mpcaHydro 2.0.6__py3-none-any.whl → 2.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
mpcaHydro/warehouse.py CHANGED
@@ -1,7 +1,6 @@
1
1
  import duckdb
2
2
  import pandas as pd
3
3
  from pathlib import Path
4
- from mpcaHydro import outlets
5
4
 
6
5
  def init_db(db_path: str,reset: bool = False):
7
6
  """
@@ -15,14 +14,14 @@ def init_db(db_path: str,reset: bool = False):
15
14
  # Create all schemas
16
15
  create_schemas(con)
17
16
 
18
- # Create tables
19
- create_outlets_tables(con)
20
- create_mapping_tables(con)
21
- create_analytics_tables(con)
17
+ # Create tables for observational data
18
+ # Wrapped in try/except as they depend on tables that may not exist yet
19
+ try:
20
+ create_combined_observations_view(con)
21
+ create_constituent_summary_report(con)
22
+ except duckdb.CatalogException as e:
23
+ print(f"Could not create observation views, likely because backing tables don't exist yet. This is safe to ignore on first run. Details: {e}")
22
24
 
23
- # Create views
24
- #update_views(con)
25
-
26
25
 
27
26
  def create_schemas(con: duckdb.DuckDBPyConnection):
28
27
  """
@@ -31,245 +30,8 @@ def create_schemas(con: duckdb.DuckDBPyConnection):
31
30
  con.execute("CREATE SCHEMA IF NOT EXISTS staging")
32
31
  con.execute("CREATE SCHEMA IF NOT EXISTS analytics")
33
32
  con.execute("CREATE SCHEMA IF NOT EXISTS reports")
34
- con.execute("CREATE SCHEMA IF NOT EXISTS outlets")
35
- con.execute("CREATE SCHEMA IF NOT EXISTS mappings")
33
+ con.execute("CREATE SCHEMA IF NOT EXISTS hspf")
36
34
 
37
- def create_analytics_tables(con: duckdb.DuckDBPyConnection):
38
- """
39
- Create necessary tables in the analytics schema.
40
- """
41
- con.execute("""
42
- CREATE TABLE IF NOT EXISTS analytics.equis (
43
- datetime TIMESTAMP,
44
- value DOUBLE,
45
- station_id TEXT,
46
- station_origin TEXT,
47
- constituent TEXT,
48
- unit TEXT
49
- );
50
- """)
51
- con.execute("""
52
- CREATE TABLE IF NOT EXISTS analytics.wiski (
53
- datetime TIMESTAMP,
54
- value DOUBLE,
55
- station_id TEXT,
56
- station_origin TEXT,
57
- constituent TEXT,
58
- unit TEXT
59
- );
60
- """)
61
-
62
- def create_mapping_tables(con: duckdb.DuckDBPyConnection):
63
- """
64
- Create and populate tables in the mappings schema from Python dicts and CSVs.
