moose-lib 0.4.218__py3-none-any.whl → 0.4.220__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- moose_lib/data_models.py +15 -1
- moose_lib/dmv2/__init__.py +142 -0
- moose_lib/dmv2/_registry.py +15 -0
- moose_lib/dmv2/consumption.py +101 -0
- moose_lib/dmv2/ingest_api.py +64 -0
- moose_lib/dmv2/ingest_pipeline.py +156 -0
- moose_lib/dmv2/materialized_view.py +94 -0
- moose_lib/dmv2/olap_table.py +57 -0
- moose_lib/dmv2/registry.py +62 -0
- moose_lib/dmv2/sql_resource.py +49 -0
- moose_lib/dmv2/stream.py +258 -0
- moose_lib/dmv2/types.py +95 -0
- moose_lib/dmv2/view.py +36 -0
- moose_lib/dmv2/workflow.py +156 -0
- moose_lib/internal.py +18 -8
- moose_lib/streaming/streaming_function_runner.py +2 -2
- {moose_lib-0.4.218.dist-info → moose_lib-0.4.220.dist-info}/METADATA +1 -1
- moose_lib-0.4.220.dist-info/RECORD +34 -0
- moose_lib/dmv2.py +0 -994
- moose_lib-0.4.218.dist-info/RECORD +0 -22
- {moose_lib-0.4.218.dist-info → moose_lib-0.4.220.dist-info}/WHEEL +0 -0
- {moose_lib-0.4.218.dist-info → moose_lib-0.4.220.dist-info}/top_level.txt +0 -0
moose_lib/dmv2.py
DELETED
@@ -1,994 +0,0 @@
|
|
1
|
-
"""
|
2
|
-
from __future__ import annotations
|
3
|
-
|
4
|
-
Moose Data Model v2 (dmv2) - Python Implementation
|
5
|
-
|
6
|
-
This module provides the Python classes for defining Moose v2 data model resources,
|
7
|
-
including OLAP tables, streams, ingestion/consumption APIs, pipelines, and SQL views.
|
8
|
-
It mirrors the functionality of the TypeScript `dmv2` module, enabling the definition
|
9
|
-
of data infrastructure using Python and Pydantic models.
|
10
|
-
"""
|
11
|
-
import dataclasses
|
12
|
-
import datetime
|
13
|
-
from typing import Any, Generic, Optional, TypeVar, Callable, Union, Literal, Awaitable
|
14
|
-
from pydantic import BaseModel, ConfigDict, AliasGenerator
|
15
|
-
from pydantic.alias_generators import to_camel
|
16
|
-
from pydantic.fields import FieldInfo
|
17
|
-
from pydantic.json_schema import JsonSchemaValue
|
18
|
-
|
19
|
-
from moose_lib import ClickHouseEngines
|
20
|
-
|
21
|
-
_tables: dict[str, "OlapTable"] = {}
|
22
|
-
_streams: dict[str, "Stream"] = {}
|
23
|
-
_ingest_apis: dict[str, "IngestApi"] = {}
|
24
|
-
_egress_apis: dict[str, "ConsumptionApi"] = {}
|
25
|
-
_sql_resources: dict[str, "SqlResource"] = {}
|
26
|
-
_workflows: dict[str, "Workflow"] = {}
|
27
|
-
|
28
|
-
T = TypeVar('T', bound=BaseModel)
|
29
|
-
U = TypeVar('U', bound=BaseModel)
|
30
|
-
T_none = TypeVar('T_none', bound=Union[BaseModel, None])
|
31
|
-
U_none = TypeVar('U_none', bound=Union[BaseModel, None])
|
32
|
-
type ZeroOrMany[T] = Union[T, list[T], None]
|
33
|
-
|
34
|
-
type TaskRunFunc[T_none, U_none] = Union[
|
35
|
-
# Case 1: No input, no output
|
36
|
-
Callable[[], None],
|
37
|
-
# Case 2: No input, with output
|
38
|
-
Callable[[], Union[U_none, Awaitable[U_none]]],
|
39
|
-
# Case 3: With input, no output
|
40
|
-
Callable[[T_none], None],
|
41
|
-
# Case 4: With input, with output
|
42
|
-
Callable[[T_none], Union[U_none, Awaitable[U_none]]]
|
43
|
-
]
|
44
|
-
|
45
|
-
class Columns(Generic[T]):
|
46
|
-
"""Provides runtime checked column name access for Moose resources.
|
47
|
-
|
48
|
-
Instead of using string literals for column names, you can use attribute access
|
49
|
-
on this object, which will verify the name against the Pydantic model's fields.
|
50
|
-
|
51
|
-
Example:
|
52
|
-
>>> class MyModel(BaseModel):
|
53
|
-
... user_id: int
|
54
|
-
... event_name: str
|
55
|
-
>>> cols = Columns(MyModel)
|
56
|
-
>>> print(cols.user_id) # Output: user_id
|
57
|
-
>>> print(cols.non_existent) # Raises AttributeError
|
58
|
-
|
59
|
-
Args:
|
60
|
-
model: The Pydantic model type whose fields represent the columns.
|
61
|
-
"""
|
62
|
-
_fields: dict[str, FieldInfo]
|
63
|
-
|
64
|
-
def __init__(self, model: type[T]):
|
65
|
-
self._fields = model.model_fields
|
66
|
-
|
67
|
-
def __getattr__(self, item: str) -> str:
|
68
|
-
if item in self._fields:
|
69
|
-
return item # or some Column representation
|
70
|
-
raise AttributeError(f"{item} is not a valid column name")
|
71
|
-
|
72
|
-
|
73
|
-
class BaseTypedResource(Generic[T]):
|
74
|
-
"""Base class for Moose resources that are typed with a Pydantic model.
|
75
|
-
|
76
|
-
Handles the association of a Pydantic model `T` with a Moose resource,
|
77
|
-
providing type validation and access to the model type.
|
78
|
-
|
79
|
-
Attributes:
|
80
|
-
name (str): The name of the Moose resource.
|
81
|
-
"""
|
82
|
-
_t: type[T]
|
83
|
-
name: str
|
84
|
-
|
85
|
-
@classmethod
|
86
|
-
def _get_type(cls, keyword_args: dict):
|
87
|
-
t = keyword_args.get('t')
|
88
|
-
if t is None:
|
89
|
-
raise ValueError(f"Use `{cls.__name__}[T](name='...')` to supply the Pydantic model type`")
|
90
|
-
if not isinstance(t, type) or not issubclass(t, BaseModel):
|
91
|
-
raise ValueError(f"{t} is not a Pydantic model")
|
92
|
-
return t
|
93
|
-
|
94
|
-
@property
|
95
|
-
def model_type(self) -> type[T]:
|
96
|
-
"""Get the Pydantic model type associated with this resource."""
