moospread 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. moospread/__init__.py +3 -0
  2. moospread/core.py +1881 -0
  3. moospread/problem.py +193 -0
  4. moospread/tasks/__init__.py +4 -0
  5. moospread/tasks/dtlz_torch.py +139 -0
  6. moospread/tasks/mw_torch.py +274 -0
  7. moospread/tasks/re_torch.py +394 -0
  8. moospread/tasks/zdt_torch.py +112 -0
  9. moospread/utils/__init__.py +8 -0
  10. moospread/utils/constraint_utils/__init__.py +2 -0
  11. moospread/utils/constraint_utils/gradient.py +72 -0
  12. moospread/utils/constraint_utils/mgda_core.py +69 -0
  13. moospread/utils/constraint_utils/pmgda_solver.py +308 -0
  14. moospread/utils/constraint_utils/prefs.py +64 -0
  15. moospread/utils/ditmoo.py +127 -0
  16. moospread/utils/lhs.py +74 -0
  17. moospread/utils/misc.py +28 -0
  18. moospread/utils/mobo_utils/__init__.py +11 -0
  19. moospread/utils/mobo_utils/evolution/__init__.py +0 -0
  20. moospread/utils/mobo_utils/evolution/dom.py +60 -0
  21. moospread/utils/mobo_utils/evolution/norm.py +40 -0
  22. moospread/utils/mobo_utils/evolution/utils.py +97 -0
  23. moospread/utils/mobo_utils/learning/__init__.py +0 -0
  24. moospread/utils/mobo_utils/learning/model.py +40 -0
  25. moospread/utils/mobo_utils/learning/model_init.py +33 -0
  26. moospread/utils/mobo_utils/learning/model_update.py +51 -0
  27. moospread/utils/mobo_utils/learning/prediction.py +116 -0
  28. moospread/utils/mobo_utils/learning/utils.py +143 -0
  29. moospread/utils/mobo_utils/lhs_for_mobo.py +243 -0
  30. moospread/utils/mobo_utils/mobo/__init__.py +0 -0
  31. moospread/utils/mobo_utils/mobo/acquisition.py +209 -0
  32. moospread/utils/mobo_utils/mobo/algorithms.py +91 -0
  33. moospread/utils/mobo_utils/mobo/factory.py +86 -0
  34. moospread/utils/mobo_utils/mobo/mobo.py +132 -0
  35. moospread/utils/mobo_utils/mobo/selection.py +182 -0
  36. moospread/utils/mobo_utils/mobo/solver/__init__.py +5 -0
  37. moospread/utils/mobo_utils/mobo/solver/moead.py +17 -0
  38. moospread/utils/mobo_utils/mobo/solver/nsga2.py +10 -0
  39. moospread/utils/mobo_utils/mobo/solver/parego/__init__.py +1 -0
  40. moospread/utils/mobo_utils/mobo/solver/parego/parego.py +62 -0
  41. moospread/utils/mobo_utils/mobo/solver/parego/utils.py +34 -0
  42. moospread/utils/mobo_utils/mobo/solver/pareto_discovery/__init__.py +1 -0
  43. moospread/utils/mobo_utils/mobo/solver/pareto_discovery/buffer.py +364 -0
  44. moospread/utils/mobo_utils/mobo/solver/pareto_discovery/pareto_discovery.py +571 -0
  45. moospread/utils/mobo_utils/mobo/solver/pareto_discovery/utils.py +168 -0
  46. moospread/utils/mobo_utils/mobo/solver/solver.py +74 -0
  47. moospread/utils/mobo_utils/mobo/surrogate_model/__init__.py +2 -0
  48. moospread/utils/mobo_utils/mobo/surrogate_model/base.py +36 -0
  49. moospread/utils/mobo_utils/mobo/surrogate_model/gaussian_process.py +177 -0
  50. moospread/utils/mobo_utils/mobo/surrogate_model/thompson_sampling.py +79 -0
  51. moospread/utils/mobo_utils/mobo/surrogate_problem.py +44 -0
  52. moospread/utils/mobo_utils/mobo/transformation.py +106 -0
  53. moospread/utils/mobo_utils/mobo/utils.py +65 -0
  54. moospread/utils/mobo_utils/spread_mobo_utils.py +854 -0
  55. moospread/utils/offline_utils/__init__.py +10 -0
  56. moospread/utils/offline_utils/handle_task.py +203 -0
  57. moospread/utils/offline_utils/proxies.py +338 -0
  58. moospread/utils/spread_utils.py +91 -0
  59. moospread-0.1.0.dist-info/METADATA +75 -0
  60. moospread-0.1.0.dist-info/RECORD +63 -0
