mpcaHydro 2.0.4__py3-none-any.whl → 2.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mpcaHydro/data/WISKI_QUALITY_CODES.csv +71 -0
- mpcaHydro/data/outlets.duckdb +0 -0
- mpcaHydro/data/stations_EQUIS.gpkg +0 -0
- mpcaHydro/data/stations_wiski.gpkg +0 -0
- mpcaHydro/data_manager.py +142 -314
- mpcaHydro/equis.py +488 -0
- mpcaHydro/etlSWD.py +4 -5
- mpcaHydro/etlWISKI.py +39 -23
- mpcaHydro/etlWPLMN.py +2 -2
- mpcaHydro/outlets.py +371 -0
- mpcaHydro/pywisk.py +381 -0
- mpcaHydro/reports.py +80 -0
- mpcaHydro/warehouse.py +581 -0
- mpcaHydro/warehouseManager.py +47 -0
- mpcaHydro/wiski.py +308 -0
- mpcaHydro/xref.py +74 -0
- {mpcahydro-2.0.4.dist-info → mpcahydro-2.0.5.dist-info}/METADATA +2 -1
- mpcahydro-2.0.5.dist-info/RECORD +23 -0
- {mpcahydro-2.0.4.dist-info → mpcahydro-2.0.5.dist-info}/WHEEL +1 -1
- mpcaHydro/WISKI.py +0 -352
- mpcaHydro/helpers.py +0 -0
- mpcahydro-2.0.4.dist-info/RECORD +0 -13
mpcaHydro/warehouse.py
ADDED
|
@@ -0,0 +1,581 @@
|
|
|
1
|
+
import duckdb
|
|
2
|
+
import pandas as pd
|
|
3
|
+
from pathlib import Path
|
|
4
|
+
from mpcaHydro import outlets
|
|
5
|
+
|
|
6
|
+
def init_db(db_path: str,reset: bool = False):
|
|
7
|
+
"""
|
|
8
|
+
Initialize the DuckDB database: create schemas and tables.
|
|
9
|
+
"""
|
|
10
|
+
db_path = Path(db_path)
|
|
11
|
+
if reset and db_path.exists():
|
|
12
|
+
db_path.unlink()
|
|
13
|
+
|
|
14
|
+
with connect(db_path.as_posix()) as con:
|
|
15
|
+
# Create all schemas
|
|
16
|
+
create_schemas(con)
|
|
17
|
+
|
|
18
|
+
# Create tables
|
|
19
|
+
create_outlets_tables(con)
|
|
20
|
+
create_mapping_tables(con)
|
|
21
|
+
create_analytics_tables(con)
|
|
22
|
+
|
|
23
|
+
# Create views
|
|
24
|
+
#update_views(con)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def create_schemas(con: duckdb.DuckDBPyConnection):
|
|
28
|
+
"""
|
|
29
|
+
Create staging, analytics, hspf, and reports schemas if they do not exist.
|
|
30
|
+
"""
|
|
31
|
+
con.execute("CREATE SCHEMA IF NOT EXISTS staging")
|
|
32
|
+
con.execute("CREATE SCHEMA IF NOT EXISTS analytics")
|
|
33
|
+
con.execute("CREATE SCHEMA IF NOT EXISTS reports")
|
|
34
|
+
con.execute("CREATE SCHEMA IF NOT EXISTS outlets")
|
|
35
|
+
con.execute("CREATE SCHEMA IF NOT EXISTS mappings")
|
|
36
|
+
|
|
37
|
+
def create_analytics_tables(con: duckdb.DuckDBPyConnection):
|
|
38
|
+
"""
|
|
39
|
+
Create necessary tables in the analytics schema.
|
|
40
|
+
"""
|
|
41
|
+
con.execute("""
|
|
42
|
+
CREATE TABLE IF NOT EXISTS analytics.equis (
|
|
43
|
+
datetime TIMESTAMP,
|
|
44
|
+
value DOUBLE,
|
|
45
|
+
station_id TEXT,
|
|
46
|
+
station_origin TEXT,
|
|
47
|
+
constituent TEXT,
|
|
48
|
+
unit TEXT
|
|
49
|
+
);
|
|
50
|
+
""")
|
|
51
|
+
con.execute("""
|
|
52
|
+
CREATE TABLE IF NOT EXISTS analytics.wiski (
|
|
53
|
+
datetime TIMESTAMP,
|
|
54
|
+
value DOUBLE,
|
|
55
|
+
station_id TEXT,
|
|
56
|
+
station_origin TEXT,
|
|
57
|
+
constituent TEXT,
|
|
58
|
+
unit TEXT
|
|
59
|
+
);
|
|
60
|
+
""")
|
|
61
|
+
|
|
62
|
+
def create_mapping_tables(con: duckdb.DuckDBPyConnection):
|
|
63
|
+
"""
|
|
64
|
+
Create and populate tables in the mappings schema from Python dicts and CSVs.
