
+
39
+ def equis_wiski_associations(equis_station_id):
40
+ wiski_ids = list(WISKI_EQUIS_XREF.loc[WISKI_EQUIS_XREF['EQUIS_STATION_ID'] == equis_station_id,'WISKI_STATION_NO'].unique())
41
+ wiski_ids = [wiski_id for wiski_id in wiski_ids if not pd.isna(wiski_id)]
42
+ if len(wiski_ids) == 0:
43
+ return []
44
+ else:
45
+ return wiski_ids
46
+
47
+ def equis_wiski_alias(equis_station_id):
48
+ wiski_ids = list(set(WISKI_EQUIS_XREF.loc[WISKI_EQUIS_XREF['WISKI_EQUIS_ID'] == equis_station_id,'WISKI_STATION_NO'].to_list()))
49
+ wiski_ids = [wiski_id for wiski_id in wiski_ids if not pd.isna(wiski_id)]
50
+ if len(wiski_ids) == 0:
51
+ return []
52
+ elif len(wiski_ids) > 1:
53
+ print(f'Too Many WISKI Stations for {equis_station_id}')
54
+ raise ValueError(f'Too Many WISKI Stations for {equis_station_id}')
55
+ else:
56
+ return wiski_ids[0]
57
+
58
+ def _equis_wiski_associations(equis_station_ids):
59
+ wiski_stations = [equis_wiski_associations(equis_station_id) for equis_station_id in equis_station_ids]
60
+ if are_lists_identical(wiski_stations):
61
+ return wiski_stations[0]
62
+ else:
63
+ return []
64
+
65
+ def _stations_by_wid(wid_no,station_origin):
66
+ if station_origin in ['wiski','wplmn']:
67
+ station_col = 'WISKI_STATION_NO'
68
+ elif station_origin in ['equis','swd']:
69
+ station_col = 'EQUIS_STATION_ID'
70
+ else:
71
+ raise
72
+
73
+ return list(WISKI_EQUIS_XREF.loc[WISKI_EQUIS_XREF['WID'] == wid_no,station_col].unique())
74
+
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mpcaHydro
3
- Version: 2.1.0
3
+ Version: 2.2.0
4
4
  Summary: Python package for downloading MPCA hydrology data
5
5
  Project-URL: Homepage, https://github.com/mfratkin1/mpcaHydro
6
6
  Author-email: Mulu Fratkin <michael.fratkin@state.mn.us>
@@ -10,7 +10,9 @@ Keywords: Hydrology,MPCA
10
10
  Classifier: Development Status :: 3 - Alpha
11
11
  Classifier: Programming Language :: Python
12
12
  Requires-Python: >=3.8
13
+ Requires-Dist: baseflow
13
14
  Requires-Dist: duckdb
15
+ Requires-Dist: oracledb
14
16
  Requires-Dist: pandas
15
17
  Requires-Dist: pathlib
16
18
  Requires-Dist: requests