65
- """
66
- # WISKI parametertype_id -> constituent
67
- wiski_parametertype_map = {
68
- '11522': 'TP',
69
- '11531': 'TP',
70
- '11532': 'TSS',
71
- '11523': 'TSS',
72
- '11526': 'N',
73
- '11519': 'N',
74
- '11520': 'OP',
75
- '11528': 'OP',
76
- '11530': 'TKN',
77
- '11521': 'TKN',
78
- '11500': 'Q',
79
- '11504': 'WT',
80
- '11533': 'DO',
81
- '11507': 'WL'
82
- }
83
- df_wiski_params = pd.DataFrame(wiski_parametertype_map.items(), columns=['parametertype_id', 'constituent'])
84
- con.execute("CREATE TABLE IF NOT EXISTS mappings.wiski_parametertype AS SELECT * FROM df_wiski_params")
85
-
86
- # EQuIS cas_rn -> constituent
87
- equis_casrn_map = {
88
- '479-61-8': 'CHLA',
89
- 'CHLA-CORR': 'CHLA',
90
- 'BOD': 'BOD',
91
- 'NO2NO3': 'N',
92
- '14797-55-8': 'NO3',
93
- '14797-65-0': 'NO2',
94
- '14265-44-2': 'OP',
95
- 'N-KJEL': 'TKN',
96
- 'PHOSPHATE-P': 'TP',
97
- '7723-14-0': 'TP',
98
- 'SOLIDS-TSS': 'TSS',
99
- 'TEMP-W': 'WT',
100
- '7664-41-7': 'NH3'
101
- }
102
- df_equis_cas = pd.DataFrame(equis_casrn_map.items(), columns=['cas_rn', 'constituent'])
103
- con.execute("CREATE TABLE IF NOT EXISTS mappings.equis_casrn AS SELECT * FROM df_equis_cas")
104
-
105
- # Load station cross-reference from CSV
106
- # Assumes this script is run from a location where this relative path is valid
107
- xref_csv_path = Path(__file__).parent / 'data/WISKI_EQUIS_XREF.csv'
108
- if xref_csv_path.exists():
109
- con.execute(f"CREATE TABLE IF NOT EXISTS mappings.station_xref AS SELECT * FROM read_csv_auto('{xref_csv_path.as_posix()}')")
110
- else:
111
- print(f"Warning: WISKI_EQUIS_XREF.csv not found at {xref_csv_path}")
112
-
113
- # Load wiski_quality_codes from CSV
114
- wiski_qc_csv_path = Path(__file__).parent / 'data/WISKI_QUALITY_CODES.csv'
115
- if wiski_qc_csv_path.exists():
116
- con.execute(f"CREATE TABLE IF NOT EXISTS mappings.wiski_quality_codes AS SELECT * FROM read_csv_auto('{wiski_qc_csv_path.as_posix()}')")
117
- else:
118
- print(f"Warning: WISKI_QUALITY_CODES.csv not found at {wiski_qc_csv_path}")
119
-
120
- def create_outlets_tables(con: duckdb.DuckDBPyConnection):
121
- """
122
- Create tables in the outlets schema to define outlet-station-reach relationships.
123
- """
124
- con.execute("""-- schema.sql
125
- -- Simple 3-table design to manage associations between model reaches and observation stations via outlets.
126
- -- Compatible with DuckDB and SQLite.
127
-
128
- -- Table 1: outlets
129
- -- Represents a logical grouping that ties stations and reaches together.
130
- CREATE TABLE IF NOT EXISTS outlets.outlets (
131
- outlet_id TEXT PRIMARY KEY,
132
- repository_name TEXT NOT NULL,
133
- outlet_name TEXT,
134
- notes TEXT -- optional: general notes about the outlet grouping
135
- );
136
-
137
- -- Table 2: outlet_stations
138
- -- One-to-many: outlet -> stations
139
- CREATE TABLE IF NOT EXISTS outlets.outlet_stations (
140
- outlet_id TEXT NOT NULL,
141
- station_id TEXT NOT NULL,
142
- station_origin TEXT NOT NULL, -- e.g., 'wiski', 'equis'
143
- repository_name TEXT NOT NULL, -- repository model the station is physically located in
144
- true_opnid TEXT NOT NULL, -- The specific reach the station physically sits on (optional)
145
- comments TEXT, -- Per-station comments, issues, etc.
146
- CONSTRAINT uq_station_origin UNIQUE (station_id, station_origin),
147
- FOREIGN KEY (outlet_id) REFERENCES outlets.outlets(outlet_id)
148
- );
149
-
150
- -- Table 3: outlet_reaches
151
- -- One-to-many: outlet -> reaches
152
- -- A reach can appear in multiple outlets, enabling many-to-many overall.
