mostlyai-mock 0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,18 @@
1
+ # Copyright 2025 MOSTLY AI
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from mostlyai.mock.core import sample
16
+
17
+ __all__ = ["sample"]
18
+ __version__ = "0.0.1" # Do not set this manually. Use poetry version [params].
mostlyai/mock/core.py ADDED
@@ -0,0 +1,512 @@
1
+ # Copyright 2025 MOSTLY AI
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from __future__ import annotations
16
+
17
+ import json
18
+ from collections import deque
19
+ from collections.abc import Generator
20
+ from enum import Enum
21
+
22
+ import litellm
23
+ import pandas as pd
24
+ from pydantic import BaseModel, Field, RootModel, create_model, field_validator
25
+ from tqdm import tqdm
26
+
27
+ SYSTEM_PROMPT = f"""
28
+ You are a specialized synthetic data generator designed to create
29
+ highly realistic, contextually appropriate data based on schema definitions. Your task is to:
30
+
31
+ 1. Generate data that strictly adheres to the provided schema constraints (data types, ranges, formats)
32
+ 2. Ensure logical consistency across related tables and foreign key relationships
33
+ 3. Create contextually appropriate values that reflect real-world patterns and distributions
34
+ 4. Produce diverse, non-repetitive data that avoids obvious patterns
35
+ 5. Respect uniqueness constraints and other data integrity rules
36
+ 6. Return well-formatted JSON output that can be directly parsed.
37
+ 7. Don't use markdown formatting.
38
+
39
+ For numeric fields, generate realistic distributions rather than random values. For text fields, create contextually \
40
+ appropriate content. For dates and timestamps, ensure logical chronology. Always maintain referential integrity \
41
+ across tables.
42
+ """
43
+
44
+
45
+ class LLMConfig(BaseModel):
46
+ model: str
47
+ api_key: str | None = None
48
+
49
+
50
+ class MockConfig(RootModel[dict[str, "TableConfig"]]):
51
+ root: dict[str, TableConfig] = Field(..., min_items=1)
52
+
53
+ @field_validator("root")
54
+ @classmethod
55
+ def validate_consistency_of_relationships(cls, tables: dict[str, TableConfig]) -> dict[str, TableConfig]:
56
+ for table_name, table_config in tables.items():
57
+ if not table_config.foreign_keys:
58
+ continue
59
+
60
+ for fk in table_config.foreign_keys:
61
+ if fk.referenced_table not in tables:
62
+ raise ValueError(
63
+ f"Foreign key violation in table '{table_name}': "
64
+ f"Referenced table '{fk.referenced_table}' does not exist"
65
+ )
66
+
67
+ referenced_config = tables[fk.referenced_table]
68
+ if not referenced_config.primary_key:
69
+ raise ValueError(
70
+ f"Foreign key violation in table '{table_name}': "
71
+ f"Referenced table '{fk.referenced_table}' has no primary key defined"
72
+ )
73
+
74
+ if fk.column not in table_config.columns:
75
+ raise ValueError(
76
+ f"Foreign key violation in table '{table_name}': "
77
+ f"Column '{fk.column}' does not exist in the schema"
78
+ )
79
+
80
+ fk_field = table_config.columns[fk.column]
81
+ pk_field = referenced_config.columns[referenced_config.primary_key]
82
+ if fk_field.dtype != pk_field.dtype:
83
+ raise ValueError(
84
+ f"Foreign key violation in table '{table_name}': "
85
+ f"Column '{fk.column}' type '{fk_field.dtype}' does not match "
86
+ f"referenced primary key '{referenced_config.primary_key}' type '{pk_field.dtype}'"
87
+ )
88
+
89
+ return tables
90
+
91
+
92
+ class TableConfig(BaseModel):
93
+ description: str = ""
94