|
|
65
|
+
"""
|
|
66
|
+
# WISKI parametertype_id -> constituent
|
|
67
|
+
wiski_parametertype_map = {
|
|
68
|
+
'11522': 'TP',
|
|
69
|
+
'11531': 'TP',
|
|
70
|
+
'11532': 'TSS',
|
|
71
|
+
'11523': 'TSS',
|
|
72
|
+
'11526': 'N',
|
|
73
|
+
'11519': 'N',
|
|
74
|
+
'11520': 'OP',
|
|
75
|
+
'11528': 'OP',
|
|
76
|
+
'11530': 'TKN',
|
|
77
|
+
'11521': 'TKN',
|
|
78
|
+
'11500': 'Q',
|
|
79
|
+
'11504': 'WT',
|
|
80
|
+
'11533': 'DO',
|
|
81
|
+
'11507': 'WL'
|
|
82
|
+
}
|
|
83
|
+
df_wiski_params = pd.DataFrame(wiski_parametertype_map.items(), columns=['parametertype_id', 'constituent'])
|
|
84
|
+
con.execute("CREATE TABLE IF NOT EXISTS mappings.wiski_parametertype AS SELECT * FROM df_wiski_params")
|
|
85
|
+
|
|
86
|
+
# EQuIS cas_rn -> constituent
|
|
87
|
+
equis_casrn_map = {
|
|
88
|
+
'479-61-8': 'CHLA',
|
|
89
|
+
'CHLA-CORR': 'CHLA',
|
|
90
|
+
'BOD': 'BOD',
|
|
91
|
+
'NO2NO3': 'N',
|
|
92
|
+
'14797-55-8': 'NO3',
|
|
93
|
+
'14797-65-0': 'NO2',
|
|
94
|
+
'14265-44-2': 'OP',
|
|
95
|
+
'N-KJEL': 'TKN',
|
|
96
|
+
'PHOSPHATE-P': 'TP',
|
|
97
|
+
'7723-14-0': 'TP',
|
|
98
|
+
'SOLIDS-TSS': 'TSS',
|
|
99
|
+
'TEMP-W': 'WT',
|
|
100
|
+
'7664-41-7': 'NH3'
|
|
101
|
+
}
|
|
102
|
+
df_equis_cas = pd.DataFrame(equis_casrn_map.items(), columns=['cas_rn', 'constituent'])
|
|
103
|
+
con.execute("CREATE TABLE IF NOT EXISTS mappings.equis_casrn AS SELECT * FROM df_equis_cas")
|
|
104
|
+
|
|
105
|
+
# Load station cross-reference from CSV
|
|
106
|
+
# Assumes this script is run from a location where this relative path is valid
|
|
107
|
+
xref_csv_path = Path(__file__).parent / 'data/WISKI_EQUIS_XREF.csv'
|
|
108
|
+
if xref_csv_path.exists():
|
|
109
|
+
con.execute(f"CREATE TABLE IF NOT EXISTS mappings.station_xref AS SELECT * FROM read_csv_auto('{xref_csv_path.as_posix()}')")
|
|
110
|
+
else:
|
|
111
|
+
print(f"Warning: WISKI_EQUIS_XREF.csv not found at {xref_csv_path}")
|
|
112
|
+
|
|
113
|
+
# Load wiski_quality_codes from CSV
|
|
114
|
+
wiski_qc_csv_path = Path(__file__).parent / 'data/WISKI_QUALITY_CODES.csv'
|
|
115
|
+
if wiski_qc_csv_path.exists():
|
|
116
|
+
con.execute(f"CREATE TABLE IF NOT EXISTS mappings.wiski_quality_codes AS SELECT * FROM read_csv_auto('{wiski_qc_csv_path.as_posix()}')")
|
|
117
|
+
else:
|
|
118
|
+
print(f"Warning: WISKI_QUALITY_CODES.csv not found at {wiski_qc_csv_path}")
|
|
119
|
+
|
|
120
|
+
def create_outlets_tables(con: duckdb.DuckDBPyConnection):
|
|
121
|
+
"""
|
|
122
|
+
Create tables in the outlets schema to define outlet-station-reach relationships.
|
|
123
|
+
"""
|
|
124
|
+
con.execute("""-- schema.sql
|
|
125
|
+
-- Simple 3-table design to manage associations between model reaches and observation stations via outlets.
|
|
126
|
+
-- Compatible with DuckDB and SQLite.
|
|
127
|
+
|
|
128
|
+
-- Table 1: outlets
|
|
129
|
+
-- Represents a logical grouping that ties stations and reaches together.
