morphgen-rates 0.4.0__py3-none-any.whl → 0.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- morphgen_rates/data.py +52 -54
- {morphgen_rates-0.4.0.dist-info → morphgen_rates-0.5.0.dist-info}/METADATA +1 -1
- morphgen_rates-0.5.0.dist-info/RECORD +9 -0
- morphgen_rates-0.4.0.dist-info/RECORD +0 -9
- {morphgen_rates-0.4.0.dist-info → morphgen_rates-0.5.0.dist-info}/WHEEL +0 -0
- {morphgen_rates-0.4.0.dist-info → morphgen_rates-0.5.0.dist-info}/licenses/LICENSE +0 -0
- {morphgen_rates-0.4.0.dist-info → morphgen_rates-0.5.0.dist-info}/top_level.txt +0 -0
morphgen_rates/data.py
CHANGED
|
@@ -22,85 +22,82 @@ def _local_data_path(filename='morph_data', ext="csv"):
|
|
|
22
22
|
return work_dir / f"{filename}.{ext}"
|
|
23
23
|
|
|
24
24
|
|
|
25
|
-
def get_data(
|
|
25
|
+
def get_data(area, neuron_type):
|
|
26
26
|
"""
|
|
27
|
-
Retrieve
|
|
28
|
-
"<brain region>/<neuron class>/<subcellular section>".
|
|
27
|
+
Retrieve summary morphology statistics for a given brain area and neuron class.
|
|
29
28
|
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
29
|
+
This function loads a local CSV dataset, filters rows matching the requested
|
|
30
|
+
`area` and `neuron_type`, and aggregates statistics by `section_type`. The
|
|
31
|
+
output is a nested dictionary keyed by section type (e.g., soma, apical, basal),
|
|
32
|
+
containing:
|
|
33
|
+
|
|
34
|
+
- Summary statistics for bifurcation counts and total length
|
|
35
|
+
- Estimated number of primary neurites at the soma (Count0)
|
|
36
|
+
- Sholl plot summary statistics (bin size, mean counts, standard deviation)
|
|
35
37
|
|
|
36
38
|
Parameters
|
|
37
39
|
----------
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
- "CTX/pyr/apical"
|
|
45
|
-
- "HPC/pyr/basal"
|
|
46
|
-
|
|
47
|
-
Each component is used as a successive key lookup into the nested dataset
|
|
48
|
-
container.
|
|
40
|
+
area : str
|
|
41
|
+
Brain region identifier used in the dataset (must match values in the
|
|
42
|
+
'area' column of the CSV)
|
|
43
|
+
neuron_type : str
|
|
44
|
+
Neuron class identifier used in the dataset (must match values in the
|
|
45
|
+
'neuron_type' column of the CSV)
|
|
49
46
|
|
|
50
47
|
Returns
|
|
51
48
|
-------
|
|
52
49
|
dict
|
|
53
|
-
|
|
54
|
-
returns:
|
|
50
|
+
Nested dictionary structured as:
|
|
55
51
|
|
|
56
52
|
data = {
|
|
57
|
-
"
|
|
58
|
-
"
|
|
59
|
-
"mean":
|
|
60
|
-
"
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
53
|
+
"<section_type>": {
|
|
54
|
+
"bifurcation_count": {"mean": ..., "std": ..., "min": ..., "max": ...},
|
|
55
|
+
"total_length": {"mean": ..., "std": ..., "min": ..., "max": ...},
|
|
56
|
+
"primary_count": {"mean": ..., "std": ..., "min": ..., "max": ...},
|
|
57
|
+
"sholl_plot": {
|
|
58
|
+
"bin_size": float,
|
|
59
|
+
"mean": list[float],
|
|
60
|
+
"std": list[float],
|
|
61
|
+
},
|
|
65
62
|
},
|
|
63
|
+
...
|
|
66
64
|
}
|
|
67
65
|
|
|
68
|
-
|
|
69
|
-
- `
|
|
70
|
-
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
- `data["bifurcations"]["var"]` is the variance of the bifurcation count
|
|
66
|
+
Notes on fields:
|
|
67
|
+
- `primary_count` corresponds to the row group labeled 'Count0'
|
|
68
|
+
- Sholl values are collected from rows whose metric name starts with 'Count'
|
|
69
|
+
(including 'Count0'); users may want to interpret/plot them as a function
|
|
70
|
+
of radial bin index multiplied by `bin_size`
|
|
74
71
|
|
|
75
72
|
Raises
|
|
76
73
|
------
|
|
77
|
-
|
|
78
|
-
If
|
|
79
|
-
ValueError
|
|
80
|
-
If the selected dataset does not contain both Sholl and bifurcation data, or
|
|
81
|
-
if the provided arrays have incompatible shapes
|
|
74
|
+
AssertionError
|
|
75
|
+
If no rows match the requested `area` and `neuron_type`
|
|
82
76
|
|
|
83
77
|
Notes
|
|
84
78
|
-----
|
|
85
|
-
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
79
|
+
- The function expects the local CSV to include at least the following columns:
|
|
80
|
+
'area', 'neuron_type', 'neuron_name', 'section_type', 'bin_size'
|
|
81
|
+
plus metric columns including:
|
|
82
|
+
- 'bifurcation_count'
|
|
83
|
+
- 'total_length'
|
|
84
|
+
- 'Count0', 'Count1', ... (Sholl counts per radial bin)
|
|
85
|
+
- Statistics are computed using `pandas.DataFrame.groupby(...).describe()`.