153
- CREATE TABLE IF NOT EXISTS outlets.outlet_reaches (
154
- outlet_id TEXT NOT NULL,
155
- reach_id TEXT NOT NULL, -- model reach identifier (aka opind)
156
- repository_name TEXT NOT NULL, -- optional: where the mapping comes from
157
- exclude INTEGER DEFAULT 0, -- flag to indicate if this reach should be excluded (1) or included (0)
158
- FOREIGN KEY (outlet_id) REFERENCES outlets.outlets(outlet_id)
159
- );
160
-
161
- -- Useful views:
162
-
163
- -- View: station_reach_pairs
164
- -- Derives the implicit many-to-many station <-> reach relationship via shared outlet_id
165
- CREATE VIEW IF NOT EXISTS outlets.station_reach_pairs AS
166
- SELECT
167
- s.outlet_id,
168
- s.station_id,
169
- s.station_origin,
170
- r.reach_id,
171
- r.exclude,
172
- r.repository_name,
173
- FROM outlets.outlet_stations s
174
- JOIN outlets.outlet_reaches r
175
- ON s.outlet_id = r.outlet_id;
176
-
177
- """)
178
-
179
- def create_normalized_wiski_view(con: duckdb.DuckDBPyConnection):
180
- """
181
- Create a view in the database that contains normalized WISKI data.
182
- Units converted to standard units.
183
- columns renamed.
184
- constituents mapped.
185
- """
186
- con.execute("""
187
- -- Create a single view with all transformations
188
- CREATE OR REPLACE VIEW analytics.wiski_normalized AS
189
- SELECT
190
-
191
- -- Convert °C to °F and keep other values unchanged
192
- CASE
193
- WHEN LOWER(ts_unitsymbol) = '°c' THEN (value * 9.0 / 5.0) + 32
194
- WHEN ts_unitsymbol = 'kg' THEN value * 2.20462 -- Convert kg to lb
195
- ELSE value
196
- END AS value,
197
-
198
- -- Normalize units
199
- CASE
200
- WHEN LOWER(ts_unitsymbol) = '°c' THEN 'degf' -- Normalize °C to degF
201
- WHEN ts_unitsymbol = 'kg' THEN 'lb' -- Normalize kg to lb
202
- WHEN ts_unitsymbol = 'ft³/s' THEN 'cfs' -- Rename ft³/s to cfs
203
- ELSE ts_unitsymbol
204
- END AS unit,
205
-
206
- -- Normalize column names
207
- station_no AS station_id, -- Rename station_no to station_id
208
- Timestamp AS datetime, -- Rename Timestamp to datetime
209
- "Quality Code" AS quality_code, -- Rename Quality Code to quality_code
210
- "Quality Code Name" AS quality_code_name, -- Rename Quality Code Name to quality_code_name
211
- parametertype_id, -- Keeps parametertype_id as is
212
- constituent -- Keeps constituent as is
213
- FROM staging.wiski_raw;""")
214
-
215
-
216
- def create_filtered_wiski_view(con: duckdb.DuckDBPyConnection, data_codes: list):
217
- """
218
- Create a view in the database that filters WISKI data based on specified data codes.
219
- """
220
- query = f"""
221
- CREATE OR REPLACE VIEW analytics.wiski_filtered AS
222
- SELECT *
223
- FROM analytics.wiski_normalized
224
- WHERE quality_code IN ({placeholders});
225
- """
226
-
227
- placeholders = ', '.join(['?'] * len(data_codes))
228
- query = query.format(placeholders=placeholders)
229
- con.execute(query, data_codes)
230
-
231
-
232
- def create_aggregated_wiski_view(con: duckdb.DuckDBPyConnection):
233
- """
234
- Create a view in the database that aggregates WISKI data by hour, station, and constituent.
235
- """
236
- con.execute("""
237
- CREATE OR REPLACE Table analytics.wiski_aggregated AS
238
- SELECT
239
- station_id,
240
- constituent,
241
- time_bucket(INTERVAL '1 hour', datetime) AS hour_start,
242
- AVG(value) AS value,
243
- unit
244
- FROM analytics.wiski_normalized
245
- GROUP BY
246
- station_id,
247
- constituent,
248
- hour_start,
249
- unit;
250
- """)
251
-
252
- def create_staging_qc_count_view(con: duckdb.DuckDBPyConnection):
253
- """
254
- Create a view in staging schema that counts quality codes for each station and constituent.
