monocle-apptrace 0.4.0b2__py3-none-any.whl → 0.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of monocle-apptrace might be problematic. Click here for more details.
- monocle_apptrace/instrumentation/__init__.py +2 -1
- monocle_apptrace/instrumentation/common/constants.py +3 -0
- monocle_apptrace/instrumentation/common/instrumentor.py +1 -1
- monocle_apptrace/instrumentation/common/span_handler.py +8 -6
- monocle_apptrace/instrumentation/common/utils.py +33 -2
- monocle_apptrace/instrumentation/common/wrapper.py +59 -79
- monocle_apptrace/instrumentation/common/wrapper_method.py +5 -1
- monocle_apptrace/instrumentation/metamodel/anthropic/_helper.py +29 -4
- monocle_apptrace/instrumentation/metamodel/anthropic/entities/inference.py +12 -2
- monocle_apptrace/instrumentation/metamodel/azfunc/_helper.py +78 -0
- monocle_apptrace/instrumentation/metamodel/azfunc/entities/http.py +51 -0
- monocle_apptrace/instrumentation/metamodel/azfunc/methods.py +23 -0
- monocle_apptrace/instrumentation/metamodel/azfunc/wrapper.py +23 -0
- monocle_apptrace/instrumentation/metamodel/azureaiinference/__init__.py +1 -0
- monocle_apptrace/instrumentation/metamodel/azureaiinference/_helper.py +216 -0
- monocle_apptrace/instrumentation/metamodel/azureaiinference/entities/inference.py +208 -0
- monocle_apptrace/instrumentation/metamodel/azureaiinference/methods.py +23 -0
- monocle_apptrace/instrumentation/metamodel/botocore/_helper.py +42 -17
- monocle_apptrace/instrumentation/metamodel/botocore/entities/inference.py +11 -3
- monocle_apptrace/instrumentation/metamodel/flask/_helper.py +1 -1
- monocle_apptrace/instrumentation/metamodel/haystack/_helper.py +20 -12
- monocle_apptrace/instrumentation/metamodel/haystack/entities/inference.py +10 -2
- monocle_apptrace/instrumentation/metamodel/langchain/_helper.py +19 -13
- monocle_apptrace/instrumentation/metamodel/langchain/entities/inference.py +10 -2
- monocle_apptrace/instrumentation/metamodel/llamaindex/_helper.py +21 -13
- monocle_apptrace/instrumentation/metamodel/llamaindex/entities/inference.py +10 -2
- monocle_apptrace/instrumentation/metamodel/openai/_helper.py +31 -10
- monocle_apptrace/instrumentation/metamodel/openai/entities/inference.py +12 -1
- monocle_apptrace/instrumentation/metamodel/teamsai/_helper.py +50 -4
- monocle_apptrace/instrumentation/metamodel/teamsai/entities/inference/actionplanner_output_processor.py +32 -12
- monocle_apptrace/instrumentation/metamodel/teamsai/methods.py +30 -17
- monocle_apptrace/instrumentation/metamodel/teamsai/sample.json +448 -0
- {monocle_apptrace-0.4.0b2.dist-info → monocle_apptrace-0.4.1.dist-info}/METADATA +21 -18
- {monocle_apptrace-0.4.0b2.dist-info → monocle_apptrace-0.4.1.dist-info}/RECORD +37 -28
- {monocle_apptrace-0.4.0b2.dist-info → monocle_apptrace-0.4.1.dist-info}/WHEEL +0 -0
- {monocle_apptrace-0.4.0b2.dist-info → monocle_apptrace-0.4.1.dist-info}/licenses/LICENSE +0 -0
- {monocle_apptrace-0.4.0b2.dist-info → monocle_apptrace-0.4.1.dist-info}/licenses/NOTICE +0 -0
|
@@ -0,0 +1,216 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
from typing import Any, Dict, Optional
|
|
3
|
+
from urllib.parse import urlparse
|
|
4
|
+
from monocle_apptrace.instrumentation.common.utils import (
|
|
5
|
+
resolve_from_alias,
|
|
6
|
+
get_exception_message,
|
|
7
|
+
)
|
|
8
|
+
|
|
9
|
+
logger = logging.getLogger(__name__)
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def extract_messages(args_or_kwargs: Any) -> str:
|
|
13
|
+
"""Extract messages from azure-ai-inference request arguments."""