+ columns: dict[str, ColumnConfig] = Field(..., min_items=1)
95
+ primary_key: str | None = None
96
+ foreign_keys: list[ForeignKeyConfig] = Field(default_factory=list, min_length=0, max_length=1)
97
+
98
+
99
+ class ColumnConfig(BaseModel):
100
+ prompt: str
101
+ dtype: DType
102
+
103
+
104
+ class DType(str, Enum):
105
+ INTEGER = "integer"
106
+ FLOAT = "float"
107
+ STRING = "string"
108
+ BOOLEAN = "boolean"
109
+ DATE = "date"
110
+ DATETIME = "datetime"
111
+
112
+
113
+ class ForeignKeyConfig(BaseModel):
114
+ column: str
115
+ referenced_table: str
116
+ description: str | None = None
117
+
118
+
119
+ def _sample_table(
120
+ *,
121
+ table_name: str,
122
+ table_config: TableConfig,
123
+ primary_keys: dict[str, str] | None,
124
+ sample_size: int | None,
125
+ context_data: pd.DataFrame | None,
126
+ temperature: float,
127
+ top_p: float,
128
+ batch_size: int,
129
+ previous_rows_size: int,
130
+ llm_config: LLMConfig,
131
+ ) -> pd.DataFrame:
132
+ assert (sample_size is None) != (context_data is None), (
133
+ "Exactly one of sample_size or context_data must be provided"
134
+ )
135
+ if sample_size is None:
136
+ sample_size = len(context_data)
137
+ table_rows_generator = _create_table_rows_generator(
138
+ table_name=table_name,
139
+ table_config=table_config,
140
+ primary_keys=primary_keys,
141
+ sample_size=sample_size,
142
+ context_data=context_data,
143
+ temperature=temperature,
144
+ top_p=top_p,
145
+ batch_size=batch_size,
146
+ previous_rows_size=previous_rows_size,
147
+ llm_config=llm_config,
148
+ )
149
+ table_rows_generator = tqdm(table_rows_generator, desc=f"Generating rows for table `{table_name}`".ljust(45))
150
+ table_df = _convert_table_rows_generator_to_df(table_rows_generator=table_rows_generator, table_config=table_config)
151
+ return table_df
152
+
153
+
154
+ def _create_table_prompt(
155
+ *,
156
+ table_name: str,
157
+ table_description: str,
158
+ columns: dict[str, ColumnConfig],
159
+ primary_keys: dict[str, str] | None,
160
+ batch_size: int | None,
161
+ foreign_keys: list[ForeignKeyConfig] | None,
162
+ context_data: pd.DataFrame | None,
163
+ previous_rows: list[dict],
164
+ ) -> str:
165
+ if batch_size is not None:
166
+ assert foreign_keys is None
167
+ assert context_data is None
168
+ else:
169
+ assert foreign_keys is not None
170
+ assert context_data is not None
171
+ assert primary_keys is not None
172
+
173
+ # add description
174
+ prompt = f"# {table_description}\n\n"
175
+
176
+ # define table
177
+ prompt += f"## Table: {table_name}\n\n"
178
+
179
+ # add columns specifications
180
+ prompt += "## Columns Specifications:\n\n"
181
+ prompt += f"{json.dumps({name: config.model_dump() for name, config in columns.items()}, indent=2)}\n\n"
182
+
183
+ # define foreign keys
184
+ if foreign_keys is not None:
185
+ prompt += "## Foreign Keys:\n\n"
186
+ prompt += f"{json.dumps([fk.model_dump() for fk in foreign_keys], indent=2)}\n\n"
187
+
188
+ # add previous rows as context to help the LLM generate consistent data
189
+ if previous_rows:
190
+ prompt += f"\n## Previous {len(previous_rows)} Rows:\n\n"
191
+ prompt += json.dumps(previous_rows, indent=2)
192
+
193
+ # add context table name, primary key and data
194
+ if context_data is not None:
195
+ fk = foreign_keys[0]
196
+ prompt += f"## Context Table: `{fk.referenced_table}`\n\n"
197
+
198
+ prompt += f"## Context Table Primary Key: `{primary_keys[fk.referenced_table]}`\n\n"
199
+
200
+ prompt += f"## Context Table Data:\n\n"
201
+ prompt += f"{context_data.to_json(orient='records', indent=2)}\n\n"