255
- """
256
- con.execute("""
257
- CREATE OR REPLACE VIEW staging.wiski_qc_count AS (
258
- SELECT
259
- w.station_no,
260
- w.parametertype_name,
261
- w."Quality Code",
262
- w."Quality Code Name",
263
- COUNT(w."Quality Code") AS count
264
- FROM staging.wiski_raw w
265
- GROUP BY
266
- w."Quality Code",w."Quality Code Name",w.parametertype_name, w.station_no
267
- );
268
- """)
269
- # ORDER BY
270
- # w.station_no,w.parametertype_name, w."Quality Code"
271
- # )
272
- # """)
273
35
 
274
36
  def create_combined_observations_view(con: duckdb.DuckDBPyConnection):
275
37
  """
@@ -285,87 +47,6 @@ def create_combined_observations_view(con: duckdb.DuckDBPyConnection):
285
47
  """)
286
48
 
287
49
 
288
- def create_outlet_observations_view(con: duckdb.DuckDBPyConnection):
289
- """
290
- Create a view in analytics schema that links observations to model reaches via outlets.
291
- """
292
- con.execute("""
293
- CREATE OR REPLACE VIEW analytics.outlet_observations AS
294
- SELECT
295
- o.datetime,
296
- os.outlet_id,
297
- o.constituent,
298
- AVG(o.value) AS value,
299
- COUNT(o.value) AS count
300
- FROM
301
- analytics.observations AS o
302
- LEFT JOIN
303
- outlets.outlet_stations AS os ON o.station_id = os.station_id AND o.station_origin = os.station_origin
304
- GROUP BY
305
- os.outlet_id,
306
- o.constituent,
307
- o.datetime; -- Group by the truncated date
308
- """)
309
- # ORDER BY
310
- # os.outlet_id,
311
- # o.constituent,
312
- # datetime);
313
-
314
-
315
-
316
- def create_outlet_observations_with_flow_view(con: duckdb.DuckDBPyConnection):
317
-
318
- con.execute("""
319
- CREATE OR REPLACE VIEW analytics.outlet_observations_with_flow AS
320
- WITH baseflow_data AS (
321
- SELECT
322
- outlet_id,
323
- datetime,
324
- "value" AS baseflow_value
325
- FROM
326
- analytics.outlet_observations
327
- WHERE
328
- (constituent = 'QB')),
329
- flow_data AS (
330
- SELECT
331
- outlet_id,
332
- datetime,
333
- "value" AS flow_value
334
- FROM
335
- analytics.outlet_observations
336
- WHERE
337
- (constituent = 'Q')),
338
- constituent_data AS (
339
- SELECT
340
- outlet_id,
341
- datetime,
342
- constituent,
343
- "value",
344
- count
345
- FROM
346
- analytics.outlet_observations
347
- WHERE
348
- (constituent NOT IN ('Q', 'QB')))
349
- SELECT
350
- constituent_data.outlet_id,
351
- constituent_data.constituent,
352
- constituent_data.datetime,
353
- constituent_data."value",
354
- flow_data.flow_value,
355
- baseflow_data.baseflow_value
356
- FROM
357
- constituent_data
358
- FULL JOIN flow_data ON
359
- (((constituent_data.outlet_id = flow_data.outlet_id)
360
- AND (constituent_data.datetime = flow_data.datetime)))
361
- LEFT JOIN baseflow_data ON
362
- (((constituent_data.outlet_id = baseflow_data.outlet_id)
363
- AND (constituent_data.datetime = baseflow_data.datetime)));""")
364
- # ORDER BY
365
- # constituent_data.outlet_id,
366
- # constituent_data.datetime;
367
- #
368
-
369
50
  def create_constituent_summary_report(con: duckdb.DuckDBPyConnection):
370
51
  """
371
52
  Create a constituent summary report in the reports schema that groups observations by constituent and station.