|
|
130
|
+
CREATE TABLE IF NOT EXISTS outlets.outlets (
|
|
131
|
+
outlet_id TEXT PRIMARY KEY,
|
|
132
|
+
repository_name TEXT NOT NULL,
|
|
133
|
+
outlet_name TEXT,
|
|
134
|
+
notes TEXT -- optional: general notes about the outlet grouping
|
|
135
|
+
);
|
|
136
|
+
|
|
137
|
+
-- Table 2: outlet_stations
|
|
138
|
+
-- One-to-many: outlet -> stations
|
|
139
|
+
CREATE TABLE IF NOT EXISTS outlets.outlet_stations (
|
|
140
|
+
outlet_id TEXT NOT NULL,
|
|
141
|
+
station_id TEXT NOT NULL,
|
|
142
|
+
station_origin TEXT NOT NULL, -- e.g., 'wiski', 'equis'
|
|
143
|
+
repository_name TEXT NOT NULL, -- repository model the station is physically located in
|
|
144
|
+
true_opnid TEXT NOT NULL, -- The specific reach the station physically sits on (optional)
|
|
145
|
+
comments TEXT, -- Per-station comments, issues, etc.
|
|
146
|
+
CONSTRAINT uq_station_origin UNIQUE (station_id, station_origin),
|
|
147
|
+
FOREIGN KEY (outlet_id) REFERENCES outlets.outlets(outlet_id)
|
|
148
|
+
);
|
|
149
|
+
|
|
150
|
+
-- Table 3: outlet_reaches
|
|
151
|
+
-- One-to-many: outlet -> reaches
|
|
152
|
+
-- A reach can appear in multiple outlets, enabling many-to-many overall.
|
|
153
|
+
CREATE TABLE IF NOT EXISTS outlets.outlet_reaches (
|
|
154
|
+
outlet_id TEXT NOT NULL,
|
|
155
|
+
reach_id TEXT NOT NULL, -- model reach identifier (aka opind)
|
|
156
|
+
repository_name TEXT NOT NULL, -- optional: where the mapping comes from
|
|
157
|
+
exclude INTEGER DEFAULT 0, -- flag to indicate if this reach should be excluded (1) or included (0)
|
|
158
|
+
FOREIGN KEY (outlet_id) REFERENCES outlets.outlets(outlet_id)
|
|
159
|
+
);
|
|
160
|
+
|
|
161
|
+
-- Useful views:
|
|
162
|
+
|
|
163
|
+
-- View: station_reach_pairs
|
|
164
|
+
-- Derives the implicit many-to-many station <-> reach relationship via shared outlet_id
|
|
165
|
+
CREATE VIEW IF NOT EXISTS outlets.station_reach_pairs AS
|
|
166
|
+
SELECT
|
|
167
|
+
s.outlet_id,
|
|
168
|
+
s.station_id,
|
|
169
|
+
s.station_origin,
|
|
170
|
+
r.reach_id,
|
|
171
|
+
r.exclude,
|
|
172
|
+
r.repository_name,
|
|
173
|
+
FROM outlets.outlet_stations s
|
|
174
|
+
JOIN outlets.outlet_reaches r
|
|
175
|
+
ON s.outlet_id = r.outlet_id;
|
|
176
|
+
|
|
177
|
+
""")
|
|
178
|
+
|
|
179
|
+
def create_normalized_wiski_view(con: duckdb.DuckDBPyConnection):
|
|
180
|
+
"""
|
|
181
|
+
Create a view in the database that contains normalized WISKI data.
|
|
182
|
+
Units converted to standard units.
|
|
183
|
+
columns renamed.
|
|
184
|
+
constituents mapped.
|
|
185
|
+
"""
|
|
186
|
+
con.execute("""
|
|
187
|
+
-- Create a single view with all transformations
|
|
188
|
+
CREATE OR REPLACE VIEW analytics.wiski_normalized AS
|
|
189
|
+
SELECT
|
|
190
|
+
|
|
191
|
+
-- Convert °C to °F and keep other values unchanged
|
|
192
|
+
CASE
|
|
193
|
+
WHEN LOWER(ts_unitsymbol) = '°c' THEN (value * 9.0 / 5.0) + 32
|
|
194
|
+
WHEN ts_unitsymbol = 'kg' THEN value * 2.20462 -- Convert kg to lb
|
|
195
|
+
ELSE value
|
|
196
|
+
END AS value,
|
|
197
|
+
|
|
198
|
+
-- Normalize units
|
|
199
|
+
CASE
|
|
200
|
+
WHEN LOWER(ts_unitsymbol) = '°c' THEN 'degf' -- Normalize °C to degF
|
|
201
|
+
WHEN ts_unitsymbol = 'kg' THEN 'lb' -- Normalize kg to lb
|
|
202
|
+
WHEN ts_unitsymbol = 'ft³/s' THEN 'cfs' -- Rename ft³/s to cfs
|
|
203
|
+
ELSE ts_unitsymbol
|
|
204
|
+
END AS unit,
|
|
205
|
+
|
|
206
|
+
-- Normalize column names
|
|
207
|
+
station_no AS station_id, -- Rename station_no to station_id
|
|
208
|
+
Timestamp AS datetime, -- Rename Timestamp to datetime
|
|
209
|
+
"Quality Code" AS quality_code, -- Rename Quality Code to quality_code
|
|
210
|
+
"Quality Code Name" AS quality_code_name, -- Rename Quality Code Name to quality_code_name
|
|
211
|
+
parametertype_id, -- Keeps parametertype_id as is
|
|
212
|
+
constituent -- Keeps constituent as is
|
|
213
|
+
FROM staging.wiski_raw;""")
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
def create_filtered_wiski_view(con: duckdb.DuckDBPyConnection, data_codes: list):
|
|
217
|
+
"""
|
|
218
|
+
Create a view in the database that filters WISKI data based on specified data codes.