202
+
203
+ # add instructions
204
+ prompt += "\n## Instructions:\n\n"
205
+ if batch_size is not None:
206
+ prompt += f"Generate {batch_size} rows for the `{table_name}` table.\n\n"
207
+ else:
208
+ prompt += (
209
+ f"Generate rows for the `{table_name}` table. "
210
+ f"The Foreign Key column may only contain values from Context Table Data.\n\n"
211
+ )
212
+ if previous_rows:
213
+ prompt += (
214
+ "Generate new rows that maintain consistency with the previous rows where appropriate. "
215
+ "Don't pay attention to the number of previous rows; there might have been more generated than provided.\n\n"
216
+ )
217
+ prompt += f"Do not use code to generate the data.\n\n"
218
+ prompt += f"Return the full data as a JSON string.\n"
219
+
220
+ return prompt
221
+
222
+
223
+ def _create_table_rows_generator(
224
+ *,
225
+ table_name: str,
226
+ table_config: TableConfig,
227
+ primary_keys: dict[str, str] | None,
228
+ sample_size: int,
229
+ temperature: float,
230
+ top_p: float,
231
+ context_data: pd.DataFrame | None,
232
+ batch_size: int,
233
+ previous_rows_size: int,
234
+ llm_config: LLMConfig,
235
+ ) -> Generator[dict]:
236
+ def create_table_response_format(columns: dict[str, ColumnConfig]) -> BaseModel:
237
+ dtype_to_pydantic_type = {
238
+ DType.INTEGER: int,
239
+ DType.FLOAT: float,
240
+ DType.STRING: str,
241
+ DType.BOOLEAN: bool,
242
+ # response_format has limited support for JSON Schema features
243
+ # thus we represent dates and datetimes as strings
244
+ DType.DATE: str,
245
+ DType.DATETIME: str,
246
+ }
247
+ fields = {}
248
+ for column_name, column_config in columns.items():
249
+ annotation = dtype_to_pydantic_type[column_config.dtype]
250
+ fields[column_name] = (annotation, Field(...))
251
+ TableRow = create_model("TableRow", **fields)
252
+ TableRows = create_model("TableRows", rows=(list[TableRow], ...))
253
+ return TableRows
254
+
255
+ def yield_rows_from_json_chunks_stream(response: litellm.CustomStreamWrapper) -> Generator[dict]:
256
+ # starting with dirty buffer is to handle the `{"rows": []}` case
257
+ buffer = "garbage"
258
+ rows_json_started = False
259
+ in_row_json = False
260
+ for chunk in response:
261
+ delta = chunk.choices[0].delta.content
262
+ if delta is None:
263
+ continue
264
+ for char in delta:
265
+ buffer += char
266
+ if char == "{" and not rows_json_started:
267
+ # {"rows": [{"name": "Jo\}h\{n"}]}
268
+ # * <- start of rows json stream
269
+ rows_json_started = True
270
+ elif char == "{" and not in_row_json:
271
+ # {"rows": [{"name": "Jo\}h\{n"}]}
272
+ # * <- start of single row json stream
273
+ buffer = "{"
274
+ in_row_json = True
275
+ elif char == "}":
276
+ # {"rows": [{"name": "Jo\}h\{n"}]}
277
+ # * * * <- any of these
278
+ try:
279
+ row = json.loads(buffer)
280
+ yield row
281
+ buffer = ""
282
+ in_row_json = False
283
+ except json.JSONDecodeError:
284
+ continue
285
+
286
+ def batch_infinitely(data: pd.DataFrame | None) -> Generator[pd.DataFrame | None]:
287
+ while True:
288
+ if data is None:
289
+ yield None
290
+ else:
291
+ for i in range(0, len(data), batch_size):
292
+ yield data.iloc[i : i + batch_size]
293
+
294
+ # ensure model supports response_format and json schema
295
+ supported_params = litellm.get_supported_openai_params(model=llm_config.model)
296
+ assert "response_format" in supported_params
297
+ assert litellm.supports_response_schema(llm_config.model), (
298
+ "The model does not support structured output / JSON mode."