|
|
14
|
+
try:
|
|
15
|
+
messages = []
|
|
16
|
+
if "instructions" in args_or_kwargs:
|
|
17
|
+
messages.append({"instructions": args_or_kwargs.get("instructions", {})})
|
|
18
|
+
if "input" in args_or_kwargs:
|
|
19
|
+
messages.append({"input": args_or_kwargs.get("input", {})})
|
|
20
|
+
if "messages" in args_or_kwargs and len(args_or_kwargs["messages"]) > 0:
|
|
21
|
+
for msg in args_or_kwargs["messages"]:
|
|
22
|
+
if msg.get("content") and msg.get("role"):
|
|
23
|
+
messages.append({msg["role"]: msg["content"]})
|
|
24
|
+
|
|
25
|
+
return [str(message) for message in messages]
|
|
26
|
+
except Exception as e:
|
|
27
|
+
logger.warning("Warning: Error occurred in extract_messages: %s", str(e))
|
|
28
|
+
return []
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def extract_inference_endpoint(instance: Any) -> str:
|
|
32
|
+
"""Extract inference endpoint from azure-ai-inference client instance."""
|
|
33
|
+
try:
|
|
34
|
+
return instance._config.endpoint
|
|
35
|
+
except Exception as e:
|
|
36
|
+
logger.warning(
|
|
37
|
+
"Warning: Error occurred in extract_inference_endpoint: %s", str(e)
|
|
38
|
+
)
|
|
39
|
+
return ""
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def extract_embeddings_input(args_or_kwargs: Any) -> str:
|
|
43
|
+
"""Extract input text from azure-ai-inference embeddings request."""
|
|
44
|
+
try:
|
|
45
|
+
# Handle both args and kwargs scenarios
|
|
46
|
+
if isinstance(args_or_kwargs, dict):
|
|
47
|
+
if "input" in args_or_kwargs:
|
|
48
|
+
input_data = args_or_kwargs["input"]
|
|
49
|
+
elif len(args_or_kwargs) > 0:
|
|
50
|
+
first_arg = list(args_or_kwargs.values())[0]
|
|
51
|
+
if isinstance(first_arg, dict) and "input" in first_arg:
|
|
52
|
+
input_data = first_arg["input"]
|
|
53
|
+
else:
|
|
54
|
+
input_data = first_arg
|
|
55
|
+
else:
|
|
56
|
+
return ""
|
|
57
|
+
elif hasattr(args_or_kwargs, "__iter__") and len(args_or_kwargs) > 0:
|
|
58
|
+
first_arg = args_or_kwargs[0]
|
|
59
|
+
if hasattr(first_arg, "get") and "input" in first_arg:
|
|
60
|
+
input_data = first_arg["input"]
|
|
61
|
+
else:
|
|
62
|
+
input_data = first_arg
|
|
63
|
+
else:
|
|
64
|
+
return ""
|
|
65
|
+
|
|
66
|
+
# Format input for display
|
|
67
|
+
if isinstance(input_data, (list, tuple)):
|
|
68
|
+
return " | ".join(str(item) for item in input_data)
|
|
69
|
+
else:
|
|
70
|
+
return str(input_data)
|
|
71
|
+
except Exception as e:
|
|
72
|
+
logger.warning(
|
|
73
|
+
"Warning: Error occurred in extract_embeddings_input: %s", str(e)
|
|
74
|
+
)
|
|
75
|
+
return ""
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def extract_assistant_message(arguments: Dict[str, Any]) -> str:
|
|
79
|
+
"""Extract assistant response from azure-ai-inference completion result."""
|
|
80
|
+
try:
|
|
81
|
+
# Check for exception first
|
|
82
|
+
if arguments.get("exception") is not None:
|
|
83
|
+
return get_exception_message(arguments)
|
|
84
|
+
|
|
85
|
+
result = arguments.get("result")
|
|
86
|
+
if not result:
|
|
87
|
+
return ""
|
|
88
|
+
if hasattr(result, "output_text"):
|
|
89
|
+
# If the result has output_text attribute
|
|
90
|
+
return result.output_text
|
|
91
|
+
if (
|
|
92
|
+
result.choices
|
|
93
|
+
and result.choices[0].message
|
|
94
|
+
and result.choices[0].message.content
|
|
95
|
+
):
|
|
96
|
+
# If the result is a chat completion with content
|
|
97
|
+
return result.choices[0].message.content
|
|
98
|
+
|
|
99
|
+
return str(result)
|
|
100
|
+
except Exception as e:
|
|
101
|
+
logger.warning(
|
|
102
|
+
"Warning: Error occurred in extract_assistant_message: %s", str(e)
|
|
103
|
+
)
|
|
104
|
+
return ""
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
def extract_embeddings_output(arguments: Dict[str, Any]) -> str:
|
|
108
|
+
"""Extract embeddings from azure-ai-inference embeddings result."""