|
97
|
-
return self._t
|
98
|
-
|
99
|
-
def _set_type(self, name: str, t: type[T]):
|
100
|
-
"""Internal method to set the resource name and associated Pydantic type."""
|
101
|
-
self._t = t
|
102
|
-
self.name = name
|
103
|
-
|
104
|
-
def __class_getitem__(cls, item: type[BaseModel]):
|
105
|
-
def curried_constructor(*args, **kwargs):
|
106
|
-
return cls(t=item, *args, **kwargs)
|
107
|
-
|
108
|
-
return curried_constructor
|
109
|
-
|
110
|
-
|
111
|
-
class TypedMooseResource(BaseTypedResource, Generic[T]):
|
112
|
-
"""Base class for Moose resources that have columns derived from a Pydantic model.
|
113
|
-
|
114
|
-
Extends `BaseTypedResource` by adding a `Columns` helper for type-safe
|
115
|
-
column name access.
|
116
|
-
|
117
|
-
Attributes:
|
118
|
-
columns (Columns[T]): An object providing attribute access to column names.
|
119
|
-
"""
|
120
|
-
columns: Columns[T]
|
121
|
-
|
122
|
-
def _set_type(self, name: str, t: type[T]):
|
123
|
-
super()._set_type(name, t)
|
124
|
-
self.columns = Columns[T](self._t)
|
125
|
-
|
126
|
-
|
127
|
-
class OlapConfig(BaseModel):
|
128
|
-
"""Configuration for OLAP tables (e.g., ClickHouse tables).
|
129
|
-
|
130
|
-
Attributes:
|
131
|
-
order_by_fields: List of column names to use for the ORDER BY clause.
|
132
|
-
Crucial for `ReplacingMergeTree` and performance.
|
133
|
-
deduplicate: If True, uses the ReplacingMergeTree engine for automatic
|
134
|
-
deduplication based on `order_by_fields`. Equivalent to
|
135
|
-
setting `engine=ClickHouseEngines.ReplacingMergeTree`.
|
136
|
-
engine: The ClickHouse table engine to use (e.g., MergeTree, ReplacingMergeTree).
|
137
|
-
version: Optional version string for tracking configuration changes.
|
138
|
-
metadata: Optional metadata for the table.
|
139
|
-
"""
|
140
|
-
order_by_fields: list[str] = []
|
141
|
-
# equivalent to setting `engine=ClickHouseEngines.ReplacingMergeTree`
|
142
|
-
deduplicate: bool = False
|
143
|
-
engine: Optional[ClickHouseEngines] = None
|
144
|
-
version: Optional[str] = None
|
145
|
-
metadata: Optional[dict] = None
|
146
|
-
|
147
|
-
|
148
|
-
class OlapTable(TypedMooseResource, Generic[T]):
|
149
|
-
"""Represents an OLAP table (e.g., a ClickHouse table) typed with a Pydantic model.
|
150
|
-
|
151
|
-
Args:
|
152
|
-
name: The name of the OLAP table.
|
153
|
-
config: Configuration options for the table engine, ordering, etc.
|
154
|
-
t: The Pydantic model defining the table schema (passed via `OlapTable[MyModel](...)`).
|
155
|
-
|
156
|
-
Attributes:
|
157
|
-
config (OlapConfig): The configuration settings for this table.
|
158
|
-
columns (Columns[T]): Helper for accessing column names safely.
|
159
|
-
name (str): The name of the table.
|
160
|
-
model_type (type[T]): The Pydantic model associated with this table.
|
161
|
-
kind: The kind of the table (e.g., "OlapTable").
|
162
|
-
"""
|
163
|
-
config: OlapConfig
|
164
|
-
kind: str = "OlapTable"
|
165
|
-
|
166
|
-
def __init__(self, name: str, config: OlapConfig = OlapConfig(), **kwargs):
|
167
|
-
super().__init__()
|
168
|
-
self._set_type(name, self._get_type(kwargs))
|
169
|
-
self.config = config
|
170
|
-
self.metadata = config.metadata
|
171
|
-
_tables[name] = self
|
172
|
-
|
173
|
-
|
174
|
-
class StreamConfig(BaseModel):
|
175
|
-
"""Configuration for data streams (e.g., Redpanda topics).
|
176
|
-
|
177
|
-
Attributes:
|
178
|
-
parallelism: Number of partitions for the stream.
|
179
|
-
retention_period: Data retention period in seconds (default: 7 days).
|
180
|
-
destination: Optional `OlapTable` where stream messages should be automatically ingested.
|
181
|
-
version: Optional version string for tracking configuration changes.
|
182
|
-
metadata: Optional metadata for the stream.
|
183
|
-
"""
|
184
|
-
parallelism: int = 1
|
185
|
-
retention_period: int = 60 * 60 * 24 * 7 # 7 days
|
186
|
-
destination: Optional[OlapTable[Any]] = None
|
187
|
-
version: Optional[str] = None
|
188
|
-
metadata: Optional[dict] = None
|
189
|
-
|
190
|
-
|
191
|
-
class TransformConfig(BaseModel):
|
192
|
-
"""Configuration for stream transformations.
|
193
|
-
|
194
|
-
Attributes:
|
195
|
-
version: Optional version string to identify a specific transformation.
|
196
|
-
Allows multiple transformations to the same destination if versions differ.
|
197
|
-
"""
|
198
|
-
version: Optional[str] = None
|
199
|
-
dead_letter_queue: "Optional[DeadLetterQueue]" = None
|
200
|
-
model_config = ConfigDict(arbitrary_types_allowed=True)
|
201
|
-
metadata: Optional[dict] = None
|
202
|
-
|
203
|
-
|
204
|
-
class ConsumerConfig(BaseModel):
|
205
|
-
"""Configuration for stream consumers.
|
206
|
-
|
207
|
-
Attributes:
|
208
|
-
version: Optional version string to identify a specific consumer.
|
209
|
-
Allows multiple consumers if versions differ.
|
210
|
-
"""
|
211
|
-
version: Optional[str] = None
|
212
|
-
dead_letter_queue: "Optional[DeadLetterQueue]" = None
|
213
|
-
model_config = ConfigDict(arbitrary_types_allowed=True)
|
214
|
-
|
215
|
-
|
216
|
-
@dataclasses.dataclass
|
217
|
-
class _RoutedMessage:
|
218
|
-
"""Internal class representing a message routed to a specific stream."""
|
219
|
-
destination: "Stream[Any]"
|
220
|
-
values: ZeroOrMany[Any]
|
221
|
-
|
222
|
-
|
223
|
-
@dataclasses.dataclass
|
224
|
-
class ConsumerEntry(Generic[T]):
|
225
|
-
"""Internal class representing a consumer with its configuration."""