|
|
219
|
+
"""
|
|
220
|
+
query = f"""
|
|
221
|
+
CREATE OR REPLACE VIEW analytics.wiski_filtered AS
|
|
222
|
+
SELECT *
|
|
223
|
+
FROM analytics.wiski_normalized
|
|
224
|
+
WHERE quality_code IN ({placeholders});
|
|
225
|
+
"""
|
|
226
|
+
|
|
227
|
+
placeholders = ', '.join(['?'] * len(data_codes))
|
|
228
|
+
query = query.format(placeholders=placeholders)
|
|
229
|
+
con.execute(query, data_codes)
|
|
230
|
+
|
|
231
|
+
|
|
232
|
+
def create_aggregated_wiski_view(con: duckdb.DuckDBPyConnection):
|
|
233
|
+
"""
|
|
234
|
+
Create a view in the database that aggregates WISKI data by hour, station, and constituent.
|
|
235
|
+
"""
|
|
236
|
+
con.execute("""
|
|
237
|
+
CREATE OR REPLACE Table analytics.wiski_aggregated AS
|
|
238
|
+
SELECT
|
|
239
|
+
station_id,
|
|
240
|
+
constituent,
|
|
241
|
+
time_bucket(INTERVAL '1 hour', datetime) AS hour_start,
|
|
242
|
+
AVG(value) AS value,
|
|
243
|
+
unit
|
|
244
|
+
FROM analytics.wiski_normalized
|
|
245
|
+
GROUP BY
|
|
246
|
+
station_id,
|
|
247
|
+
constituent,
|
|
248
|
+
hour_start,
|
|
249
|
+
unit;
|
|
250
|
+
""")
|
|
251
|
+
|
|
252
|
+
def create_staging_qc_count_view(con: duckdb.DuckDBPyConnection):
|
|
253
|
+
"""
|
|
254
|
+
Create a view in staging schema that counts quality codes for each station and constituent.
|
|
255
|
+
"""
|
|
256
|
+
con.execute("""
|
|
257
|
+
CREATE OR REPLACE VIEW staging.wiski_qc_count AS (
|
|
258
|
+
SELECT
|
|
259
|
+
w.station_no,
|
|
260
|
+
w.parametertype_name,
|
|
261
|
+
w."Quality Code",
|
|
262
|
+
w."Quality Code Name",
|
|
263
|
+
COUNT(w."Quality Code") AS count
|
|
264
|
+
FROM staging.wiski_raw w
|
|
265
|
+
GROUP BY
|
|
266
|
+
w."Quality Code",w."Quality Code Name",w.parametertype_name, w.station_no
|
|
267
|
+
);
|
|
268
|
+
""")
|
|
269
|
+
# ORDER BY
|
|
270
|
+
# w.station_no,w.parametertype_name, w."Quality Code"
|
|
271
|
+
# )
|
|
272
|
+
# """)
|
|
273
|
+
|
|
274
|
+
def create_combined_observations_view(con: duckdb.DuckDBPyConnection):
|
|
275
|
+
"""
|
|
276
|
+
Create a view in analytics schema that combines observations from equis and wiski processed tables.
|
|
277
|
+
"""
|
|
278
|
+
con.execute("""
|
|
279
|
+
CREATE OR REPLACE VIEW analytics.observations AS
|
|
280
|
+
SELECT datetime,value,station_id,station_origin,constituent,unit
|
|
281
|
+
FROM analytics.equis
|
|
282
|
+
UNION ALL
|
|
283
|
+
SELECT datetime,value,station_id,station_origin,constituent,unit
|
|
284
|
+
FROM analytics.wiski;
|
|
285
|
+
""")
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
def create_outlet_observations_view(con: duckdb.DuckDBPyConnection):
|
|
289
|
+
"""
|
|
290
|
+
Create a view in analytics schema that links observations to model reaches via outlets.