299
+ )
300
+
301
+ litellm_kwargs = {
302
+ "response_format": create_table_response_format(columns=table_config.columns),
303
+ "temperature": temperature,
304
+ "top_p": top_p,
305
+ "model": llm_config.model,
306
+ "api_key": llm_config.api_key,
307
+ "stream": True,
308
+ }
309
+
310
+ yielded_sequences = 0
311
+ previous_rows = deque(maxlen=previous_rows_size)
312
+ for context_batch in batch_infinitely(context_data):
313
+ prompt_kwargs = {
314
+ "table_name": table_name,
315
+ "table_description": table_config.description,
316
+ "columns": table_config.columns,
317
+ "primary_keys": primary_keys,
318
+ "batch_size": batch_size if context_batch is None else None,
319
+ "foreign_keys": table_config.foreign_keys if context_batch is not None else None,
320
+ "context_data": context_batch if context_batch is not None else None,
321
+ "previous_rows": list(previous_rows),
322
+ }
323
+ prompt = _create_table_prompt(**prompt_kwargs)
324
+ messages = [{"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": prompt}]
325
+
326
+ response = litellm.completion(messages=messages, **litellm_kwargs)
327
+ rows_stream = yield_rows_from_json_chunks_stream(response)
328
+
329
+ while True:
330
+ try:
331
+ row = next(rows_stream)
332
+ except StopIteration:
333
+ break # move to next batch
334
+ previous_rows.append(row)
335
+ yield row
336
+ if context_batch is None:
337
+ # each subject row is considered a single sequence
338
+ yielded_sequences += 1
339
+ if yielded_sequences >= sample_size:
340
+ return # move to next table
341
+ if context_batch is not None:
342
+ # for each context_batch, full sequences are generated
343
+ yielded_sequences += len(context_batch)
344
+ if yielded_sequences >= sample_size:
345
+ return # move to next table
346
+
347
+
348
+ def _convert_table_rows_generator_to_df(
349
+ table_rows_generator: Generator[dict], table_config: TableConfig
350
+ ) -> pd.DataFrame:
351
+ def align_df_dtypes_with_mock_dtypes(df: pd.DataFrame, columns: dict[str, ColumnConfig]) -> pd.DataFrame:
352
+ for column_name, column_config in columns.items():
353
+ if column_config.dtype in [DType.DATE, DType.DATETIME]:
354
+ # datetime.date, datetime.datetime -> datetime64[ns] / datetime64[ns, tz]
355
+ df[column_name] = pd.to_datetime(df[column_name], errors="coerce")
356
+ elif column_config.dtype in [DType.INTEGER, DType.FLOAT]:
357
+ # int -> int64[pyarrow], float -> double[pyarrow]
358
+ df[column_name] = pd.to_numeric(df[column_name], errors="coerce", dtype_backend="pyarrow")
359
+ elif column_config.dtype is DType.BOOLEAN:
360
+ # bool -> bool
361
+ df[column_name] = df[column_name].astype(bool)
362
+ else:
363
+ # other -> string[pyarrow]
364
+ df[column_name] = df[column_name].astype("string[pyarrow]")
365
+ return df
366
+
367
+ df = pd.DataFrame(list(table_rows_generator))
368
+ df = align_df_dtypes_with_mock_dtypes(df, table_config.columns)
369
+ return df
370
+
371
+
372
+ def _harmonize_sample_size(sample_size: int | dict[str, int], config: MockConfig) -> dict[str, int]:
373
+ if isinstance(sample_size, int):
374
+ return {table_name: sample_size for table_name in config.root}
375
+
376
+ if sample_size.keys() != config.root.keys():
377
+ raise ValueError(f"Sample size keys must match table names: {sample_size.keys()} != {config.root.keys()}")
378
+ return sample_size
379
+
380
+
381
+ def sample(
382
+ *,
383
+ tables: dict[str, dict],
384
+ sample_size: int | dict[str, int] = 10,
385
+ model: str = "openai/gpt-4.1-nano",
386
+ api_key: str | None = None,
387
+ temperature: float = 1.0,
388
+ top_p: float = 0.95,
389
+ ) -> pd.DataFrame | dict[str, pd.DataFrame]:
390
+ """
391
+ Generate mock data by prompting an LLM.