|
226
|
-
consumer: Callable[[T], None]
|
227
|
-
config: ConsumerConfig
|
228
|
-
|
229
|
-
|
230
|
-
@dataclasses.dataclass
|
231
|
-
class TransformEntry(Generic[T]):
|
232
|
-
"""Internal class representing a transformation with its configuration."""
|
233
|
-
destination: "Stream[Any]"
|
234
|
-
transformation: Callable[[T], ZeroOrMany[Any]]
|
235
|
-
config: TransformConfig
|
236
|
-
|
237
|
-
|
238
|
-
class Stream(TypedMooseResource, Generic[T]):
|
239
|
-
"""Represents a data stream (e.g., a Redpanda topic) typed with a Pydantic model.
|
240
|
-
|
241
|
-
Allows defining transformations to other streams and adding consumers.
|
242
|
-
|
243
|
-
Args:
|
244
|
-
name: The name of the stream.
|
245
|
-
config: Configuration options for the stream (parallelism, retention, destination).
|
246
|
-
t: The Pydantic model defining the stream message schema (passed via `Stream[MyModel](...)`).
|
247
|
-
|
248
|
-
Attributes:
|
249
|
-
config (StreamConfig): Configuration settings for this stream.
|
250
|
-
transformations (dict[str, list[TransformEntry[T]]]): Dictionary mapping destination stream names
|
251
|
-
to lists of transformation functions.
|
252
|
-
consumers (list[ConsumerEntry[T]]): List of consumers attached to this stream.
|
253
|
-
columns (Columns[T]): Helper for accessing message field names safely.
|
254
|
-
name (str): The name of the stream.
|
255
|
-
model_type (type[T]): The Pydantic model associated with this stream.
|
256
|
-
"""
|
257
|
-
config: StreamConfig
|
258
|
-
transformations: dict[str, list[TransformEntry[T]]]
|
259
|
-
consumers: list[ConsumerEntry[T]]
|
260
|
-
_multipleTransformations: Optional[Callable[[T], list[_RoutedMessage]]] = None
|
261
|
-
|
262
|
-
def __init__(self, name: str, config: StreamConfig = StreamConfig(), **kwargs):
|
263
|
-
super().__init__()
|
264
|
-
self._set_type(name, self._get_type(kwargs))
|
265
|
-
self.config = config
|
266
|
-
self.metadata = config.metadata
|
267
|
-
self.consumers = []
|
268
|
-
self.transformations = {}
|
269
|
-
_streams[name] = self
|
270
|
-
|
271
|
-
def add_transform(self, destination: "Stream[U]", transformation: Callable[[T], ZeroOrMany[U]],
|
272
|
-
config: TransformConfig = None):
|
273
|
-
"""Adds a transformation step from this stream to a destination stream.
|
274
|
-
|
275
|
-
The transformation function receives a record of type `T` and should return
|
276
|
-
a record of type `U`, a list of `U` records, or `None` to filter.
|
277
|
-
|
278
|
-
Args:
|
279
|
-
destination: The target `Stream` for the transformed records.
|
280
|
-
transformation: A callable that performs the transformation.
|
281
|
-
config: Optional configuration, primarily for setting a version.
|
282
|
-
"""
|
283
|
-
config = config or TransformConfig()
|
284
|
-
if destination.name in self.transformations:
|
285
|
-
existing_transforms = self.transformations[destination.name]
|
286
|
-
# Check if a transform with this version already exists
|
287
|
-
has_version = any(t.config.version == config.version for t in existing_transforms)
|
288
|
-
if not has_version:
|
289
|
-
existing_transforms.append(
|
290
|
-
TransformEntry(destination=destination, transformation=transformation, config=config))
|
291
|
-
else:
|
292
|
-
self.transformations[destination.name] = [
|
293
|
-
TransformEntry(destination=destination, transformation=transformation, config=config)]
|
294
|
-
|
295
|
-
def add_consumer(self, consumer: Callable[[T], None], config: ConsumerConfig = None):
|
296
|
-
"""Adds a consumer function to be executed for each record in the stream.
|
297
|
-
|
298
|
-
Consumers are typically used for side effects like logging or triggering external actions.
|
299
|
-
|
300
|
-
Args:
|
301
|
-
consumer: A callable that accepts a record of type `T`.
|
302
|
-
config: Optional configuration, primarily for setting a version.
|
303
|
-
"""
|
304
|
-
config = config or ConsumerConfig()
|
305
|
-
has_version = any(c.config.version == config.version for c in self.consumers)
|
306
|
-
if not has_version:
|
307
|
-
self.consumers.append(ConsumerEntry(consumer=consumer, config=config))
|
308
|
-
|
309
|
-
def has_consumers(self) -> bool:
|
310
|
-
"""Checks if any consumers have been added to this stream.
|
311
|
-
|
312
|
-
Returns:
|
313
|
-
True if the stream has one or more consumers, False otherwise.
|
314
|
-
"""
|
315
|
-
return len(self.consumers) > 0
|
316
|
-
|
317
|
-
def routed(self, values: ZeroOrMany[T]) -> _RoutedMessage:
|
318
|
-
"""Creates a `_RoutedMessage` for use in multi-transform functions.
|
319
|
-
|
320
|
-
Wraps the value(s) to be sent with this stream as the destination.
|
321
|
-
|
322
|
-
Args:
|
323
|
-
values: A single record, a list of records, or None.
|
324
|
-
|
325
|
-
Returns:
|
326
|
-
A `_RoutedMessage` object.
|
327
|
-
"""
|
328
|
-
return _RoutedMessage(destination=self, values=values)
|
329
|
-
|
330
|
-
def set_multi_transform(self, transformation: Callable[[T], list[_RoutedMessage]]):
|
331
|
-
"""Sets a transformation function capable of routing records to multiple streams.
|
332
|
-
|
333
|
-
The provided function takes a single input record (`T`) and must return a list
|
334
|
-
of `_RoutedMessage` objects, created using the `.routed()` method of the
|
335
|
-
target streams.
|
336
|
-
|
337
|
-
Example:
|
338
|
-
def my_multi_transform(record: InputModel) -> list[_RoutedMessage]:
|
339
|
-
output1 = transform_for_stream1(record)
|
340
|
-
output2 = transform_for_stream2(record)
|
341
|
-
return [
|
342
|
-
stream1.routed(output1),
|
343
|
-
stream2.routed(output2)
|
344
|
-
]
|
345
|
-
input_stream.set_multi_transform(my_multi_transform)
|
346
|
-
|
347
|
-
Note: Only one multi-transform function can be set per stream.
|
348
|
-
|
349
|
-
Args:
|
350
|
-
transformation: The multi-routing transformation function.