@@ -385,54 +66,11 @@ def create_constituent_summary_report(con: duckdb.DuckDBPyConnection):
385
66
  FROM
386
67
  analytics.observations
387
68
  GROUP BY
388
- constituent,station_id,station_origin;
389
- ''')
390
-
391
- # ORDER BY
392
- # constituent,sample_count;''')
393
-
394
- def create_outlet_summary_report(con: duckdb.DuckDBPyConnection):
395
- con.execute("""
396
- CREATE VIEW reports.outlet_constituent_summary AS
397
- SELECT
398
- outlet_id,
399
- constituent,
400
- count_star() AS sample_count,
401
- avg("value") AS average_value,
402
- min("value") AS min_value,
403
- max("value") AS max_value,
404
- "year"(min(datetime)) AS start_date,
405
- "year"(max(datetime)) AS end_date
406
- FROM
407
- analytics.outlet_observations
408
- GROUP BY
409
- constituent,
410
- outlet_id
411
- """)
69
+ constituent,station_id,station_origin
70
+ ORDER BY
71
+ constituent,sample_count;''')
412
72
 
413
-
414
-
415
- def drop_station_id(con: duckdb.DuckDBPyConnection, station_id: str,station_origin: str):
416
- """
417
- Drop all data for a specific station from staging and analytics schemas.
418
- """
419
- con.execute(f"DELETE FROM staging.equis_raw WHERE station_id = '{station_id}' AND station_origin = '{station_origin}'")
420
- con.execute(f"DELETE FROM staging.wiski_raw WHERE station_id = '{station_id}' AND station_origin = '{station_origin}'")
421
- con.execute(f"DELETE FROM analytics.equis WHERE station_id = '{station_id}' AND station_origin = '{station_origin}'")
422
- con.execute(f"DELETE FROM analytics.wiski WHERE station_id = '{station_id}' AND station_origin = '{station_origin}'")
423
- update_views(con)
424
73
 
425
- def update_views(con: duckdb.DuckDBPyConnection):
426
- """
427
- Update all views in the database.
428
- """
429
- create_staging_qc_count_view(con)
430
- create_combined_observations_view(con)
431
- create_constituent_summary_report(con)
432
- create_outlet_observations_view(con)
433
- create_outlet_observations_with_flow_view(con)
434
- create_outlet_summary_report(con)
435
-
436
74
  def connect(db_path: str, read_only: bool = False) -> duckdb.DuckDBPyConnection:
437
75
  """
438
76
  Returns a DuckDB connection to the given database path.
@@ -468,22 +106,6 @@ def load_df_to_staging(con: duckdb.DuckDBPyConnection, df: pd.DataFrame, table_n
468
106
  con.execute(f"CREATE TABLE staging.{table_name} AS SELECT * FROM tmp_df")
469
107
  con.unregister("tmp_df")
470
108
 
471
- def add_df_to_staging(con: duckdb.DuckDBPyConnection, df: pd.DataFrame, table_name: str):
472
- """
473
- Append a pandas DataFrame into a staging table. This will create the staging
474
- table if it does not exist.