|
|
109
|
+
try:
|
|
110
|
+
result = arguments.get("result")
|
|
111
|
+
if not result:
|
|
112
|
+
return ""
|
|
113
|
+
|
|
114
|
+
if hasattr(result, "data") and result.data:
|
|
115
|
+
# Format as summary of embeddings data
|
|
116
|
+
embeddings_info = []
|
|
117
|
+
for i, item in enumerate(result.data):
|
|
118
|
+
if hasattr(item, "embedding") and hasattr(item, "index"):
|
|
119
|
+
embedding_length = len(item.embedding) if item.embedding else 0
|
|
120
|
+
embeddings_info.append(
|
|
121
|
+
f"index={item.index}, embedding=[{embedding_length} dimensions]"
|
|
122
|
+
)
|
|
123
|
+
return " | ".join(embeddings_info)
|
|
124
|
+
|
|
125
|
+
return str(result)
|
|
126
|
+
except Exception as e:
|
|
127
|
+
logger.warning(
|
|
128
|
+
"Warning: Error occurred in extract_embeddings_output: %s", str(e)
|
|
129
|
+
)
|
|
130
|
+
return ""
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+
def update_span_from_llm_response(result: Any, instance: Any = None) -> Dict[str, Any]:
|
|
134
|
+
"""Extract usage metadata from azure-ai-inference response."""
|
|
135
|
+
try:
|
|
136
|
+
attributes = {}
|
|
137
|
+
|
|
138
|
+
# Handle streaming responses with accumulated usage data
|
|
139
|
+
if hasattr(result, "usage") and result.usage:
|
|
140
|
+
usage = result.usage
|
|
141
|
+
if hasattr(usage, "completion_tokens"):
|
|
142
|
+
attributes["completion_tokens"] = usage.completion_tokens
|
|
143
|
+
if hasattr(usage, "prompt_tokens"):
|
|
144
|
+
attributes["prompt_tokens"] = usage.prompt_tokens
|
|
145
|
+
if hasattr(usage, "total_tokens"):
|
|
146
|
+
attributes["total_tokens"] = usage.total_tokens
|
|
147
|
+
|
|
148
|
+
# Handle regular response usage
|
|
149
|
+
elif hasattr(result, "usage"):
|
|
150
|
+
usage = result.usage
|
|
151
|
+
if hasattr(usage, "completion_tokens"):
|
|
152
|
+
attributes["completion_tokens"] = usage.completion_tokens
|
|
153
|
+
if hasattr(usage, "prompt_tokens"):
|
|
154
|
+
attributes["prompt_tokens"] = usage.prompt_tokens
|
|
155
|
+
if hasattr(usage, "total_tokens"):
|
|
156
|
+
attributes["total_tokens"] = usage.total_tokens
|
|
157
|
+
|
|
158
|
+
# Extract model information if available
|
|
159
|
+
if hasattr(result, "model"):
|
|
160
|
+
attributes["model"] = result.model
|
|
161
|
+
|
|
162
|
+
return attributes
|
|
163
|
+
except Exception as e:
|
|
164
|
+
logger.warning(
|
|
165
|
+
"Warning: Error occurred in update_span_from_llm_response: %s", str(e)
|
|
166
|
+
)
|
|
167
|
+
return {}
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
def get_model_name(arguments: Dict[str, Any]) -> str:
|
|
171
|
+
"""Extract model name from azure-ai-inference request arguments."""
|
|
172
|
+
try:
|
|
173
|
+
|
|
174
|
+
# Try to get from instance
|
|
175
|
+
instance = arguments.get("instance")
|
|
176
|
+
if arguments.get('kwargs') and arguments.get('kwargs').get('model'):
|
|
177
|
+
return arguments['kwargs'].get('model')
|
|
178
|
+
if instance and hasattr(instance, "_config") and hasattr(instance._config, "model"):
|
|
179
|
+
return instance._config.endpoint.split("/")[-1]
|
|
180
|
+
|
|
181
|
+
return ""
|
|
182
|
+
except Exception as e:
|
|
183
|
+
logger.warning("Warning: Error occurred in get_model_name: %s", str(e))
|
|
184
|
+
return ""
|
|
185
|
+
|
|
186
|
+
|
|
187
|
+
def get_inference_type(arguments) -> str:
|
|
188
|
+
instance = arguments.get("instance")
|
|
189
|
+
if instance and hasattr(instance, "_config") and hasattr(instance._config, "endpoint"):
|
|
190
|
+
endpoint = instance._config.endpoint
|
|
191
|
+
try:
|
|
192
|
+
parsed = urlparse(endpoint)
|
|
193
|
+
hostname = parsed.hostname or endpoint
|
|
194
|
+
hostname = hostname.lower()
|
|
195
|
+
except Exception:
|
|
196
|
+
hostname = str(endpoint).lower()
|
|
197
|
+
if hostname.endswith("services.ai.azure.com"):
|
|
198
|
+
return "azure_ai_inference"
|
|
199
|
+
if hostname.endswith("openai.azure.com"):
|
|
200
|
+
return "azure_openai"
|
|
201
|
+
return "azure_ai_inference"
|
|
202
|
+
|
|
203
|
+
|
|
204
|
+
def get_provider_name(instance: Any) -> str:
|
|
205
|
+
"""Extract provider name from azure-ai-inference client instance."""