|
351
|
-
"""
|
352
|
-
self._multipleTransformations = transformation
|
353
|
-
|
354
|
-
|
355
|
-
class DeadLetterModel(BaseModel, Generic[T]):
|
356
|
-
model_config = ConfigDict(alias_generator=AliasGenerator(
|
357
|
-
serialization_alias=to_camel,
|
358
|
-
))
|
359
|
-
original_record: Any
|
360
|
-
error_message: str
|
361
|
-
error_type: str
|
362
|
-
failed_at: datetime.datetime
|
363
|
-
source: Literal["api", "transform", "table"]
|
364
|
-
|
365
|
-
def as_typed(self) -> T:
|
366
|
-
return self._t.model_validate(self.original_record)
|
367
|
-
|
368
|
-
|
369
|
-
class DeadLetterQueue(Stream, Generic[T]):
|
370
|
-
"""A specialized Stream for handling failed records.
|
371
|
-
|
372
|
-
Dead letter queues store records that failed during processing, along with
|
373
|
-
error information to help diagnose and potentially recover from failures.
|
374
|
-
|
375
|
-
Attributes:
|
376
|
-
All attributes inherited from Stream.
|
377
|
-
"""
|
378
|
-
|
379
|
-
_model_type: type[T]
|
380
|
-
|
381
|
-
def __init__(self, name: str, config: StreamConfig = StreamConfig(), **kwargs):
|
382
|
-
"""Initialize a new DeadLetterQueue.
|
383
|
-
|
384
|
-
Args:
|
385
|
-
name: The name of the dead letter queue stream.
|
386
|
-
config: Configuration for the stream.
|
387
|
-
"""
|
388
|
-
self._model_type = self._get_type(kwargs)
|
389
|
-
kwargs["t"] = DeadLetterModel[self._model_type]
|
390
|
-
super().__init__(name, config, **kwargs)
|
391
|
-
|
392
|
-
def add_transform(self, destination: Stream[U], transformation: Callable[[DeadLetterModel[T]], ZeroOrMany[U]],
|
393
|
-
config: TransformConfig = None):
|
394
|
-
def wrapped_transform(record: DeadLetterModel[T]):
|
395
|
-
record._t = self._model_type
|
396
|
-
return transformation(record)
|
397
|
-
|
398
|
-
config = config or TransformConfig()
|
399
|
-
super().add_transform(destination, wrapped_transform, config)
|
400
|
-
|
401
|
-
def add_consumer(self, consumer: Callable[[DeadLetterModel[T]], None], config: ConsumerConfig = None):
|
402
|
-
def wrapped_consumer(record: DeadLetterModel[T]):
|
403
|
-
record._t = self._model_type
|
404
|
-
return consumer(record)
|
405
|
-
|
406
|
-
config = config or ConsumerConfig()
|
407
|
-
super().add_consumer(wrapped_consumer, config)
|
408
|
-
|
409
|
-
def set_multi_transform(self, transformation: Callable[[DeadLetterModel[T]], list[_RoutedMessage]]):
|
410
|
-
def wrapped_transform(record: DeadLetterModel[T]):
|
411
|
-
record._t = self._model_type
|
412
|
-
return transformation(record)
|
413
|
-
|
414
|
-
super().set_multi_transform(wrapped_transform)
|
415
|
-
|
416
|
-
|
417
|
-
class IngestConfig(BaseModel):
|
418
|
-
"""Basic configuration for an ingestion point.
|
419
|
-
|
420
|
-
Attributes:
|
421
|
-
version: Optional version string.
|
422
|
-
metadata: Optional metadata for the ingestion point.
|
423
|
-
"""
|
424
|
-
version: Optional[str] = None
|
425
|
-
metadata: Optional[dict] = None
|
426
|
-
|
427
|
-
|
428
|
-
@dataclasses.dataclass
|
429
|
-
class IngestConfigWithDestination[T: BaseModel]:
|
430
|
-
"""Ingestion configuration that includes the mandatory destination stream.
|
431
|
-
|
432
|
-
Attributes:
|
433
|
-
destination: The `Stream` where ingested data will be sent.
|
434
|
-
version: Optional version string.
|
435
|
-
metadata: Optional metadata for the ingestion configuration.
|
436
|
-
"""
|
437
|
-
destination: Stream[T]
|
438
|
-
dead_letter_queue: Optional[DeadLetterQueue[T]] = None
|
439
|
-
version: Optional[str] = None
|
440
|
-
metadata: Optional[dict] = None
|
441
|
-
|
442
|
-
|
443
|
-
class IngestPipelineConfig(BaseModel):
|
444
|
-
"""Configuration for creating a complete ingestion pipeline.
|
445
|
-
|
446
|
-
Defines which components (table, stream, ingest API) should be created.
|
447
|
-
Set a component to `True` for default settings, `False` to disable, or provide
|
448
|
-
a specific config object (`OlapConfig`, `StreamConfig`, `IngestConfig`).
|
449
|
-
|
450
|
-
Attributes:
|
451
|
-
table: Configuration for the OLAP table component.
|
452
|
-
stream: Configuration for the stream component.
|
453
|
-
ingest: Configuration for the ingest API component.
|
454
|
-
version: Optional version string applied to all created components.
|
455
|
-
metadata: Optional metadata for the ingestion pipeline.
|
456
|
-
"""
|
457
|
-
table: bool | OlapConfig = True
|
458
|
-
stream: bool | StreamConfig = True
|
459
|
-
ingest: bool | IngestConfig = True
|
460
|
-
dead_letter_queue: bool | StreamConfig = True
|
461
|
-
version: Optional[str] = None
|
462
|
-
metadata: Optional[dict] = None
|
463
|
-
|
464
|
-
|
465
|
-
class IngestApi(TypedMooseResource, Generic[T]):
|
466
|
-
"""Represents an Ingestion API endpoint typed with a Pydantic model.
|
467
|
-
|
468
|
-
This endpoint receives data (matching schema `T`) and sends it to a configured
|
469
|
-
destination stream.
|
470
|
-
|
471
|
-
Args:
|
472
|
-
name: The name of the ingestion API endpoint.
|
473
|
-
config: Configuration specifying the destination stream and data format.
|
474
|
-
t: The Pydantic model defining the expected input data schema
|
475
|
-
(passed via `IngestApi[MyModel](...)`).
|
476
|
-
|
477
|
-
Attributes:
|
478
|
-
config (IngestConfigWithDestination[T]): The configuration for this API.
|
479
|
-
columns (Columns[T]): Helper for accessing input field names safely.
|
480
|
-
name (str): The name of the API.
|
481
|
-
model_type (type[T]): The Pydantic model associated with this API's input.