|
|
291
|
+
"""
|
|
292
|
+
con.execute("""
|
|
293
|
+
CREATE OR REPLACE VIEW analytics.outlet_observations AS
|
|
294
|
+
SELECT
|
|
295
|
+
o.datetime,
|
|
296
|
+
os.outlet_id,
|
|
297
|
+
o.constituent,
|
|
298
|
+
AVG(o.value) AS value,
|
|
299
|
+
COUNT(o.value) AS count
|
|
300
|
+
FROM
|
|
301
|
+
analytics.observations AS o
|
|
302
|
+
LEFT JOIN
|
|
303
|
+
outlets.outlet_stations AS os ON o.station_id = os.station_id AND o.station_origin = os.station_origin
|
|
304
|
+
GROUP BY
|
|
305
|
+
os.outlet_id,
|
|
306
|
+
o.constituent,
|
|
307
|
+
o.datetime; -- Group by the truncated date
|
|
308
|
+
""")
|
|
309
|
+
# ORDER BY
|
|
310
|
+
# os.outlet_id,
|
|
311
|
+
# o.constituent,
|
|
312
|
+
# datetime);
|
|
313
|
+
|
|
314
|
+
|
|
315
|
+
|
|
316
|
+
def create_outlet_observations_with_flow_view(con: duckdb.DuckDBPyConnection):
|
|
317
|
+
|
|
318
|
+
con.execute("""
|
|
319
|
+
CREATE OR REPLACE VIEW analytics.outlet_observations_with_flow AS
|
|
320
|
+
WITH baseflow_data AS (
|
|
321
|
+
SELECT
|
|
322
|
+
outlet_id,
|
|
323
|
+
datetime,
|
|
324
|
+
"value" AS baseflow_value
|
|
325
|
+
FROM
|
|
326
|
+
analytics.outlet_observations
|
|
327
|
+
WHERE
|
|
328
|
+
(constituent = 'QB')),
|
|
329
|
+
flow_data AS (
|
|
330
|
+
SELECT
|
|
331
|
+
outlet_id,
|
|
332
|
+
datetime,
|
|
333
|
+
"value" AS flow_value
|
|
334
|
+
FROM
|
|
335
|
+
analytics.outlet_observations
|
|
336
|
+
WHERE
|
|
337
|
+
(constituent = 'Q')),
|
|
338
|
+
constituent_data AS (
|
|
339
|
+
SELECT
|
|
340
|
+
outlet_id,
|
|
341
|
+
datetime,
|
|
342
|
+
constituent,
|
|
343
|
+
"value",
|
|
344
|
+
count
|
|
345
|
+
FROM
|
|
346
|
+
analytics.outlet_observations
|
|
347
|
+
WHERE
|
|
348
|
+
(constituent NOT IN ('Q', 'QB')))
|
|
349
|
+
SELECT
|
|
350
|
+
constituent_data.outlet_id,
|
|
351
|
+
constituent_data.constituent,
|
|
352
|
+
constituent_data.datetime,
|
|
353
|
+
constituent_data."value",
|
|
354
|
+
flow_data.flow_value,
|
|
355
|
+
baseflow_data.baseflow_value
|
|
356
|
+
FROM
|
|
357
|
+
constituent_data
|
|
358
|
+
FULL JOIN flow_data ON
|
|
359
|
+
(((constituent_data.outlet_id = flow_data.outlet_id)
|
|
360
|
+
AND (constituent_data.datetime = flow_data.datetime)))
|
|
361
|
+
LEFT JOIN baseflow_data ON
|
|
362
|
+
(((constituent_data.outlet_id = baseflow_data.outlet_id)
|
|
363
|
+
AND (constituent_data.datetime = baseflow_data.datetime)));""")
|
|
364
|
+
# ORDER BY
|
|
365
|
+
# constituent_data.outlet_id,
|
|
366
|
+
# constituent_data.datetime;
|
|
367
|
+
#
|
|
368
|
+
|
|
369
|
+
def create_constituent_summary_report(con: duckdb.DuckDBPyConnection):
|
|
370
|
+
"""
|
|
371
|
+
Create a constituent summary report in the reports schema that groups observations by constituent and station.