|
|
206
|
+
try:
|
|
207
|
+
# extract hostname from instance._config.endpoint
|
|
208
|
+
# https://okahu-openai-dev.openai.azure.com/openai/deployments/kshitiz-gpt => okahu-openai-dev.openai.azure.com
|
|
209
|
+
endpoint = instance._config.endpoint
|
|
210
|
+
if endpoint:
|
|
211
|
+
# Extract the hostname part
|
|
212
|
+
provider_name = endpoint.split("/")[2] if "/" in endpoint else endpoint
|
|
213
|
+
return provider_name
|
|
214
|
+
except Exception as e:
|
|
215
|
+
logger.warning("Warning: Error occurred in get_provider_name: %s", str(e))
|
|
216
|
+
return "azure_ai_inference"
|
|
@@ -0,0 +1,208 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import time
|
|
3
|
+
from types import SimpleNamespace
|
|
4
|
+
from monocle_apptrace.instrumentation.metamodel.azureaiinference import _helper
|
|
5
|
+
from monocle_apptrace.instrumentation.common.utils import (
|
|
6
|
+
resolve_from_alias,
|
|
7
|
+
patch_instance_method,
|
|
8
|
+
get_status,
|
|
9
|
+
get_exception_status_code
|
|
10
|
+
)
|
|
11
|
+
|
|
12
|
+
logger = logging.getLogger(__name__)
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def process_stream(to_wrap, response, span_processor):
|
|
16
|
+
"""Process streaming responses from Azure AI Inference."""
|
|
17
|
+
waiting_for_first_token = True
|
|
18
|
+
stream_start_time = time.time_ns()
|
|
19
|
+
first_token_time = stream_start_time
|
|
20
|
+
stream_closed_time = None
|
|
21
|
+
accumulated_response = ""
|
|
22
|
+
token_usage = None
|
|
23
|
+
|
|
24
|
+
# For sync iteration - patch __next__ instead of __iter__
|
|
25
|
+
if to_wrap and hasattr(response, "__next__"):
|
|
26
|
+
original_next = response.__next__
|
|
27
|
+
|
|
28
|
+
def new_next(self):
|
|
29
|
+
nonlocal waiting_for_first_token, first_token_time, stream_closed_time, accumulated_response, token_usage
|
|
30
|
+
|
|
31
|
+
try:
|
|
32
|
+
item = original_next()
|
|
33
|
+
|
|
34
|
+
# Handle Azure AI Inference streaming chunks
|
|
35
|
+
if hasattr(item, 'choices') and item.choices:
|
|
36
|
+
choice = item.choices[0]
|
|
37
|
+
if hasattr(choice, 'delta') and hasattr(choice.delta, 'content') and choice.delta.content:
|
|
38
|
+
if waiting_for_first_token:
|
|
39
|
+
waiting_for_first_token = False
|
|
40
|
+
first_token_time = time.time_ns()
|
|
41
|
+
|
|
42
|
+
accumulated_response += choice.delta.content
|
|
43
|
+
|
|
44
|
+
# Check for usage information at the end of stream
|
|
45
|
+
if hasattr(item, 'usage') and item.usage:
|
|
46
|
+
token_usage = item.usage
|
|
47
|
+
stream_closed_time = time.time_ns()
|
|
48
|
+
|
|
49
|
+
return item
|
|
50
|
+
|
|
51
|
+
except StopIteration:
|
|
52
|
+
# Stream is complete, process final span
|
|
53
|
+
if span_processor:
|
|
54
|
+
ret_val = SimpleNamespace(
|
|
55
|
+
type="stream",
|
|
56
|
+
timestamps={
|
|
57
|
+
"data.input": int(stream_start_time),
|
|
58
|
+
"data.output": int(first_token_time),
|
|
59
|
+
"metadata": int(stream_closed_time or time.time_ns()),
|
|
60
|
+
},
|
|
61
|
+
output_text=accumulated_response,
|
|
62
|
+
usage=token_usage,
|
|
63
|
+
)
|
|
64
|
+
span_processor(ret_val)
|
|
65
|
+
raise
|
|
66
|
+
except Exception as e:
|
|
67
|
+
logger.warning(
|
|
68
|
+
"Warning: Error occurred while processing item in new_next: %s",
|
|
69
|
+
str(e),
|
|
70
|
+
)
|
|
71
|
+
raise
|
|
72
|
+
|
|
73