|
482
|
-
"""
|
483
|
-
config: IngestConfigWithDestination[T]
|
484
|
-
|
485
|
-
def __init__(self, name: str, config: IngestConfigWithDestination[T], **kwargs):
|
486
|
-
super().__init__()
|
487
|
-
self._set_type(name, self._get_type(kwargs))
|
488
|
-
self.config = config
|
489
|
-
self.metadata = getattr(config, 'metadata', None)
|
490
|
-
_ingest_apis[name] = self
|
491
|
-
|
492
|
-
|
493
|
-
class IngestPipeline(TypedMooseResource, Generic[T]):
|
494
|
-
"""Creates and configures a linked Table, Stream, and Ingest API pipeline.
|
495
|
-
|
496
|
-
Simplifies the common pattern of ingesting data through an API, processing it
|
497
|
-
in a stream, and storing it in a table.
|
498
|
-
|
499
|
-
Args:
|
500
|
-
name: The base name used for all created components (table, stream, API).
|
501
|
-
config: Specifies which components to create and their configurations.
|
502
|
-
t: The Pydantic model defining the data schema for all components
|
503
|
-
(passed via `IngestPipeline[MyModel](...)`).
|
504
|
-
|
505
|
-
Attributes:
|
506
|
-
table: The created `OlapTable` instance, if configured.
|
507
|
-
stream: The created `Stream` instance, if configured.
|
508
|
-
ingest_api: The created `IngestApi` instance, if configured.
|
509
|
-
dead_letter_queue: The created `DeadLetterQueue` instance, if configured.
|
510
|
-
columns (Columns[T]): Helper for accessing data field names safely.
|
511
|
-
name (str): The base name of the pipeline.
|
512
|
-
model_type (type[T]): The Pydantic model associated with this pipeline.
|
513
|
-
"""
|
514
|
-
table: Optional[OlapTable[T]] = None
|
515
|
-
stream: Optional[Stream[T]] = None
|
516
|
-
ingest_api: Optional[IngestApi[T]] = None
|
517
|
-
dead_letter_queue: Optional[DeadLetterQueue[T]] = None
|
518
|
-
metadata: Optional[dict] = None
|
519
|
-
|
520
|
-
def get_table(self) -> OlapTable[T]:
|
521
|
-
"""Retrieves the pipeline's OLAP table component.
|
522
|
-
|
523
|
-
Raises:
|
524
|
-
ValueError: If the table was not configured for this pipeline.
|
525
|
-
|
526
|
-
Returns:
|
527
|
-
The `OlapTable` instance.
|
528
|
-
"""
|
529
|
-
if self.table is None:
|
530
|
-
raise ValueError("Table was not configured for this pipeline")
|
531
|
-
return self.table
|
532
|
-
|
533
|
-
def get_stream(self) -> Stream[T]:
|
534
|
-
"""Retrieves the pipeline's stream component.
|
535
|
-
|
536
|
-
Raises:
|
537
|
-
ValueError: If the stream was not configured for this pipeline.
|
538
|
-
|
539
|
-
Returns:
|
540
|
-
The `Stream` instance.
|
541
|
-
"""
|
542
|
-
if self.stream is None:
|
543
|
-
raise ValueError("Stream was not configured for this pipeline")
|
544
|
-
return self.stream
|
545
|
-
|
546
|
-
def get_dead_letter_queue(self) -> Stream[T]:
|
547
|
-
"""Retrieves the pipeline's dead letter queue.
|
548
|
-
|
549
|
-
Raises:
|
550
|
-
ValueError: If the dead letter queue was not configured for this pipeline.
|
551
|
-
|
552
|
-
Returns:
|
553
|
-
The `Stream` instance.
|
554
|
-
"""
|
555
|
-
if self.dead_letter_queue is None:
|
556
|
-
raise ValueError("DLQ was not configured for this pipeline")
|
557
|
-
return self.dead_letter_queue
|
558
|
-
|
559
|
-
def get_ingest_api(self) -> IngestApi[T]:
|
560
|
-
"""Retrieves the pipeline's Ingestion API component.
|
561
|
-
|
562
|
-
Raises:
|
563
|
-
ValueError: If the Ingest API was not configured for this pipeline.
|
564
|
-
|
565
|
-
Returns:
|
566
|
-
The `IngestApi` instance.
|
567
|
-
"""
|
568
|
-
if self.ingest_api is None:
|
569
|
-
raise ValueError("Ingest API was not configured for this pipeline")
|
570
|
-
return self.ingest_api
|
571
|
-
|
572
|
-
def __init__(self, name: str, config: IngestPipelineConfig, **kwargs):
|
573
|
-
super().__init__()
|
574
|
-
self._set_type(name, self._get_type(kwargs))
|
575
|
-
self.metadata = config.metadata
|
576
|
-
table_metadata = config.metadata
|
577
|
-
stream_metadata = config.metadata
|
578
|
-
ingest_metadata = config.metadata
|
579
|
-
if config.table:
|
580
|
-
table_config = OlapConfig() if config.table is True else config.table
|
581
|
-
if config.version:
|
582
|
-
table_config.version = config.version
|
583
|
-
table_config.metadata = table_metadata
|
584
|
-
self.table = OlapTable(name, table_config, t=self._t)
|
585
|
-
if config.stream:
|
586
|
-
stream_config = StreamConfig() if config.stream is True else config.stream
|
587
|
-
if config.table and stream_config.destination is not None:
|
588
|
-
raise ValueError("The destination of the stream should be the table created in the IngestPipeline")
|
589
|
-
stream_config.destination = self.table
|
590
|
-
if config.version:
|
591
|
-
stream_config.version = config.version
|
592
|
-
stream_config.metadata = stream_metadata
|
593
|
-
self.stream = Stream(name, stream_config, t=self._t)
|
594
|
-
if config.dead_letter_queue:
|
595
|
-
stream_config = StreamConfig() if config.dead_letter_queue is True else config.dead_letter_queue
|
596
|
-
if config.version:
|
597
|
-
stream_config.version = config.version
|
598
|
-
stream_config.metadata = stream_metadata
|
599
|
-
self.dead_letter_queue = DeadLetterQueue(f"{name}DeadLetterQueue", stream_config, t=self._t)
|
600
|
-
if config.ingest:
|
601
|
-
if self.stream is None:
|
602
|
-
raise ValueError("Ingest API needs a stream to write to.")