|
|
372
|
+
"""
|
|
373
|
+
con.execute('''
|
|
374
|
+
CREATE OR REPLACE VIEW reports.constituent_summary AS
|
|
375
|
+
SELECT
|
|
376
|
+
station_id,
|
|
377
|
+
station_origin,
|
|
378
|
+
constituent,
|
|
379
|
+
COUNT(*) AS sample_count,
|
|
380
|
+
AVG(value) AS average_value,
|
|
381
|
+
MIN(value) AS min_value,
|
|
382
|
+
MAX(value) AS max_value,
|
|
383
|
+
year(MIN(datetime)) AS start_date,
|
|
384
|
+
year(MAX(datetime)) AS end_date
|
|
385
|
+
FROM
|
|
386
|
+
analytics.observations
|
|
387
|
+
GROUP BY
|
|
388
|
+
constituent,station_id,station_origin;
|
|
389
|
+
''')
|
|
390
|
+
|
|
391
|
+
# ORDER BY
|
|
392
|
+
# constituent,sample_count;''')
|
|
393
|
+
|
|
394
|
+
def create_outlet_summary_report(con: duckdb.DuckDBPyConnection):
|
|
395
|
+
con.execute("""
|
|
396
|
+
CREATE VIEW reports.outlet_constituent_summary AS
|
|
397
|
+
SELECT
|
|
398
|
+
outlet_id,
|
|
399
|
+
constituent,
|
|
400
|
+
count_star() AS sample_count,
|
|
401
|
+
avg("value") AS average_value,
|
|
402
|
+
min("value") AS min_value,
|
|
403
|
+
max("value") AS max_value,
|
|
404
|
+
"year"(min(datetime)) AS start_date,
|
|
405
|
+
"year"(max(datetime)) AS end_date
|
|
406
|
+
FROM
|
|
407
|
+
analytics.outlet_observations
|
|
408
|
+
GROUP BY
|
|
409
|
+
constituent,
|
|
410
|
+
outlet_id
|
|
411
|
+
""")
|
|
412
|
+
|
|
413
|
+
|
|
414
|
+
|
|
415
|
+
def drop_station_id(con: duckdb.DuckDBPyConnection, station_id: str,station_origin: str):
|
|
416
|
+
"""
|
|
417
|
+
Drop all data for a specific station from staging and analytics schemas.
|
|
418
|
+
"""
|
|
419
|
+
con.execute(f"DELETE FROM staging.equis_raw WHERE station_id = '{station_id}' AND station_origin = '{station_origin}'")
|
|
420
|
+
con.execute(f"DELETE FROM staging.wiski_raw WHERE station_id = '{station_id}' AND station_origin = '{station_origin}'")
|
|
421
|
+
con.execute(f"DELETE FROM analytics.equis WHERE station_id = '{station_id}' AND station_origin = '{station_origin}'")
|
|
422
|
+
con.execute(f"DELETE FROM analytics.wiski WHERE station_id = '{station_id}' AND station_origin = '{station_origin}'")
|
|
423
|
+
update_views(con)
|
|
424
|
+
|
|
425
|
+
def update_views(con: duckdb.DuckDBPyConnection):
|
|
426
|
+
"""
|
|
427
|
+
Update all views in the database.
|
|
428
|
+
"""
|
|
429
|
+
create_staging_qc_count_view(con)
|
|
430
|
+
create_combined_observations_view(con)
|
|
431
|
+
create_constituent_summary_report(con)
|
|
432
|
+
create_outlet_observations_view(con)
|
|
433
|
+
create_outlet_observations_with_flow_view(con)
|
|
434
|
+
create_outlet_summary_report(con)
|
|
435
|
+
|
|
436
|
+
def connect(db_path: str, read_only: bool = False) -> duckdb.DuckDBPyConnection:
|
|
437
|
+
"""
|
|
438
|
+
Returns a DuckDB connection to the given database path.
|
|
439
|
+
Ensures the parent directory exists.
|
|
440
|
+
"""
|
|
441
|
+
db_path = Path(db_path)
|
|
442
|
+
parent = db_path.parent
|
|
443
|
+
parent.mkdir(parents=True, exist_ok=True)
|
|
444
|
+
return duckdb.connect(database=db_path.as_posix(), read_only=read_only)
|
|
445
|
+
|
|
446
|
+
|
|
447
|
+
def load_df_to_table(con: duckdb.DuckDBPyConnection, df: pd.DataFrame, table_name: str, replace: bool = True):
|
|
448
|
+
"""
|
|
449
|
+
Persist a pandas DataFrame into a DuckDB table. This will overwrite the table
|
|
450
|
+
by default (replace=True).
|
|
451
|
+
"""
|
|
452
|
+
if replace:
|
|
453
|
+
con.execute(f"DROP TABLE IF EXISTS {table_name}")
|
|
454
|
+
# register pandas DF and create table
|
|
455
|
+
con.register("tmp_df", df)
|
|
456
|
+
con.execute(f"CREATE TABLE {table_name} AS SELECT * FROM tmp_df")
|
|
457
|
+
con.unregister("tmp_df")
|
|
458
|
+
|
|
459
|
+
def load_df_to_staging(con: duckdb.DuckDBPyConnection, df: pd.DataFrame, table_name: str, replace: bool = True):
|
|
460
|
+
"""
|
|
461
|
+
Persist a pandas DataFrame into a staging table. This will overwrite the staging
|
|
462
|
+
table by default (replace=True).