392
+
393
+ Args:
394
+ tables (dict[str, dict]): The table specifications to generate mock data for. See examples for usage.
395
+ sample_size (int | dict[str, int]): The number of rows to generate for each subject table.
396
+ If a single integer is provided, the same number of rows will be generated for each subject table.
397
+ If a dictionary is provided, the number of rows to generate for each subject table can be specified
398
+ individually.
399
+ Default is 10.
400
+ model (str): The LiteLLM chat completion model to be used. Requires support for structured output / JSON mode.
401
+ Examples include:
402
+ - `openai/gpt-4.1-nano` (default)
403
+ - `openai/gpt-4.1-mini`
404
+ - `openai/gpt-4.1`
405
+ - `gemini/gemini-2.0-flash`
406
+ - `gemini/gemini-2.5-flash-preview-04-17`
407
+ See https://docs.litellm.ai/docs/providers/ for more options.
408
+ api_key (str | None): The API key to use for the LLM. If not provided, LiteLLM will take it from the environment variables.
409
+ temperature (float): The temperature to use for the LLM. Default is 1.0.
410
+ top_p (float): The top-p value to use for the LLM. Default is 0.95.
411
+
412
+ Returns:
413
+ - pd.DataFrame: A single DataFrame containing the generated mock data, if only one table is provided.
414
+ - dict[str, pd.DataFrame]: A dictionary containing the generated mock data for each table, if multiple tables are provided.
415
+
416
+ Example of single table (without PK):
417
+ ```python
418
+ from mostlyai import mock
419
+
420
+ tables = {
421
+ "guests": {
422
+ "description": "Guests of an Alpine ski hotel in Austria",
423
+ "columns": {
424
+ "nationality": {"prompt": "2-letter code for the nationality", "dtype": "string"},
425
+ "name": {"prompt": "first name and last name of the guest", "dtype": "string"},
426
+ "gender": {"prompt": "gender of the guest; male or female", "dtype": "string"},
427
+ "age": {"prompt": "age in years; min: 18, max: 80; avg: 25", "dtype": "integer"},
428
+ "date_of_birth": {"prompt": "date of birth", "dtype": "date"},
429
+ "checkin_time": {"prompt": "the check in timestamp of the guest; may 2025", "dtype": "datetime"},
430
+ "is_vip": {"prompt": "is the guest a VIP", "dtype": "boolean"},
431
+ "price_per_night": {"prompt": "price paid per night, in EUR", "dtype": "float"},
432
+ },
433
+ }
434
+ }
435
+ df = mock.sample(tables=tables, sample_size=10, model="openai/gpt-4.1-nano")
436
+ ```
437
+
438
+ Example of multiple tables (with PK/FK relationships):
439
+ ```python
440
+ from mostlyai import mock
441
+
442
+ tables = {
443
+ "guests": {
444
+ "description": "Guests of an Alpine ski hotel in Austria",
445
+ "columns": {
446
+ "id": {"prompt": "the unique id of the guest", "dtype": "integer"},
447
+ "name": {"prompt": "first name and last name of the guest", "dtype": "string"},
448
+ },
449
+ "primary_key": "id",
450
+ },
451
+ "purchases": {
452
+ "description": "Purchases of a Guest during their stay",
453
+ "columns": {
454
+ "guest_id": {"prompt": "the guest id for that purchase", "dtype": "integer"},
455
+ "purchase_id": {"prompt": "the unique id of the purchase", "dtype": "string"},
456
+ "text": {"prompt": "purchase text description", "dtype": "string"},
457
+ "amount": {"prompt": "purchase amount in EUR", "dtype": "float"},
458
+ },
459
+ "foreign_keys": [
460
+ {
461
+ "column": "guest_id",
462
+ "referenced_table": "guests",