|
603
|
-
ingest_config_dict = (
|
604
|
-
IngestConfig() if config.ingest is True else config.ingest
|
605
|
-
).model_dump()
|
606
|
-
ingest_config_dict["destination"] = self.stream
|
607
|
-
if config.version:
|
608
|
-
ingest_config_dict["version"] = config.version
|
609
|
-
if self.dead_letter_queue:
|
610
|
-
ingest_config_dict["dead_letter_queue"] = self.dead_letter_queue
|
611
|
-
ingest_config_dict["metadata"] = ingest_metadata
|
612
|
-
ingest_config = IngestConfigWithDestination(**ingest_config_dict)
|
613
|
-
self.ingest_api = IngestApi(name, ingest_config, t=self._t)
|
614
|
-
|
615
|
-
|
616
|
-
class EgressConfig(BaseModel):
|
617
|
-
"""Configuration for Consumption (Egress) APIs.
|
618
|
-
|
619
|
-
Attributes:
|
620
|
-
version: Optional version string.
|
621
|
-
metadata: Optional metadata for the consumption API.
|
622
|
-
"""
|
623
|
-
version: Optional[str] = None
|
624
|
-
metadata: Optional[dict] = None
|
625
|
-
|
626
|
-
|
627
|
-
class ConsumptionApi(BaseTypedResource, Generic[T, U]):
|
628
|
-
"""Represents a Consumption (Egress) API endpoint.
|
629
|
-
|
630
|
-
Allows querying data, typically powered by a user-defined function.
|
631
|
-
Requires two Pydantic models: `T` for query parameters and `U` for the response body.
|
632
|
-
|
633
|
-
Args:
|
634
|
-
name: The name of the consumption API endpoint.
|
635
|
-
query_function: The callable that executes the query logic.
|
636
|
-
It receives parameters matching model `T` (and potentially
|
637
|
-
other runtime utilities) and should return data matching model `U`.
|
638
|
-
config: Optional configuration (currently only `version`).
|
639
|
-
t: A tuple containing the input (`T`) and output (`U`) Pydantic models
|
640
|
-
(passed via `ConsumptionApi[InputModel, OutputModel](...)`).
|
641
|
-
|
642
|
-
Attributes:
|
643
|
-
config (EgressConfig): Configuration for the API.
|
644
|
-
query_function (Callable[..., U]): The handler function for the API.
|
645
|
-
name (str): The name of the API.
|
646
|
-
model_type (type[T]): The Pydantic model for the input/query parameters.
|
647
|
-
return_type (type[U]): The Pydantic model for the response body.
|
648
|
-
"""
|
649
|
-
config: EgressConfig
|
650
|
-
query_function: Callable[..., U]
|
651
|
-
_u: type[U]
|
652
|
-
|
653
|
-
def __class_getitem__(cls, items):
|
654
|
-
# Handle two type parameters
|
655
|
-
if not isinstance(items, tuple) or len(items) != 2:
|
656
|
-
raise ValueError(f"Use `{cls.__name__}[T, U](name='...')` to supply both input and output types")
|
657
|
-
input_type, output_type = items
|
658
|
-
|
659
|
-
def curried_constructor(*args, **kwargs):
|
660
|
-
return cls(t=(input_type, output_type), *args, **kwargs)
|
661
|
-
|
662
|
-
return curried_constructor
|
663
|
-
|
664
|
-
def __init__(self, name: str, query_function: Callable[..., U], config: EgressConfig = EgressConfig(), **kwargs):
|
665
|
-
super().__init__()
|
666
|
-
self._set_type(name, self._get_type(kwargs))
|
667
|
-
self.config = config
|
668
|
-
self.query_function = query_function
|
669
|
-
self.metadata = config.metadata
|
670
|
-
_egress_apis[name] = self
|
671
|
-
|
672
|
-
@classmethod
|
673
|
-
def _get_type(cls, keyword_args: dict):
|
674
|
-
t = keyword_args.get('t')
|
675
|
-
if not isinstance(t, tuple) or len(t) != 2:
|
676
|
-
raise ValueError(f"Use `{cls.__name__}[T, U](name='...')` to supply both input and output types")
|
677
|
-
|
678
|
-
input_type, output_type = t
|
679
|
-
if not isinstance(input_type, type) or not issubclass(input_type, BaseModel):
|
680
|
-
raise ValueError(f"Input type {input_type} is not a Pydantic model")
|
681
|
-
if not isinstance(output_type, type) or not issubclass(output_type, BaseModel):
|
682
|
-
raise ValueError(f"Output type {output_type} is not a Pydantic model")
|
683
|
-
return t
|
684
|
-
|
685
|
-
def _set_type(self, name: str, t: tuple[type[T], type[U]]):
|
686
|
-
input_type, output_type = t
|
687
|
-
self._t = input_type
|
688
|
-
self._u = output_type
|
689
|
-
self.name = name
|
690
|
-
|
691
|
-
def return_type(self) -> type[U]:
|
692
|
-
"""Get the Pydantic model type for the API's response body."""
|
693
|
-
return self._u
|
694
|
-
|
695
|
-
def get_response_schema(self) -> JsonSchemaValue:
|
696
|
-
"""Generates the JSON schema for the API's response body model (`U`).
|
697
|
-
|
698
|
-
Returns:
|
699
|
-
A dictionary representing the JSON schema.
|
700
|
-
"""
|
701
|
-
from pydantic.type_adapter import TypeAdapter
|
702
|
-
return TypeAdapter(self.return_type).json_schema(
|
703
|
-
ref_template='#/components/schemas/{model}'
|
704
|
-
)
|
705
|
-
|
706
|
-
|
707
|
-
def _get_consumption_api(name: str) -> Optional[ConsumptionApi]:
|
708
|
-
"""Internal function to retrieve a registered ConsumptionApi by name."""
|
709
|
-
return _egress_apis.get(name)
|
710
|
-
|
711
|
-
|
712
|
-
# Removed BaseModel inheritance
|
713
|
-
class SqlResource:
|
714
|
-
"""Base class for SQL resources like Views and Materialized Views.
|
715
|
-
|
716
|
-
Handles the definition of setup (CREATE) and teardown (DROP) SQL commands
|
717
|
-
and tracks data dependencies.
|
718
|
-
|
719
|
-
Attributes:
|
720
|
-
name (str): The name of the SQL resource (e.g., view name).
|
721
|
-
setup (list[str]): SQL commands to create the resource.
|
722
|
-
teardown (list[str]): SQL commands to drop the resource.
|
723
|
-
pulls_data_from (list[SqlObject]): List of tables/views this resource reads from.
|
724
|
-
pushes_data_to (list[SqlObject]): List of tables/views this resource writes to.
|
725
|
-
kind: The kind of the SQL resource (e.g., "SqlResource").