|
|
463
|
+
"""
|
|
464
|
+
if replace:
|
|
465
|
+
con.execute(f"DROP TABLE IF EXISTS staging.{table_name}")
|
|
466
|
+
# register pandas DF and create table
|
|
467
|
+
con.register("tmp_df", df)
|
|
468
|
+
con.execute(f"CREATE TABLE staging.{table_name} AS SELECT * FROM tmp_df")
|
|
469
|
+
con.unregister("tmp_df")
|
|
470
|
+
|
|
471
|
+
def add_df_to_staging(con: duckdb.DuckDBPyConnection, df: pd.DataFrame, table_name: str):
|
|
472
|
+
"""
|
|
473
|
+
Append a pandas DataFrame into a staging table. This will create the staging
|
|
474
|
+
table if it does not exist.
|
|
475
|
+
"""
|
|
476
|
+
# register pandas DF and create table if not exists
|
|
477
|
+
con.register("tmp_df", df)
|
|
478
|
+
con.execute(f"""
|
|
479
|
+
CREATE TABLE IF NOT EXISTS staging.{table_name} AS
|
|
480
|
+
SELECT * FROM tmp_df
|
|
481
|
+
""")
|
|
482
|
+
con.execute(f"""
|
|
483
|
+
INSERT INTO staging.{table_name}
|
|
484
|
+
SELECT * FROM tmp_df
|
|
485
|
+
""")
|
|
486
|
+
con.unregister("tmp_df")
|
|
487
|
+
|
|
488
|
+
def load_csv_to_staging(con: duckdb.DuckDBPyConnection, csv_path: str, table_name: str, replace: bool = True, **read_csv_kwargs):
|
|
489
|
+
"""
|
|
490
|
+
Persist a CSV file into a staging table. This will overwrite the staging
|
|
491
|
+
table by default (replace=True).
|
|
492
|
+
"""
|
|
493
|
+
if replace:
|
|
494
|
+
con.execute(f"DROP TABLE IF EXISTS staging.{table_name}")
|
|
495
|
+
con.execute(f"""
|
|
496
|
+
CREATE TABLE staging.{table_name} AS
|
|
497
|
+
SELECT * FROM read_csv_auto('{csv_path}', {', '.join(f"{k}={repr(v)}" for k, v in read_csv_kwargs.items())})
|
|
498
|
+
""")
|
|
499
|
+
|
|
500
|
+
def load_parquet_to_staging(con: duckdb.DuckDBPyConnection, parquet_path: str, table_name: str, replace: bool = True):
|
|
501
|
+
"""
|
|
502
|
+
Persist a Parquet file into a staging table. This will overwrite the staging
|
|
503
|
+
table by default (replace=True).
|
|
504
|
+
"""
|
|
505
|
+
if replace:
|
|
506
|
+
con.execute(f"DROP TABLE IF EXISTS staging.{table_name}")
|
|
507
|
+
con.execute(f"""
|
|
508
|
+
CREATE TABLE staging.{table_name} AS
|
|
509
|
+
SELECT * FROM read_parquet('{parquet_path}')
|
|
510
|
+
""")
|
|
511
|
+
|
|
512
|
+
|
|
513
|
+
def write_table_to_parquet(con: duckdb.DuckDBPyConnection, table_name: str, path: str, compression="snappy"):
|
|
514
|
+
"""
|
|
515
|
+
Persist a DuckDB table into a Parquet file.
|
|
516
|
+
"""
|
|
517
|
+
con.execute(f"COPY (SELECT * FROM {table_name}) TO '{path}' (FORMAT PARQUET, COMPRESSION '{compression}')")
|
|
518
|
+
|
|
519
|
+
|
|
520
|
+
def write_table_to_csv(con: duckdb.DuckDBPyConnection, table_name: str, path: str, header: bool = True, sep: str = ',', **kwargs):
|
|
521
|
+
"""
|
|
522
|
+
Persist a DuckDB table into a CSV file.
|
|
523
|
+
"""
|
|
524
|
+
con.execute(f"COPY (SELECT * FROM {table_name}) TO '{path}' (FORMAT CSV, HEADER {str(header).upper()}, DELIMITER '{sep}' {', '.join(f', {k}={repr(v)}' for k, v in kwargs.items())})")
|
|
525
|
+
|
|
526
|
+
|
|
527
|
+
|
|
528
|
+
|
|
529
|
+
def load_df_to_analytics(con: duckdb.DuckDBPyConnection, df: pd.DataFrame, table_name: str):
|
|
530
|
+
"""
|
|
531
|
+
Persist a pandas DataFrame into an analytics table.