463
+ "description": "each guest has anywhere between 1 and 10 purchases",
464
+ }
465
+ ],
466
+ },
467
+ }
468
+ data = mock.sample(tables=tables, sample_size=5, model="openai/gpt-4.1-nano")
469
+ df_guests = data["guests"]
470
+ df_purchases = data["purchases"]
471
+ ```
472
+ """
473
+
474
+ config = MockConfig(tables)
475
+
476
+ sample_size = _harmonize_sample_size(sample_size, config)
477
+ primary_keys = {table_name: table_config.primary_key for table_name, table_config in config.root.items()}
478
+ dfs = {}
479
+ for table_name, table_config in config.root.items():
480
+ if len(dfs) == 0:
481
+ # subject table
482
+ df = _sample_table(
483
+ table_name=table_name,
484
+ table_config=table_config,
485
+ primary_keys=None,
486
+ sample_size=sample_size[table_name],
487
+ context_data=None,
488
+ temperature=temperature,
489
+ top_p=top_p,
490
+ batch_size=20, # generate 20 subjects at a time
491
+ previous_rows_size=5,
492
+ llm_config=LLMConfig(model=model, api_key=api_key),
493
+ )
494
+ elif len(dfs) == 1:
495
+ # sequence table
496
+ df = _sample_table(
497
+ table_name=table_name,
498
+ table_config=table_config,
499
+ primary_keys=primary_keys,
500
+ sample_size=None,
501
+ context_data=next(iter(dfs.values())),
502
+ temperature=temperature,
503
+ top_p=top_p,
504
+ batch_size=1, # generate one sequence at a time
505
+ previous_rows_size=5,
506
+ llm_config=LLMConfig(model=model, api_key=api_key),
507
+ )
508
+ else:
509
+ raise RuntimeError("Only 1 or 2 table setups are supported for now")
510
+ dfs[table_name] = df
511
+
512
+ return dfs if len(dfs) > 1 else next(iter(dfs.values()))
@@ -0,0 +1,98 @@
1
+ Metadata-Version: 2.4
2
+ Name: mostlyai-mock
3
+ Version: 0.0.1
4
+ Summary: Synthetic Mock Data
5
+ Project-URL: homepage, https://github.com/mostly-ai/mostlyai-mock
6
+ Project-URL: repository, https://github.com/mostly-ai/mostlyai-mock
7
+ Project-URL: documentation, https://mostly-ai.github.io/mostlyai-mock/
8
+ Author-email: MOSTLY AI <dev@mostly.ai>
9
+ License-Expression: Apache-2.0
10
+ License-File: LICENSE
11
+ License-File: LICENSE_HEADER
12
+ Requires-Python: >=3.10
13
+ Requires-Dist: litellm>=1.67.0
14
+ Requires-Dist: numpy>=1.26.3
15
+ Requires-Dist: pandas>=2.0.0
16
+ Requires-Dist: pyarrow>=14.0.0
17
+ Requires-Dist: pydantic<3.0.0,>=2.0.0
18
+ Description-Content-Type: text/markdown
19
+
20
+ # Synthetic Mock Data 🔮
21
+
22
+ [![Documentation](https://img.shields.io/badge/docs-latest-green)](https://mostly-ai.github.io/mostlyai-mock/) [![stats](https://pepy.tech/badge/mostlyai-mock)](https://pypi.org/project/mostlyai-mock/) ![license](https://img.shields.io/github/license/mostly-ai/mostlyai-mock) ![GitHub Release](https://img.shields.io/github/v/release/mostly-ai/mostlyai-mock) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mostlyai-mock)
23
+
24
+ Create data out of nothing. Prompt LLMs for Tabular Data.
25
+
26
+ ## Installation
27
+
28
+ The latest release of `mostlyai-mock` can be installed via pip:
29
+
30
+ ```bash
31
+ pip install -U mostlyai-mock
32
+ ```
33
+
34
+ Note: An API key to a LLM endpoint, with structured response, is required. It is recommended to set such a key as an environment variable (e.g. `OPENAI_API_KEY`, `GEMINI_API_KEY`, etc.). Alternatively, the key needs to be passed to every call to the library iteself via the parameter `api_key`.