|
726
|
-
"""
|
727
|
-
setup: list[str]
|
728
|
-
teardown: list[str]
|
729
|
-
name: str
|
730
|
-
kind: str = "SqlResource"
|
731
|
-
pulls_data_from: list[Union[OlapTable, "SqlResource"]]
|
732
|
-
pushes_data_to: list[Union[OlapTable, "SqlResource"]]
|
733
|
-
|
734
|
-
def __init__(
|
735
|
-
self,
|
736
|
-
name: str,
|
737
|
-
setup: list[str],
|
738
|
-
teardown: list[str],
|
739
|
-
pulls_data_from: Optional[list[Union[OlapTable, "SqlResource"]]] = None,
|
740
|
-
pushes_data_to: Optional[list[Union[OlapTable, "SqlResource"]]] = None,
|
741
|
-
metadata: dict = None
|
742
|
-
):
|
743
|
-
self.name = name
|
744
|
-
self.setup = setup
|
745
|
-
self.teardown = teardown
|
746
|
-
self.pulls_data_from = pulls_data_from or []
|
747
|
-
self.pushes_data_to = pushes_data_to or []
|
748
|
-
self.metadata = metadata
|
749
|
-
_sql_resources[name] = self
|
750
|
-
|
751
|
-
|
752
|
-
class View(SqlResource):
|
753
|
-
"""Represents a standard SQL database View.
|
754
|
-
|
755
|
-
Args:
|
756
|
-
name: The name of the view to be created.
|
757
|
-
select_statement: The SQL SELECT statement defining the view.
|
758
|
-
base_tables: A list of `OlapTable`, `View`, or `MaterializedView` objects
|
759
|
-
that this view depends on.
|
760
|
-
"""
|
761
|
-
|
762
|
-
def __init__(self, name: str, select_statement: str, base_tables: list[Union[OlapTable, SqlResource]],
|
763
|
-
metadata: dict = None):
|
764
|
-
setup = [
|
765
|
-
f"CREATE VIEW IF NOT EXISTS {name} AS {select_statement}".strip()
|
766
|
-
]
|
767
|
-
teardown = [f"DROP VIEW IF EXISTS {name}"]
|
768
|
-
super().__init__(name, setup, teardown, pulls_data_from=base_tables, metadata=metadata)
|
769
|
-
|
770
|
-
|
771
|
-
class MaterializedViewOptions(BaseModel):
|
772
|
-
"""Configuration options for creating a Materialized View.
|
773
|
-
|
774
|
-
Attributes:
|
775
|
-
select_statement: The SQL SELECT statement defining the view's data.
|
776
|
-
select_tables: List of source tables/views the select statement reads from.
|
777
|
-
table_name: The name of the underlying target table storing the materialized data.
|
778
|
-
materialized_view_name: The name of the MATERIALIZED VIEW object itself.
|
779
|
-
engine: Optional ClickHouse engine for the target table.
|
780
|
-
order_by_fields: Optional ordering key for the target table (required for
|
781
|
-
engines like ReplacingMergeTree).
|
782
|
-
model_config: ConfigDict for Pydantic validation
|
783
|
-
"""
|
784
|
-
select_statement: str
|
785
|
-
select_tables: list[Union[OlapTable, SqlResource]]
|
786
|
-
table_name: str
|
787
|
-
materialized_view_name: str
|
788
|
-
engine: Optional[ClickHouseEngines] = None
|
789
|
-
order_by_fields: Optional[list[str]] = None
|
790
|
-
metadata: Optional[dict] = None
|
791
|
-
# Ensure arbitrary types are allowed for Pydantic validation
|
792
|
-
model_config = ConfigDict(arbitrary_types_allowed=True)
|
793
|
-
|
794
|
-
|
795
|
-
class MaterializedView(SqlResource, BaseTypedResource, Generic[T]):
|
796
|
-
"""Represents a ClickHouse Materialized View.
|
797
|
-
|
798
|
-
Encapsulates the MATERIALIZED VIEW definition and the underlying target `OlapTable`
|
799
|
-
that stores the data.
|
800
|
-
|
801
|
-
Args:
|
802
|
-
options: Configuration defining the select statement, names, and dependencies.
|
803
|
-
t: The Pydantic model defining the schema of the target table
|
804
|
-
(passed via `MaterializedView[MyModel](...)`).
|
805
|
-
|
806
|
-
Attributes:
|
807
|
-
target_table (OlapTable[T]): The `OlapTable` instance storing the materialized data.
|
808
|
-
config (MaterializedViewOptions): The configuration options used to create the view.
|
809
|
-
name (str): The name of the MATERIALIZED VIEW object.
|
810
|
-
model_type (type[T]): The Pydantic model associated with the target table.
|
811
|
-
setup (list[str]): SQL commands to create the view and populate the target table.
|
812
|
-
teardown (list[str]): SQL command to drop the view.
|
813
|
-
pulls_data_from (list[SqlObject]): Source tables/views.
|
814
|
-
pushes_data_to (list[SqlObject]): The target table.
|
815
|
-
"""
|
816
|
-
target_table: OlapTable[T]
|
817
|
-
config: MaterializedViewOptions
|
818
|
-
|
819
|
-
def __init__(
|
820
|
-
self,
|
821
|
-
options: MaterializedViewOptions,
|
822
|
-
**kwargs
|
823
|
-
):
|
824
|
-
self._set_type(options.materialized_view_name, self._get_type(kwargs))
|
825
|
-
|
826
|
-
setup = [
|
827
|
-
f"CREATE MATERIALIZED VIEW IF NOT EXISTS {options.materialized_view_name} TO {options.table_name} AS {options.select_statement}",
|
828
|
-
f"INSERT INTO {options.table_name} {options.select_statement}"
|
829
|
-
]
|
830
|
-
teardown = [f"DROP VIEW IF EXISTS {options.materialized_view_name}"]
|
831
|
-
|
832
|
-
target_table = OlapTable(
|
833
|
-
name=options.table_name,
|
834
|
-
config=OlapConfig(
|
835
|
-
order_by_fields=options.order_by_fields or [],
|
836
|
-
engine=options.engine
|
837
|
-
),
|
838
|
-
t=self._t
|
839
|
-
)
|
840
|
-
|
841
|
-
super().__init__(
|
842
|
-
options.materialized_view_name,
|
843
|
-
setup,
|
844
|
-
teardown,
|
845
|
-
pulls_data_from=options.select_tables,
|
846
|
-
pushes_data_to=[target_table],
|
847
|
-
metadata=options.metadata
|
848
|
-
)
|
849
|
-
|
850
|
-
self.target_table = target_table
|
851
|
-
self.config = options
|
852
|
-
|
853
|
-
|
854
|
-
@dataclasses.dataclass
|
855
|
-
class TaskConfig(Generic[T_none, U_none]):
|
856
|
-
"""Configuration for a Task.
|
857
|
-
|
858
|
-
Attributes:
|
859
|
-
run: The handler function that executes the task logic.
|
860
|
-
on_complete: Optional list of tasks to run after this task completes.