|
+
patch_instance_method(response, "__next__", new_next)
|
|
74
|
+
|
|
75
|
+
# For async iteration - patch __anext__ instead of __aiter__
|
|
76
|
+
if to_wrap and hasattr(response, "__anext__"):
|
|
77
|
+
original_anext = response.__anext__
|
|
78
|
+
|
|
79
|
+
async def new_anext(self):
|
|
80
|
+
nonlocal waiting_for_first_token, first_token_time, stream_closed_time, accumulated_response, token_usage
|
|
81
|
+
|
|
82
|
+
try:
|
|
83
|
+
item = await original_anext()
|
|
84
|
+
|
|
85
|
+
# Handle Azure AI Inference streaming chunks
|
|
86
|
+
if hasattr(item, 'choices') and item.choices:
|
|
87
|
+
choice = item.choices[0]
|
|
88
|
+
if hasattr(choice, 'delta') and hasattr(choice.delta, 'content') and choice.delta.content:
|
|
89
|
+
if waiting_for_first_token:
|
|
90
|
+
waiting_for_first_token = False
|
|
91
|
+
first_token_time = time.time_ns()
|
|
92
|
+
|
|
93
|
+
accumulated_response += choice.delta.content
|
|
94
|
+
|
|
95
|
+
# Check for usage information at the end of stream
|
|
96
|
+
if hasattr(item, 'usage') and item.usage:
|
|
97
|
+
token_usage = item.usage
|
|
98
|
+
stream_closed_time = time.time_ns()
|
|
99
|
+
|
|
100
|
+
return item
|
|
101
|
+
|
|
102
|
+
except StopAsyncIteration:
|
|
103
|
+
# Stream is complete, process final span
|
|
104
|
+
if span_processor:
|
|
105
|
+
ret_val = SimpleNamespace(
|
|
106
|
+
type="stream",
|
|
107
|
+
timestamps={
|
|
108
|
+
"data.input": int(stream_start_time),
|
|
109
|
+
"data.output": int(first_token_time),
|
|
110
|
+
"metadata": int(stream_closed_time or time.time_ns()),
|
|
111
|
+
},
|
|
112
|
+
output_text=accumulated_response,
|
|
113
|
+
usage=token_usage,
|
|
114
|
+
)
|
|
115
|
+
span_processor(ret_val)
|
|
116
|
+
raise
|
|
117
|
+
except Exception as e:
|
|
118
|
+
logger.warning(
|
|
119
|
+
"Warning: Error occurred while processing item in new_anext: %s",
|
|
120
|
+
str(e),
|
|
121
|
+
)
|
|
122
|
+
raise
|
|
123
|
+
|
|
124
|
+
patch_instance_method(response, "__anext__", new_anext)
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
INFERENCE = {
|
|
128
|
+
"type": "inference",
|
|
129
|
+
"is_auto_close": lambda kwargs: kwargs.get("stream", False) is False,
|
|
130
|
+
"response_processor": process_stream,
|
|
131
|
+
"attributes": [
|
|
132
|
+
[
|
|
133
|
+
{
|
|
134
|
+
"_comment": "Azure AI Inference provider type, endpoint",
|
|
135
|
+
"attribute": "type",
|
|
136
|
+
"accessor": lambda arguments: f"inference.{_helper.get_inference_type(arguments)}"
|
|
137
|
+
},
|
|
138
|
+
{
|
|
139
|
+
"attribute": "provider_name",
|
|
140
|
+
"accessor": lambda arguments: _helper.get_provider_name(arguments['instance'])
|
|
141
|
+
},
|
|
142
|
+
{
|
|
143
|
+
"attribute": "inference_endpoint",
|
|
144
|
+
"accessor": lambda arguments: _helper.extract_inference_endpoint(arguments['instance'])
|
|
145
|
+
},
|
|
146
|
+
{
|
|
147
|
+
"attribute": "deployment",
|
|
148
|
+
"accessor": lambda arguments: resolve_from_alias(
|
|
149
|
+
arguments['instance'].__dict__,
|
|
150
|
+
['deployment', 'deployment_name', 'azure_deployment', '_deployment']
|
|
151
|
+
)
|
|
152
|
+
}
|
|
153
|
+
],
|
|
154
|
+
[
|
|
155
|
+
{
|
|
156
|
+
"_comment": "LLM Model information",
|
|
157
|
+
"attribute": "name",
|
|
158
|
+
"accessor": lambda arguments: _helper.get_model_name(arguments)
|
|
159
|
+
},