475
- """
476
- # register pandas DF and create table if not exists
477
- con.register("tmp_df", df)
478
- con.execute(f"""
479
- CREATE TABLE IF NOT EXISTS staging.{table_name} AS
480
- SELECT * FROM tmp_df
481
- """)
482
- con.execute(f"""
483
- INSERT INTO staging.{table_name}
484
- SELECT * FROM tmp_df
485
- """)
486
- con.unregister("tmp_df")
487
109
 
488
110
  def load_csv_to_staging(con: duckdb.DuckDBPyConnection, csv_path: str, table_name: str, replace: bool = True, **read_csv_kwargs):
489
111
  """
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mpcaHydro
3
- Version: 2.0.6
3
+ Version: 2.1.0
4
4
  Summary: Python package for downloading MPCA hydrology data
5
5
  Project-URL: Homepage, https://github.com/mfratkin1/mpcaHydro
6
6
  Author-email: Mulu Fratkin <michael.fratkin@state.mn.us>
@@ -10,9 +10,7 @@ Keywords: Hydrology,MPCA
10
10
  Classifier: Development Status :: 3 - Alpha
11
11
  Classifier: Programming Language :: Python
12
12
  Requires-Python: >=3.8
13
- Requires-Dist: baseflow
14
13
  Requires-Dist: duckdb
15
- Requires-Dist: oracledb
16
14
  Requires-Dist: pandas
17
15
  Requires-Dist: pathlib
18
16
  Requires-Dist: requests
@@ -0,0 +1,15 @@
1
+ mpcaHydro/WISKI.py,sha256=VWPwmDGv6rKFHgiQrcn4fAyx-h43Tyf8Vjtewa49yj4,11022
2
+ mpcaHydro/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
+ mpcaHydro/data_manager.py,sha256=LofBoNfhfStQlzD8EK1in_15BtNv_8q8057cjK4TmbA,15611
4
+ mpcaHydro/equis.py,sha256=R4BEAkj9I6hVhSmd4WjjMLyQXBcOL5B2YIZjwm4EtqE,17943
5
+ mpcaHydro/etlCSG.py,sha256=5QT6V2dHvNKC9r5-dspt-NpOmECP2LFw1Lyq1zdkqps,2630
6
+ mpcaHydro/etlSWD.py,sha256=FvFP5lIOxtzF3eEgUDGw-C2BJTRfxXxkbt3hYl8PCZQ,6367
7
+ mpcaHydro/etlWISKI.py,sha256=S1dNUe08Y0riJNBaEJDfgmewR8CwPtIaB_3Vw8JujkM,22201
8
+ mpcaHydro/etlWPLMN.py,sha256=avLJvWRRxsG35w--OVq0qSCrFjO6G2x0aQ31d9kcYHg,4179
9
+ mpcaHydro/pywisk.py,sha256=kaxJCPCZHy9oEo9VnoSmFC58qm1sX9fVbtp6nXs7934,13290
10
+ mpcaHydro/warehouse.py,sha256=Rn8onCs9R-EnU9XNA1Gy53B-PAIhW_YaCLBDO29zyMY,7786
11
+ mpcaHydro/data/EQUIS_PARAMETER_XREF.csv,sha256=XZPrcZan9irSqFd4UasnPo_NQBcjyFodi0q3FGQphjI,5667
12
+ mpcaHydro/data/WISKI_EQUIS_XREF.csv,sha256=bPYq-f4-Qc6jsvUgl81lwXBeFamfDe5TjohqUV1XJlg,1244704
13
+ mpcahydro-2.1.0.dist-info/METADATA,sha256=LyNxLeMkwdtq1ox-2ygVqPjqUPk5rFCseONZfziJEwg,543
14
+ mpcahydro-2.1.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
15
+ mpcahydro-2.1.0.dist-info/RECORD,,
@@ -1,71 +0,0 @@
1
- quality_code,Text,Description,Active
2
- 0,Unchecked,Unchecked data in progress or data that is not quality coded as part of the workup. Default coding for shifts so the quality codes from Level and Ratings are used for discharges. ,1
3
- 3,Instantaneous,Instantaneous groundwater measurements or sampled date for load stations.,1
4
- 5,Excellent,Discharge measurements that are excellent.,1
5
- 8,Reliable Interpolation,The value of the data point is an interpolation between adjacent points. Code used for filling gaps less than 4 hours or with no change in data trend likely based on reference information.,1
6
- 10,Good,Time series data that tracks well and requires no corrections or corrections of very small magnitude or timeseries data that has been reviewed and accepted for precipitation and groundwater level. Also used for discharge measurements and rating points. ,1
7
- 15,Fair,Time series data that tracks fairly well and requires some corrections of relatively small magnitude. Also used for discharge measurements and rating points. ,1
8
- 20,Poor,Time series data that tracks poorly and requires significant or many corrections. Also used for discharge measurements and rating points. ,1
9
- 27,Questionable,"Timeseries data or discharge measurements that are questionable due to operator error, equipment error, etc). Extra scrutiny should be used for these data. ",1
10
- 28,Unknown data quality,"Unknown quality of time series data, ratings or discharge measurements.",1
11
- 29,Modeled,"Time-series data, rating point or discharge from a reliable mathematical and\or computer model. ",1
12
- 34,Estimated,"Time-series data estimated from reference traces, models or extrapolation of the rating curve using supporting data and up to two times the maximum measured discharge.",1