|
861
|
-
timeout: Optional timeout string (e.g. "5m", "1h").
|
862
|
-
retries: Optional number of retry attempts.
|
863
|
-
"""
|
864
|
-
run: TaskRunFunc[T_none, U_none]
|
865
|
-
on_complete: Optional[list["Task[U_none, Any]"]] = None
|
866
|
-
timeout: Optional[str] = None
|
867
|
-
retries: Optional[int] = None
|
868
|
-
|
869
|
-
|
870
|
-
class Task(TypedMooseResource, Generic[T_none, U_none]):
|
871
|
-
"""Represents a task that can be executed as part of a workflow.
|
872
|
-
|
873
|
-
Tasks are the basic unit of work in a workflow, with typed input and output.
|
874
|
-
They can be chained together using the on_complete configuration.
|
875
|
-
|
876
|
-
Args:
|
877
|
-
name: The name of the task.
|
878
|
-
config: Configuration specifying the task's behavior.
|
879
|
-
t: The Pydantic model defining the task's input schema
|
880
|
-
(passed via `Task[InputModel, OutputModel](...)`).
|
881
|
-
OutputModel can be None for tasks that don't return a value.
|
882
|
-
|
883
|
-
Attributes:
|
884
|
-
config (TaskConfig[T, U]): The configuration for this task.
|
885
|
-
columns (Columns[T]): Helper for accessing input field names safely.
|
886
|
-
name (str): The name of the task.
|
887
|
-
model_type (type[T]): The Pydantic model associated with this task's input.
|
888
|
-
"""
|
889
|
-
config: TaskConfig[T_none, U_none]
|
890
|
-
|
891
|
-
def __init__(self, name: str, config: TaskConfig[T_none, U_none], **kwargs):
|
892
|
-
super().__init__()
|
893
|
-
self._set_type(name, self._get_type(kwargs))
|
894
|
-
self.config = config
|
895
|
-
|
896
|
-
@classmethod
|
897
|
-
def _get_type(cls, keyword_args: dict):
|
898
|
-
t = keyword_args.get('t')
|
899
|
-
if t is None:
|
900
|
-
raise ValueError(f"Use `{cls.__name__}[T, U](name='...')` to supply both input and output types")
|
901
|
-
if not isinstance(t, tuple) or len(t) != 2:
|
902
|
-
raise ValueError(f"Use `{cls.__name__}[T, U](name='...')` to supply both input and output types")
|
903
|
-
|
904
|
-
input_type, output_type = t
|
905
|
-
if input_type is not None and (not isinstance(input_type, type) or not issubclass(input_type, BaseModel)):
|
906
|
-
raise ValueError(f"Input type {input_type} is not a Pydantic model or None")
|
907
|
-
if output_type is not None and (not isinstance(output_type, type) or not issubclass(output_type, BaseModel)):
|
908
|
-
raise ValueError(f"Output type {output_type} is not a Pydantic model or None")
|
909
|
-
return t
|
910
|
-
|
911
|
-
def _set_type(self, name: str, t: tuple[type[T_none], type[U_none]]):
|
912
|
-
input_type, output_type = t
|
913
|
-
self._t = input_type
|
914
|
-
self._u = output_type
|
915
|
-
self.name = name
|
916
|
-
|
917
|
-
|
918
|
-
@dataclasses.dataclass
|
919
|
-
class WorkflowConfig:
|
920
|
-
"""Configuration for a workflow.
|
921
|
-
|
922
|
-
Attributes:
|
923
|
-
starting_task: The first task to execute in the workflow.
|
924
|
-
retries: Optional number of retry attempts for the entire workflow.
|
925
|
-
timeout: Optional timeout string for the entire workflow.
|
926
|
-
schedule: Optional cron-like schedule string for recurring execution.
|
927
|
-
"""
|
928
|
-
starting_task: Task[Any, Any]
|
929
|
-
retries: Optional[int] = None
|
930
|
-
timeout: Optional[str] = None
|
931
|
-
schedule: Optional[str] = None
|
932
|
-
|
933
|
-
|
934
|
-
class Workflow:
|
935
|
-
"""Represents a workflow composed of one or more tasks.
|
936
|
-
|
937
|
-
Workflows define a sequence of tasks to be executed, with optional
|
938
|
-
scheduling, retries, and timeouts at the workflow level.
|
939
|
-
|
940
|
-
Args:
|
941
|
-
name: The name of the workflow.
|
942
|
-
config: Configuration specifying the workflow's behavior.
|
943
|
-
|
944
|
-
Attributes:
|
945
|
-
name (str): The name of the workflow.
|
946
|
-
config (WorkflowConfig): The configuration for this workflow.
|
947
|
-
"""
|
948
|
-
def __init__(self, name: str, config: WorkflowConfig):
|
949
|
-
self.name = name
|
950
|
-
self.config = config
|
951
|
-
# Register the workflow in the internal registry
|
952
|
-
_workflows[name] = self
|
953
|
-
|
954
|
-
def get_task_names(self) -> list[str]:
|
955
|
-
"""Get a list of all task names in this workflow.
|
956
|
-
|
957
|
-
Returns:
|
958
|
-
list[str]: List of task names in the workflow, including all child tasks
|
959
|
-
"""
|
960
|
-
def collect_task_names(task: Task) -> list[str]:
|
961
|
-
names = [task.name]
|
962
|
-
if task.config.on_complete:
|
963
|
-
for child in task.config.on_complete:
|
964
|
-
names.extend(collect_task_names(child))
|
965
|
-
return names
|
966
|
-
|
967
|
-
return collect_task_names(self.config.starting_task)
|
968
|
-
|
969
|
-
def get_task(self, task_name: str) -> Optional[Task]:
|
970
|
-
"""Find a task in this workflow by name.
|
971
|
-
|
972
|
-
Args:
|
973
|
-
task_name: The name of the task to find
|
974
|
-
|
975
|
-
Returns:
|
976
|
-
Optional[Task]: The task if found, None otherwise
|
977
|
-
"""
|
978
|
-
def find_task(task: Task) -> Optional[Task]:
|
979
|
-
if task.name == task_name:
|
980
|
-
return task
|
981
|
-
if task.config.on_complete:
|
982
|
-
for child in task.config.on_complete:
|
983
|
-
found = find_task(child)
|
984
|
-
if found:
|
985
|
-
return found
|
986
|
-
return None
|
987
|
-
|
988
|
-
return find_task(self.config.starting_task)
|
989
|
-
|
990
|
-
def _get_workflows() -> dict[str, Workflow]:
|
991
|
-
return _workflows
|
992
|
-
|
993
|
-
def _get_workflow(name: str) -> Optional[Workflow]:
|
994
|
-
return _workflows.get(name)
|