|
|
160
|
+
{
|
|
161
|
+
"attribute": "type",
|
|
162
|
+
"accessor": lambda arguments: f"model.llm.{_helper.get_model_name(arguments)}" if _helper.get_model_name(arguments) else "model.llm.unknown"
|
|
163
|
+
}
|
|
164
|
+
]
|
|
165
|
+
],
|
|
166
|
+
"events": [
|
|
167
|
+
{
|
|
168
|
+
"name": "data.input",
|
|
169
|
+
"attributes": [
|
|
170
|
+
{
|
|
171
|
+
"_comment": "Chat messages input to Azure AI Inference",
|
|
172
|
+
"attribute": "input",
|
|
173
|
+
"accessor": lambda arguments: _helper.extract_messages(arguments['kwargs'])
|
|
174
|
+
}
|
|
175
|
+
]
|
|
176
|
+
},
|
|
177
|
+
{
|
|
178
|
+
"name": "data.output",
|
|
179
|
+
"attributes": [
|
|
180
|
+
{
|
|
181
|
+
"_comment": "Response from Azure AI Inference",
|
|
182
|
+
"attribute": "response",
|
|
183
|
+
"accessor": lambda arguments: _helper.extract_assistant_message(arguments)
|
|
184
|
+
},
|
|
185
|
+
{
|
|
186
|
+
"attribute": "status",
|
|
187
|
+
"accessor": lambda arguments: get_status(arguments)
|
|
188
|
+
},
|
|
189
|
+
{
|
|
190
|
+
"attribute": "status_code",
|
|
191
|
+
"accessor": lambda arguments: get_exception_status_code(arguments)
|
|
192
|
+
}
|
|
193
|
+
]
|
|
194
|
+
},
|
|
195
|
+
{
|
|
196
|
+
"name": "metadata",
|
|
197
|
+
"attributes": [
|
|
198
|
+
{
|
|
199
|
+
"_comment": "Usage metadata from Azure AI Inference",
|
|
200
|
+
"accessor": lambda arguments: _helper.update_span_from_llm_response(
|
|
201
|
+
arguments['result'],
|
|
202
|
+
arguments.get('instance')
|
|
203
|
+
)
|
|
204
|
+
}
|
|
205
|
+
]
|
|
206
|
+
}
|
|
207
|
+
]
|
|
208
|
+
}
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
from monocle_apptrace.instrumentation.common.wrapper import atask_wrapper, task_wrapper
|
|
2
|
+
from monocle_apptrace.instrumentation.metamodel.azureaiinference.entities.inference import INFERENCE
|
|
3
|
+
|
|
4
|
+
AZURE_AI_INFERENCE_METHODS = [
|
|
5
|
+
# Chat Completions - Synchronous
|
|
6
|
+
{
|
|
7
|
+
"package": "azure.ai.inference",
|
|
8
|
+
"object": "ChatCompletionsClient",
|
|
9
|
+
"method": "complete",
|
|
10
|
+
"wrapper_method": task_wrapper,
|
|
11
|
+
"span_handler": "non_framework_handler",
|
|
12
|
+
"output_processor": INFERENCE
|
|
13
|
+
},
|
|
14
|
+
# Chat Completions - Asynchronous
|
|
15
|
+
{
|
|
16
|
+
"package": "azure.ai.inference.aio",
|
|
17
|
+
"object": "ChatCompletionsClient",
|
|
18
|
+
"method": "complete",
|
|
19
|
+
"wrapper_method": atask_wrapper,
|
|
20
|
+
"span_handler": "non_framework_handler",
|
|
21
|
+
"output_processor": INFERENCE
|
|
22
|
+
}
|
|
23
|
+
]
|
|
@@ -8,7 +8,7 @@ import json
|
|
|
8
8
|
from io import BytesIO
|
|
9
9
|
from functools import wraps
|
|
10
10
|
from monocle_apptrace.instrumentation.common.span_handler import SpanHandler
|
|
11
|
-
|
|
11
|
+
from monocle_apptrace.instrumentation.common.utils import ( get_exception_message,)
|
|
12
12
|
logger = logging.getLogger(__name__)
|
|
13
13
|
|
|
14
14
|
|
|
@@ -30,24 +30,49 @@ def extract_messages(args):
|
|
|
30
30
|
logger.warning("Warning: Error occurred in extract_messages: %s", str(e))
|
|
31
31
|
return []
|
|
32
32
|
|
|
33
|
+
def get_exception_status_code(arguments):
|
|
34
|
+
if arguments['exception'] is not None and hasattr(arguments['exception'], 'response') and arguments['exception'].response is not None:
|
|
35
|
+