|
|
532
|
+
"""
|
|
533
|
+
con.execute(f"DROP TABLE IF EXISTS analytics.{table_name}")
|
|
534
|
+
con.register("tmp_df", df)
|
|
535
|
+
con.execute(f"CREATE TABLE analytics.{table_name} AS SELECT * FROM tmp_df")
|
|
536
|
+
con.unregister("tmp_df")
|
|
537
|
+
|
|
538
|
+
|
|
539
|
+
def migrate_staging_to_analytics(con: duckdb.DuckDBPyConnection, staging_table: str, analytics_table: str):
|
|
540
|
+
"""
|
|
541
|
+
Migrate data from a staging table to an analytics table.
|
|
542
|
+
"""
|
|
543
|
+
con.execute(f"DROP TABLE IF EXISTS analytics.{analytics_table}")
|
|
544
|
+
con.execute(f"""
|
|
545
|
+
CREATE TABLE analytics.{analytics_table} AS
|
|
546
|
+
SELECT * FROM staging.{staging_table}
|
|
547
|
+
""")
|
|
548
|
+
|
|
549
|
+
|
|
550
|
+
def load_to_analytics(con: duckdb.DuckDBPyConnection, table_name: str):
|
|
551
|
+
con.execute(f"""
|
|
552
|
+
CREATE OR REPLACE TABLE analytics.{table_name} AS
|
|
553
|
+
SELECT
|
|
554
|
+
station_id,
|
|
555
|
+
constituent,
|
|
556
|
+
datetime,
|
|
557
|
+
value AS observed_value,
|
|
558
|
+
time_bucket(INTERVAL '1 hour', datetime) AS hour_start,
|
|
559
|
+
AVG(observed_value) AS value
|
|
560
|
+
FROM
|
|
561
|
+
staging.equis_processed
|
|
562
|
+
GROUP BY
|
|
563
|
+
hour_start,
|
|
564
|
+
constituent,
|
|
565
|
+
station_id
|
|
566
|
+
ORDER BY
|
|
567
|
+
station_id,
|
|
568
|
+
constituent
|
|
569
|
+
""")
|
|
570
|
+
# register pandas DF and create table
|
|
571
|
+
con.register("tmp_df", df)
|
|
572
|
+
con.execute(f"CREATE TABLE analytics.{table_name} AS SELECT * FROM tmp_df")
|
|
573
|
+
con.unregister("tmp_df")
|
|
574
|
+
|
|
575
|
+
def dataframe_to_parquet(con: duckdb.DuckDBPyConnection, df: pd.DataFrame, path, compression="snappy"):
|
|
576
|
+
# path should be a filename like 'data/raw/equis/equis-20251118.parquet'
|
|
577
|
+
con = duckdb.connect()
|
|
578
|
+
con.register("tmp_df", df)
|
|
579
|
+
con.execute(f"COPY (SELECT * FROM tmp_df) TO '{path}' (FORMAT PARQUET, COMPRESSION '{compression}')")
|
|
580
|
+
con.unregister("tmp_df")
|
|
581
|
+
con.close()
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
|
|
2
|
+
import pandas as pd
|
|
3
|
+
#from abc import abstractmethod
|
|
4
|
+
from pathlib import Path
|
|
5
|
+
from mpcaHydro import equis, wiski, warehouse
|
|
6
|
+
import duckdb
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
#%%
|
|
13
|
+
'''
|
|
14
|
+
This modules contains classes and functions to manage data downloads and storage into a local data warehouse.
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
'''
|
|
18
|
+
|
|
19
|
+
def get_db_path(warehouse_path:Path,db_name:str = 'observations')->Path:
|
|
20
|
+
'''
|
|
21
|
+
Constructs the full path to the database file within the warehouse directory.
|
|
22
|
+
|
|
23
|
+
Parameters:
|
|
24
|
+
warehouse_path (Path): The path to the warehouse directory.
|
|
25
|
+
db_name (str): The name of the database file.
|
|
26
|
+
|
|
27
|
+
Returns:
|
|
28
|
+
Path: The full path to the database file.
|
|
29
|
+
'''
|
|
30
|
+
return Path(warehouse_path) / db_name
|
|
31
|
+
|
|
32
|
+
def construct_database(db_path:Path,db_name:str = 'observations')->Path:
|
|
33
|
+
'''
|
|
34
|
+
Constructs the full path to the database file within the warehouse directory.
|
|
35
|
+
|
|
36
|
+
Parameters:
|
|
37
|
+
warehouse_path (Path): The path to the warehouse directory.
|
|
38
|
+
db_name (str): The name of the database file.
|
|
39
|
+
|
|
40
|
+
Returns:
|
|
41
|
+
Path: The full path to the database file.
|
|
42
|
+
'''
|
|
43
|
+
db_path = Path(db_path) / db_name
|
|
44
|
+
warehouse.init_db(warehouse_path=db_path)
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
|