  61. moospread-0.1.0.dist-info/WHEEL +5 -0
  62. moospread-0.1.0.dist-info/licenses/LICENSE +10 -0
  63. moospread-0.1.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,75 @@
1
+ Metadata-Version: 2.4
2
+ Name: moospread
3
+ Version: 0.1.0
4
+ Summary: Sampling-based Pareto front Refinement via Efficient Adaptive Diffusion
5
+ Author-email: Sedjro Salomon Hotegni <salomon.hotegni@aims.ac.rw>
6
+ Maintainer-email: Sedjro Salomon Hotegni <salomon.hotegni@tu-dortmund.de>
7
+ License: MIT License
8
+
9
+ Copyright (c) 2026 Sedjro Salomon Hotegni
10
+
11
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
12
+
13
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
16
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
17
+
18
+ Project-URL: bugs, https://github.com/safe-autonomous-systems/moo-spread/issues
19
+ Project-URL: changelog, https://github.com/safe-autonomous-systems/moo-spread/blob/main/changelog.md
20
+ Project-URL: Homepage, https://github.com/safe-autonomous-systems/moo-spread
21
+ Requires-Python: >=3.8
22
+ Description-Content-Type: text/markdown
23
+ License-File: LICENSE
24
+ Requires-Dist: numpy
25
+ Requires-Dist: torch
26
+ Provides-Extra: dev
27
+ Requires-Dist: coverage; extra == "dev"
28
+ Requires-Dist: mypy; extra == "dev"
29
+ Requires-Dist: pytest; extra == "dev"
30
+ Requires-Dist: ruff; extra == "dev"
31
+ Dynamic: license-file
32
+
33
+ <p align="center">
34
+ <img src="/images/logo_well_spread.png" style="width: 30%; height: auto;">
35
+ </p>
36
+
37
+ # SPREAD: Sampling-based Pareto front Refinement via Efficient Adaptive Diffusion
38
+
39
+ > SPREAD is a novel sampling-based approach for multi-objective optimization that leverages diffusion models to efficiently refine and generate well-spread Pareto front approximations. It combines the expressiveness of diffusion models with multi-objective optimization principles to achieve both high convergence to the Pareto front and excellent diversity across the objective space. SPREAD demonstrates competitive performance against state-of-the-art methods while providing a flexible framework for different optimization contexts.
40
+
41
+ ### 🔬 Experiments
42
+
43
+ All experiment code is contained in the `/experiments` directory:
44
+
45
+ * **Online setting:** `/experiments/spread/`
46
+ * **Offline setting:** `/experiments/spread_offline/`
47
+ * **Bayesian setting:** `/experiments/spread_bayesian/`
48
+
49
+ The following Jupyter notebooks reproduce the plots shown in our paper:
50
+
51
+ * `/experiments/spread/notebook_online_spread.ipynb`
52
+ * `/experiments/spread_bayesian/notebook_bayesian_spread.ipynb`
53
+
54
+ ### ⚙️ Environment Setup
55
+
56
+ Each experiment setting comes with its own environment file located in the corresponding folder:
57
+
58
+ - Online setting: `experiments/spread/spread.yml`
59
+ - Offline setting: `experiments/spread_offline/spread_off.yml`
60
+ - Bayesian setting: `experiments/spread_bayesian/spread_bay.yml`
61
+
62
+ To create the environment for a given setting, run:
63
+ ```bash
64
+ conda env create -f experiments/<folder>/<env_name>.yml
65
+ conda activate <env_name>
66
+ ```
67
+ For example, to run the online experiments:
68
+ ```bash
69
+ conda env create -f experiments/spread/spread.yml
70
+ conda activate spread
71
+ ```
72
+ The offline experiments require installing **Off-MOO-Bench** from the authors’ public repository: https://github.com/lamda-bbo/offline-moo. The datasets should be downloaded into the folder: `experiments/spread_offline/offline_moo/data/`.