13
- 35,Unreliable,Time-series data computed with a rating extrapolated without supporting data or beyond two times the maximum measured discharge without a model.,1
14
- 36,Threshold Exceedance,"Time-series data may be beyond the measuring limits of the monitoring equipment, or outside the bounds of historical extremes.",1
15
- 40,Default import code,WISKI default coding for gaugings. ,1
16
- 45,Approved Ext Data,"External data that has been graded externally as ""Approved"".",1
17
- 48,Unknown Ext Data,External data that has been graded internally as “Unknown”.,1
18
- 49,Estimated Ext Data,External data that has been graded externally as “Estimated.” Typically this is finalized ice data.,1
19
- 50,Provisional Ext Data,External data that has been graded internally or externally as “Provisional”.,1
20
- 80,Ice - Estimated,Ice affected time series data. Discharge computed with ice affected stage data is considered estimated.,1
21
- 199,199-Logger Unknown,Initial code for data coming to the system from the logger.,1
22
- 200,200,Initial code for data coming to the system from telemetry or default coding for WISKI timeseries. ,1
23
- 228,Info Parameter,This parameter is collected for informational purposes only. Data has been through a cursory check only. This is stored in the database and available upon request.,1
24
- 255,---,System assigned code for gaps in the data set. Records with null values. ,1
25
- 1,Continuous Data,~Discontinued~ Good TS data that requires no correction.,0
26
- 2,Edited Data,~Discontinued~ TS data that has been edited. Typically used when spikes are removed or when points are edited manual for datum corrections.,0
27
- 3,Instantaneous Data,Final WQ data.,0
28
- 4,Questionable data,~Discontinued~,0
29
- 5,Excellent measurment,Used to indicated discharge measurements that are excellent as well as excellent sections of the rating.,0
30
- 10,Good measurement,Used to indicated discharge measurements and sections of the rating that are good and time series data that tracks well and requires no corrections or corrections of very small magnitude.,0
31
- 12,Modeled measurement,~Discontinued~ Rating point or discharge was obtained from a relizble mathematical and/or computer model. After 3/1/11 use QC148.,0
32
- 15,Fair measurement,Used to indicated discharge measurements and sections of the rating that are fair and time series data that tracks fairly well and requires some corrections of relatively small magnitude.,0
33
- 20,Poor measurement,Used to indicated discharge measurements and sections of the rating that are poor and time series data that tracks poorly and requires significant or many corrections.,0
34
- 25,Unknown measurement,Measurement data not available.,0
35
- 27,Questionable data,"Flow measurement is very poor and should be given extra scrutiny or time series data that is questionable due to operator error, equipment error, etc.",0
36
- 30,Good Archived Daily Value,This code is used for archived daily value data that is considered “Good”.,0
37
- 31,Fair Archived Daily Value,This code is used for archived daily value data that is considered “Fair”.,0
38
- 32,Poor Archived Daily Value,This code is used for archived daily value data that is considered “Poor”.,0
39
- 33,Unknown Archived Daily Value,This code is used for archived daily value data that has unknown quality based on lack of documentation.,0
40
- 34,Estimated Archived Daily Value,This code is used for archived daily value data that has been estimated.,0
41
- 35,Unreliable Archived Daily Value,This code is used for archived daily value data that is unreliable based on the quality of the supporting time series data and/or rating.,0
42
- 45,Good External Data,This code is used for external data that has been graded internally as “Good”.,0
43
- 46,Fair External Data,This code is used for external data that has been graded internally as “Fair”.,0
44
- 47,Poor External Data,This code is used for external data that has been graded internally as “Poor”.,0
45
- 48,Unknown External Data,This code is used for external data that has been graded internally as “Unknown”,0