if "ResponseMetadata" in arguments['exception'].response and "HTTPStatusCode" in arguments['exception'].response["ResponseMetadata"]:
|
|
36
|
+
return arguments['exception'].response["ResponseMetadata"]["HTTPStatusCode"]
|
|
37
|
+
elif arguments['exception'] is not None:
|
|
38
|
+
return 'error'
|
|
39
|
+
else:
|
|
40
|
+
return 'success'
|
|
41
|
+
|
|
42
|
+
def get_status_code(arguments):
|
|
43
|
+
if arguments["exception"] is not None:
|
|
44
|
+
return get_exception_status_code(arguments)
|
|
45
|
+
elif hasattr(arguments["result"], "status"):
|
|
46
|
+
return arguments["result"].status
|
|
47
|
+
else:
|
|
48
|
+
return 'success'
|
|
33
49
|
|
|
34
|
-
def extract_assistant_message(
|
|
50
|
+
def extract_assistant_message(arguments):
|
|
35
51
|
try:
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
52
|
+
status = get_status_code(arguments)
|
|
53
|
+
response: str = ""
|
|
54
|
+
if status == 'success':
|
|
55
|
+
if "Body" in arguments['result'] and hasattr(arguments['result']['Body'], "_raw_stream"):
|
|
56
|
+
raw_stream = getattr(arguments['result']['Body'], "_raw_stream")
|
|
57
|
+
if hasattr(raw_stream, "data"):
|
|
58
|
+
response_bytes = getattr(raw_stream, "data")
|
|
59
|
+
response_str = response_bytes.decode('utf-8')
|
|
60
|
+
response_dict = json.loads(response_str)
|
|
61
|
+
arguments['result']['Body'] = BytesIO(response_bytes)
|
|
62
|
+
response = response_dict["answer"]
|
|
63
|
+
if "output" in arguments['result']:
|
|
64
|
+
output = arguments['result'].get("output", {})
|
|
65
|
+
message = output.get("message", {})
|
|
66
|
+
content = message.get("content", [])
|
|
67
|
+
if isinstance(content, list) and len(content) > 0 and "text" in content[0]:
|
|
68
|
+
reply = content[0]["text"]
|
|
69
|
+
response = reply
|
|
70
|
+
else:
|
|
71
|
+
if arguments["exception"] is not None:
|
|
72
|
+
response = get_exception_message(arguments)
|
|
73
|
+
elif hasattr(arguments["result"], "error"):
|
|
74
|
+
response = arguments["result"].error
|
|
75
|
+
return response
|
|
51
76
|
except Exception as e:
|
|
52
77
|
logger.warning("Warning: Error occurred in extract_assistant_message: %s", str(e))
|
|
53
78
|
return []
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
from monocle_apptrace.instrumentation.metamodel.botocore import (
|
|
2
2
|
_helper,
|
|
3
3
|
)
|
|
4
|
-
from monocle_apptrace.instrumentation.common.utils import get_llm_type
|
|
4
|
+
from monocle_apptrace.instrumentation.common.utils import (get_llm_type, get_status,)
|
|
5
5
|
INFERENCE = {
|
|
6
6
|
"type": "inference",
|
|
7
7
|
"attributes": [
|
|
@@ -33,7 +33,6 @@ INFERENCE = {
|
|
|
33
33
|
"events": [
|
|
34
34
|
{"name": "data.input",
|
|
35
35
|
"attributes": [
|
|
36
|
-
|
|
37
36
|
{
|
|
38
37
|
"_comment": "this is instruction and user query to LLM",
|
|
39
38
|
"attribute": "input",
|
|
@@ -44,10 +43,19 @@ INFERENCE = {
|
|
|
44
43
|
{
|
|
45
44
|
"name": "data.output",
|
|
46
45
|
"attributes": [
|
|
46
|
+
{
|
|
47
|
+
"_comment": "this is result from LLM",
|
|
48
|
+
"attribute": "status",
|
|
49
|
+
"accessor": lambda arguments: get_status(arguments)
|
|
50
|
+
},
|
|
51
|
+
{
|
|
52
|
+
"attribute": "status_code",
|
|
53
|
+
"accessor": lambda arguments: _helper.get_status_code(arguments)
|
|
54
|
+
},
|
|
47
55
|
{
|
|
48
56
|
"_comment": "this is response from LLM",
|