73
+
74
+
75
+
@@ -0,0 +1,63 @@
1
+ moospread/__init__.py,sha256=v9TLUZq0-q0j_23NB7S4ugJqogOMutUuL9MMCi4zu4I,124
2
+ moospread/core.py,sha256=nuSEnWBCxxEHXN0AOe1KGp93l7UjkBJjEMUZD3xS64c,82331
3
+ moospread/problem.py,sha256=YjT4k_K7qTZDhWzIYkaBQlsZRVnpP6iV3F8ShFhGAck,6042
4
+ moospread/tasks/__init__.py,sha256=S_zM0GjBNbSPH9uyn1RAdQtA6-BDkcbmF4uWUi-8NVo,231
5
+ moospread/tasks/dtlz_torch.py,sha256=dhmzUj-dbhF3zXIOgx2Z-PpuIqvxAttnEoBM0C9nUt0,5134
6
+ moospread/tasks/mw_torch.py,sha256=hvYGxcaCr-AFgZd_-rLcIul_a5cZrOV3dRVB5sl9Wuo,9585
7
+ moospread/tasks/re_torch.py,sha256=Q5aANkHatO_FgPoPQsLVrwOESNo1LW8sDhXH351GdDM,12856
8
+ moospread/tasks/zdt_torch.py,sha256=xdtfF6K3LmgH0vINQa6ogeMrJOdoyg3xaQ1EmldcEvg,4161
9
+ moospread/utils/__init__.py,sha256=l7iUhBmGcOaZVyJI4SI4XlecDNLhRy0L5CTNmdXccIc,336
10
+ moospread/utils/ditmoo.py,sha256=fP3NZ-CmnCSoK7m8b7RSoDZiVh053rcOUbu8Llwpz48,3680
11
+ moospread/utils/lhs.py,sha256=JBhrFFE14FuneKAK9uJiUvR1_o2NOLuM_nISWtkBsAM,1940
12
+ moospread/utils/misc.py,sha256=S62l9M_KcV7Bxgs8pPeFo76XLLqQwuyKAAUbCzOIDmA,787
13
+ moospread/utils/spread_utils.py,sha256=Q9jYAzqv-6rKylw19v29n_d8jQqsvlqqKhJj6rqeHWE,3128
14
+ moospread/utils/constraint_utils/__init__.py,sha256=c88IaFv0-zH86HxeOvIleu40UBAgPW4GW22-Mhv7AtU,137
15
+ moospread/utils/constraint_utils/gradient.py,sha256=HY4Uuuxjq7b_t6FGtnByUYD2tiYzOgV-W2FN50n5gPE,2487
16
+ moospread/utils/constraint_utils/mgda_core.py,sha256=4o7opM2TMwn7YICoehRblK-AApyZ_Av6GYgqws7upjw,1557
17
+ moospread/utils/constraint_utils/pmgda_solver.py,sha256=GZxTFyZK-s1sEwyfLENwySBpJuLN_HQbrxQWawYcvUc,11301
18
+ moospread/utils/constraint_utils/prefs.py,sha256=SpYQaY_iOiBK4hoY46RyNuGkaprlIwmDNSZBkXUHgVQ,2334
19
+ moospread/utils/mobo_utils/__init__.py,sha256=VuVU8CVCoOTH2M5-ZwHRzMCuEwI35c9YlpnTU55ggsw,772
20
+ moospread/utils/mobo_utils/lhs_for_mobo.py,sha256=-kOtLiRmiJxCzo5C_5NweQUqv0gdmbjW1Ec04Adi1yM,8182
21
+ moospread/utils/mobo_utils/spread_mobo_utils.py,sha256=P29XqDzvocvegcT2dR3wbNXaBOS0_PdLCH1LDSkioNI,29231
22
+ moospread/utils/mobo_utils/evolution/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
23
+ moospread/utils/mobo_utils/evolution/dom.py,sha256=-D26WXdsaJrHMd9wH0n1HTmnRY3e6sgM-4k_dwh8UW8,1425
24
+ moospread/utils/mobo_utils/evolution/norm.py,sha256=V94LKVTF3ymVdEsI9rMc-4lwXh1ZNWfJ4wb_G8YgWTU,1058
25