35
+
36
+ ## Quick Start
37
+
38
+ ### Single Table
39
+
40
+ ```python
41
+ from mostlyai import mock
42
+
43
+ tables = {
44
+ "guests": {
45
+ "description": "Guests of an Alpine ski hotel in Austria",
46
+ "columns": {
47
+ "nationality": {"prompt": "2-letter code for the nationality", "dtype": "string"},
48
+ "name": {"prompt": "first name and last name of the guest", "dtype": "string"},
49
+ "gender": {"prompt": "gender of the guest; male or female", "dtype": "string"},
50
+ "age": {"prompt": "age in years; min: 18, max: 80; avg: 25", "dtype": "integer"},
51
+ "date_of_birth": {"prompt": "date of birth", "dtype": "date"},
52
+ "checkin_time": {"prompt": "the check in timestamp of the guest; may 2025", "dtype": "datetime"},
53
+ "is_vip": {"prompt": "is the guest a VIP", "dtype": "boolean"},
54
+ "price_per_night": {"prompt": "price paid per night, in EUR", "dtype": "float"},
55
+ },
56
+ }
57
+ }
58
+ df = mock.sample(tables=tables, sample_size=10, model="openai/gpt-4.1-nano")
59
+ print(df)
60
+ ```
61
+
62
+ ### Multiple Tables
63
+
64
+ ```python
65
+ from mostlyai import mock
66
+
67
+ tables = {
68
+ "guests": {
69
+ "description": "Guests of an Alpine ski hotel in Austria",
70
+ "columns": {
71
+ "id": {"prompt": "the unique id of the guest", "dtype": "integer"},
72
+ "name": {"prompt": "first name and last name of the guest", "dtype": "string"},
73
+ },
74
+ "primary_key": "id",
75
+ },
76
+ "purchases": {
77
+ "description": "Purchases of a Guest during their stay",
78
+ "columns": {
79
+ "guest_id": {"prompt": "the guest id for that purchase", "dtype": "integer"},
80
+ "purchase_id": {"prompt": "the unique id of the purchase", "dtype": "string"},
81
+ "text": {"prompt": "purchase text description", "dtype": "string"},
82
+ "amount": {"prompt": "purchase amount in EUR", "dtype": "float"},
83
+ },
84
+ "foreign_keys": [
85
+ {
86
+ "column": "guest_id",
87
+ "referenced_table": "guests",
88
+ "description": "each guest has anywhere between 1 and 10 purchases",
89
+ }
90
+ ],
91
+ },
92
+ }
93
+ data = mock.sample(tables=tables, sample_size=5, model="openai/gpt-4.1-nano")
94
+ df_guests = data["guests"]
95
+ df_purchases = data["purchases"]
96
+ print(df_guests)
97
+ print(df_purchases)
98
+ ```
@@ -0,0 +1,7 @@
1
+ mostlyai/mock/__init__.py,sha256=TM39__slJHAmk30gt6C8gm5D12tz8Ow7QSArHp290EI,714
2
+ mostlyai/mock/core.py,sha256=naKteDOKCbXKtH9ldKBtPxd8-oZDgGhZPfOgtROCcJU,20626
3
+ mostlyai_mock-0.0.1.dist-info/METADATA,sha256=TmYgQAW2nBdwfOp9QkFnEhT_UiBdSe1ABQwMJCGH4ZE,3875
4
+ mostlyai_mock-0.0.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
5
+ mostlyai_mock-0.0.1.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
6
+ mostlyai_mock-0.0.1.dist-info/licenses/LICENSE_HEADER,sha256=jsSKYMHBOhEvPX1bB1Q2-EPbKZs1MAaQDI8S_AEOA2g,550
7
+ mostlyai_mock-0.0.1.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: hatchling 1.27.0
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
@@ -0,0 +1,201 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
@@ -0,0 +1,13 @@
1
+ Copyright 2025 MOSTLY AI
2
+
3
+ Licensed under the Apache License, Version 2.0 (the "License");
4
+ you may not use this file except in compliance with the License.
5
+ You may obtain a copy of the License at
6
+
7
+ http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ Unless required by applicable law or agreed to in writing, software
10
+ distributed under the License is distributed on an "AS IS" BASIS,
11
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ See the License for the specific language governing permissions and
13
+ limitations under the License.