|
49
57
|
"attribute": "response",
|
|
50
|
-
"accessor": lambda arguments: _helper.extract_assistant_message(arguments
|
|
58
|
+
"accessor": lambda arguments: _helper.extract_assistant_message(arguments)
|
|
51
59
|
}
|
|
52
60
|
]
|
|
53
61
|
},
|
|
@@ -70,7 +70,7 @@ class FlaskResponseSpanHandler(SpanHandler):
|
|
|
70
70
|
if _parent_span_context is not None:
|
|
71
71
|
parent_span: Span = _parent_span_context.get(_SPAN_KEY, None)
|
|
72
72
|
if parent_span is not None:
|
|
73
|
-
self.hydrate_events(to_wrap, wrapped, instance, args, kwargs, return_value, parent_span)
|
|
73
|
+
self.hydrate_events(to_wrap, wrapped, instance, args, kwargs, return_value, parent_span=parent_span)
|
|
74
74
|
except Exception as e:
|
|
75
75
|
logger.info(f"Failed to propogate flask response: {e}")
|
|
76
76
|
super().post_tracing(to_wrap, wrapped, instance, args, kwargs, return_value)
|
|
@@ -5,6 +5,8 @@ from monocle_apptrace.instrumentation.common.utils import (
|
|
|
5
5
|
get_keys_as_tuple,
|
|
6
6
|
get_nested_value,
|
|
7
7
|
try_option,
|
|
8
|
+
get_exception_message,
|
|
9
|
+
get_status_code,
|
|
8
10
|
)
|
|
9
11
|
logger = logging.getLogger(__name__)
|
|
10
12
|
|
|
@@ -52,19 +54,25 @@ def extract_question_from_prompt(content):
|
|
|
52
54
|
logger.warning("Warning: Error occurred in extract_question_from_prompt: %s", str(e))
|
|
53
55
|
return ""
|
|
54
56
|
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
57
|
+
def extract_assistant_message(arguments):
|
|
58
|
+
status = get_status_code(arguments)
|
|
59
|
+
response: str = ""
|
|
60
|
+
if status == 'success':
|
|
61
|
+
if "replies" in arguments['result']:
|
|
62
|
+
reply = arguments['result']["replies"][0]
|
|
60
63
|
if hasattr(reply, 'content'):
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
64
|
+
response = reply.content
|
|
65
|
+
elif hasattr(reply, 'text'):
|
|
66
|
+
response = reply.text
|
|
67
|
+
else:
|
|
68
|
+
response = reply
|
|
69
|
+
else:
|
|
70
|
+
if arguments["exception"] is not None:
|
|
71
|
+
response = get_exception_message(arguments)
|
|
72
|
+
elif hasattr(response, "error"):
|
|
73
|
+
response = arguments['result'].error
|
|
74
|
+
|
|
75
|
+
return response
|
|
68
76
|
|
|
69
77
|
|
|
70
78
|
def get_vectorstore_deployment(my_map):
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
from monocle_apptrace.instrumentation.metamodel.haystack import (
|
|
2
2
|
_helper,
|
|
3
3
|
)
|
|
4
|
-
from monocle_apptrace.instrumentation.common.utils import get_llm_type
|
|
4
|
+
from monocle_apptrace.instrumentation.common.utils import get_llm_type, get_status, get_status_code
|
|
5
5
|
|
|
6
6
|
INFERENCE = {
|
|
7
7
|
"type": "inference.framework",
|
|
@@ -60,8 +60,16 @@ INFERENCE = {
|
|
|
60
60
|
"attributes": [
|
|
61
61
|
{
|
|
62
62
|
"_comment": "this is response from LLM",
|
|
63
|
+
"attribute": "status",
|
|
64
|
+
"accessor": lambda arguments: get_status(arguments)
|
|
65
|
+
},
|
|
66
|
+
{
|
|
67
|
+
"attribute": "status_code",
|
|
68
|
+
"accessor": lambda arguments: get_status_code(arguments)
|
|
69
|
+
},
|
|
70
|
+
{
|
|
63
71
|
"attribute": "response",
|
|
64
|
-
"accessor": lambda arguments: _helper.extract_assistant_message(arguments
|
|
72
|
+
"accessor": lambda arguments: _helper.extract_assistant_message(arguments)
|
|
65
73
|
}
|
|
66
74
|
]
|
|
67
75
|
},
|