+ moospread/utils/mobo_utils/evolution/utils.py,sha256=bfrUxmFAnjTr6UwY-8AifLZvt2KMj_NR85neQHhwhlU,2314
26
+ moospread/utils/mobo_utils/learning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
+ moospread/utils/mobo_utils/learning/model.py,sha256=9PS2BdBr70jOllm6snYbP2iUAbGcJWRAmX_EiQEwnYg,1372
28
+ moospread/utils/mobo_utils/learning/model_init.py,sha256=s7eCdKcF-c9mHpjKnSBuovKwONwqu1m-KXanc5ej6ng,1278
29
+ moospread/utils/mobo_utils/learning/model_update.py,sha256=csx2k-7kaYbGaiNlFe_kwdaTWuErxcqjTo224ONiq_Q,1447
30
+ moospread/utils/mobo_utils/learning/prediction.py,sha256=eQec9R3omJNC5oKecQWxdJ2Y7fbHeK3YfodkHwrtOZ0,3173
31
+ moospread/utils/mobo_utils/learning/utils.py,sha256=fgwekoEfc5owsa5KmXNGmnlIgnlANwpV00xwUD_eRr8,3992
32
+ moospread/utils/mobo_utils/mobo/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
33
+ moospread/utils/mobo_utils/mobo/acquisition.py,sha256=83CP4TMG0A29KEgPiiR588e3FZfsPx2hVZCBqaW6c1U,7293
34
+ moospread/utils/mobo_utils/mobo/algorithms.py,sha256=MX1-jhYivoRHi4BAtUJsmTd5gK5nLLkQv7hpJJzWHlw,1518
35
+ moospread/utils/mobo_utils/mobo/factory.py,sha256=uz2IUnANWLUWX9fpjRyW1Rlid8yJwtEZjLNuX57Xm-g,2195
36
+ moospread/utils/mobo_utils/mobo/mobo.py,sha256=7iwtK2AIDE1mvZ3KYV4nLmd9ivHE91y-Kxy3ggDyxe0,5309
37
+ moospread/utils/mobo_utils/mobo/selection.py,sha256=CgP_f2DmNBZkLh16yaXfDbtRkBJxeUmYA5_vtEonAzA,6624
38
+ moospread/utils/mobo_utils/mobo/surrogate_problem.py,sha256=mgJnqQMFve1RYf6EOehexa-znozINh99G1pY9G_MUgM,2121
39
+ moospread/utils/mobo_utils/mobo/transformation.py,sha256=qOGJRu_Y_iiPaME1egXLpOjV1s9aaolbOQjPQpgjnM8,2812
40
+ moospread/utils/mobo_utils/mobo/utils.py,sha256=vjme6fL3FTn_tjj13o44BPT3U-xfmsJr9aFOsj2ueeA,1520
41
+ moospread/utils/mobo_utils/mobo/solver/__init__.py,sha256=6Yq-nf_gHLEhMXCt9CThE8xMyiQqawvcHpxVZJ4Sthg,363
42
+ moospread/utils/mobo_utils/mobo/solver/moead.py,sha256=eq0TaX8qS2EXSdM0Vfiml6WPHAaQtrQPQcnOeAJ21ZY,613
43
+ moospread/utils/mobo_utils/mobo/solver/nsga2.py,sha256=sJ-g-8sbSKOwbv2U_8AtVUkYIMTtcujoIyg_ZjY96rY,274
44
+ moospread/utils/mobo_utils/mobo/solver/solver.py,sha256=wzUDGYNlgOePQvMPcBoxufl23InQOsi0oF3bsuD9XF8,2674
45
+ moospread/utils/mobo_utils/mobo/solver/parego/__init__.py,sha256=WfAgpGAsaa05DEhd4ih1udVt0Av8wqKh6NX5iCfSwxA,70
46
+ moospread/utils/mobo_utils/mobo/solver/parego/parego.py,sha256=WII8ZzDjbVWjH_ikrk26tMxS8g9uQd5eUjfBRj7X6r0,2136