|
|
86
|
+
Only the summary columns 'mean', 'std', 'min', 'max' are retained.
|
|
89
87
|
|
|
90
88
|
Examples
|
|
91
89
|
--------
|
|
92
|
-
>>> data =
|
|
93
|
-
>>> data["
|
|
90
|
+
>>> data = get_data("CTX", "pyr")
|
|
91
|
+
>>> data["apical"]["bifurcation_count"]["mean"]
|
|
92
|
+
42.0
|
|
93
|
+
>>> data["apical"]["sholl_plot"]["bin_size"]
|
|
94
94
|
50.0
|
|
95
|
-
>>> data["
|
|
96
|
-
|
|
95
|
+
>>> len(data["apical"]["sholl_plot"]["mean"])
|
|
96
|
+
20
|
|
97
97
|
"""
|
|
98
|
+
|
|
98
99
|
data = {}
|
|
99
100
|
|
|
100
|
-
# split the key
|
|
101
|
-
parts = tuple(p.strip() for p in key.split("/") if p.strip())
|
|
102
|
-
if len(parts) != 2:
|
|
103
|
-
raise ValueError(f"Expected key like 'area/neuron_type', got: {key!r}")
|
|
104
101
|
area, neuron_type = parts
|
|
105
102
|
|
|
106
103
|
# load data
|
|
@@ -108,6 +105,9 @@ def get_data(key):
|
|
|
108
105
|
|
|
109
106
|
# select specific area and neuron type
|
|
110
107
|
df = df[(df['area'] == area) & (df['neuron_type'] == neuron_type)]
|
|
108
|
+
|
|
109
|
+
# ensure that there are area and neuron_type in the df
|
|
110
|
+
assert df.shape[0] > 0, "The area {area} or neuron class {neuron_type} are not known"
|
|
111
111
|
|
|
112
112
|
# neuron name unnecessary
|
|
113
113
|
df.drop(['area', 'neuron_type', 'neuron_name'], axis=1, inplace=True)
|
|
@@ -122,8 +122,6 @@ def get_data(key):
|
|
|
122
122
|
for section_type, row in df.iterrows():
|
|
123
123
|
data[section_type] = {}
|
|
124
124
|
|
|
125
|
-
print()
|
|
126
|
-
|
|
127
125
|
# get statistics
|
|
128
126
|
for data_type in ['bifurcation_count', 'total_length']:
|
|
129
127
|
tmp = row.loc[row.index.get_level_values(0) == data_type, :]
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
morphgen_rates/__init__.py,sha256=UE8YWsulDIfeYhGb5GHdkakUIFx4j9H3ZkoKoaDCd_0,179
|
|
2
|
+
morphgen_rates/data.py,sha256=Onc2dRlB_QXpgScDzHCE7DRtg6PLtFld5W91QGuDkYo,4518
|
|
3
|
+
morphgen_rates/init_count.py,sha256=PhYlp0-CzRdf8opTKb-om3cFIKSv5M8eTcyKy1_IFMI,7283
|
|
4
|
+
morphgen_rates/rates.py,sha256=2Gn3Ew2uVJ7c_LdYJogxS-jAM9q-039y0maWi4CNpTM,6442
|
|
5
|
+
morphgen_rates-0.5.0.dist-info/licenses/LICENSE,sha256=VONsnKVXQRcWwCaHWHuwMtemIj9jNJSmpunazxlyvOk,670
|
|
6
|
+
morphgen_rates-0.5.0.dist-info/METADATA,sha256=xYYNva-7mn6Vk-iFKKJJUg3jw_phgW-iZvHeSd4z7gk,1178
|
|
7
|
+
morphgen_rates-0.5.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
8
|
+
morphgen_rates-0.5.0.dist-info/top_level.txt,sha256=UYPGC2dGp9xD_4iVxVVTkKaizBA4XeDNM7OBC_DCWRk,15
|
|
9
|
+
morphgen_rates-0.5.0.dist-info/RECORD,,
|
|
@@ -1,9 +0,0 @@
|
|
|
1
|
-
morphgen_rates/__init__.py,sha256=UE8YWsulDIfeYhGb5GHdkakUIFx4j9H3ZkoKoaDCd_0,179
|
|
2
|
-
morphgen_rates/data.py,sha256=yj_GT3ks6ukwtALfC4Bklcwu3MeTOr-2BGGo5W0ZxM0,4330
|
|
3
|
-
morphgen_rates/init_count.py,sha256=PhYlp0-CzRdf8opTKb-om3cFIKSv5M8eTcyKy1_IFMI,7283
|
|
4
|
-
morphgen_rates/rates.py,sha256=2Gn3Ew2uVJ7c_LdYJogxS-jAM9q-039y0maWi4CNpTM,6442
|
|
5
|
-
morphgen_rates-0.4.0.dist-info/licenses/LICENSE,sha256=VONsnKVXQRcWwCaHWHuwMtemIj9jNJSmpunazxlyvOk,670
|
|
6
|
-
morphgen_rates-0.4.0.dist-info/METADATA,sha256=Xb088-i11lgv8rY4jVvQ3ghYDpyliSw83yjC-kfYANw,1178
|
|
7
|
-
morphgen_rates-0.4.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
8
|
-
morphgen_rates-0.4.0.dist-info/top_level.txt,sha256=UYPGC2dGp9xD_4iVxVVTkKaizBA4XeDNM7OBC_DCWRk,15
|
|
9
|
-
morphgen_rates-0.4.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|