46
- 49,Estimated External Data,This code is used for external data that has been graded externally as “Estimated.” Typically this is finalized ice data.,0
47
- 50,Provisional External Data,This code is used for external data that has been graded internally as “Provisional”,0
48
- 51,Telemetry data - DCP,This code is used for time-series data when imported into hydstra using an automated telemetry method that accesses a DCP through the GOES network. The “questionable measurement” flag is set through the shef code that accompanies the DCP data.,0
49
- 60,Above rating,~Discontinued~,0
50
- 70,Estimated Data,Value of the data point is estimated.,0
51
- 76,Reliable interpolation,Value of the data point is an interpolation between adjacent points. ,0
52
- 80,Ice,"(DISCONTINUED) Used to indicate ice conditions when the data should not be exported. Use in conjunction with 80 to code 232.00 values, run USDAY to compute daily flow, then recode 232.00 80 values to 180 so unit value export cannot occur.",0
53
- 82,Linear interpolation across a gap in records,~Discontinued~ Points that were added to fill a gap in the data record. The points fall on a straight line between the end points of the gap. This code was changed to 8 in WISKI.,0
54
- 103,Provisional Instantaneous Data,Provisional WQ data.,0
55
- 130,Good Provisional Daily Value,This code is used for archived daily value data that is considered “Good” but Provisional because there is only one year of gaging measurements.,0
56
- 131,Fair Provisional Daily Value,This code is used for archived daily value data that is considered “Fair” but Provisional because there is only one year of gaging measurements.,0
57
- 132,Poor Provisional Daily Value,This code is used for archived daily value data that is considered “Poor” but Provisional because there is only one year of gaging measurements.,0
58
- 133,Unknown Provisional Archived Daily Value,This code is used for archived daily value data that has unknown quality based on lack of documentation but Provisional because there is only one year of gaging measurements.,0
59
- 134,Estimated Provisional Archived Daily Value,This code is used for archived daily value data that has been estimated but Provisional because there is only one year of gaging measurements.,0
60
- 135,Unreliable Provisional Archived Daily Value,This code is used for archived daily value data that is unreliable based on the quality of the supporting time series data and/or rating but Provisional because there is only one year of gaging measurements.,0
61
- 140,Data not yet checked,This code is used for time-series data when it is initially imported into hydstra using manual import methods. ,0
62
- 141,Telemetry data - not yet checked,This code is used for time-series data when it is imported into hydstra using an automated telemetry method.,0
63
- 148,Modeled measurement,Rating point or discharge was obtained from a reliable mathematical and/or computer model.,0
64
- 149,Extrapolated rating point,Rating point accurately extrapolated using supporting data and is less than two times the maxiumum measured discharge.,0
65
- 150,Over-extrapolated rating point,Rating point extrapolated without supporting data or beyone two times the maximum measured discharge without a mathematical model.,0
66
- 151,Data Missing,"This code is used to flag the end of a period of missing time-series data, before the next good data value.",0
67
- 160,Above rating,~Discontinued~,0
68
- 169,Datalogger Hardware Error Code 6999,"This code is used to indicate that a time-series point had a value of 6999 or -6999, a typical hardware error code, and the value was changed.",0
69
- 170,Estimated Data,"Used to indicate estimated data when the data should not be exported. Often used in conjunction with 70 to code 232.00 values, run USDAY to compute daily flow, then recode 232.00 70 values to 170 so unit value export can not occur.",0
70
- 180,Ice,Used to indicate ice conditions.,0
71
- 255,Data Missing,This code is used when data is exported and does not exist for a given time period.,0
Binary file
Binary file
Binary file