47
+ moospread/utils/mobo_utils/mobo/solver/parego/utils.py,sha256=3rtAiBl8DpeyIQ6xwTT6qjrHbjjuq_pxP8n6khF57xs,1242
48
+ moospread/utils/mobo_utils/mobo/solver/pareto_discovery/__init__.py,sha256=77ch4X4VviEE9nvcPQZYccPaKN0jH-JKhOvP5RtAkqk,89
49
+ moospread/utils/mobo_utils/mobo/solver/pareto_discovery/buffer.py,sha256=hecWTpt-qKua__wRYK9qOBQupmjHBwIzthWF-85upqw,16503
50
+ moospread/utils/mobo_utils/mobo/solver/pareto_discovery/pareto_discovery.py,sha256=lgZhhRSoNynFzelTRRykl-hilQjZzkX7RyJjTeCes9Q,24587
51
+ moospread/utils/mobo_utils/mobo/solver/pareto_discovery/utils.py,sha256=DZ4cmLl03LBXm9BMH5QfnWDsSfTHkhjLaa5yQGmb36Y,7778
52
+ moospread/utils/mobo_utils/mobo/surrogate_model/__init__.py,sha256=coWz9tWlzo3PsHuCSMbJ2WCQJHF-HUmsIYaZbOtSEc4,188
53
+ moospread/utils/mobo_utils/mobo/surrogate_model/base.py,sha256=YvTx-ORldAnnQ4bT0QqIeAaAYIckXAM9d0G36zIFogA,1119
54
+ moospread/utils/mobo_utils/mobo/surrogate_model/gaussian_process.py,sha256=-OkFEte66FAXSPk32Dy2vhJ9RGoTsJWagbHosCE9qus,7722
55
+ moospread/utils/mobo_utils/mobo/surrogate_model/thompson_sampling.py,sha256=Nmp63vuAgNv-iyVxxRn_yTaAlRLVXW28wsnIu5JpZ1o,3293
56
+ moospread/utils/offline_utils/__init__.py,sha256=MJC-fqvQnbQ0T_wjCw_QK8nKo_xpQxh0buq91fxYjFY,742
57
+ moospread/utils/offline_utils/handle_task.py,sha256=VJjcWZC5AoPm42YN_SKgSpcyHtKBAgXgWwSFU0-Ehis,7586
58
+ moospread/utils/offline_utils/proxies.py,sha256=DPBykB8l1XJmT5QQCAQrgMZz-8FiGEiNwN0bBdYJIaY,11218
59
+ moospread-0.1.0.dist-info/licenses/LICENSE,sha256=YwtV5PRo6WMw5CWQMD728fSF8cWEKKfwOhek37Yi1so,1079
60
+ moospread-0.1.0.dist-info/METADATA,sha256=4M1Tp9DjNbkMtS6hW1W4peAXAtYACmR7LmYtoYgE1n0,4005
61
+ moospread-0.1.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
62
+ moospread-0.1.0.dist-info/top_level.txt,sha256=LWi5kIahDQRNXNkx55T-gefn09Bgcq8SoCxp72S-7x0,10
63
+ moospread-0.1.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.10.2)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1,10 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2026 Sedjro Salomon Hotegni
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
6
+
7
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
8
+
9
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
10
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
@@ -0,0 +1 @@
1
+ moospread