monobiome 1.3.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
monobiome/__init__.py ADDED
@@ -0,0 +1,3 @@
1
+ from importlib.metadata import version
2
+
3
+ __version__ = version("monobiome")
monobiome/__main__.py ADDED
@@ -0,0 +1,19 @@
1
+ from monobiome.cli import create_parser, configure_logging
2
+
3
+
4
+ def main() -> None:
5
+ parser = create_parser()
6
+ args = parser.parse_args()
7
+
8
+ # skim off log level to handle higher-level option
9
+ if hasattr(args, "log_level") and args.log_level is not None:
10
+ configure_logging(args.log_level)
11
+
12
+ if "func" in args:
13
+ args.func(args)
14
+ else:
15
+ parser.print_help()
16
+
17
+
18
+ if __name__ == "__main__":
19
+ main()
@@ -0,0 +1,32 @@
1
+ import logging
2
+ import argparse
3
+
4
+ from monobiome.cli import scheme, palette
5
+
6
+ logger: logging.Logger = logging.getLogger(__name__)
7
+
8
+ def configure_logging(log_level: int) -> None:
9
+ """
10
+ Configure logger's logging level.
11
+ """
12
+
13
+ logger.setLevel(log_level)
14
+
15
+ def create_parser() -> argparse.ArgumentParser:
16
+ parser = argparse.ArgumentParser(
17
+ description="Accent modeling CLI",
18
+ )
19
+ parser.add_argument(
20
+ "--log-level",
21
+ type=int,
22
+ metavar="int",
23
+ choices=[10, 20, 30, 40, 50],
24
+ help="Log level: 10=DEBUG, 20=INFO, 30=WARNING, 40=ERROR, 50=CRITICAL",
25
+ )
26
+
27
+ subparsers = parser.add_subparsers(help="subcommand help")
28
+
29
+ palette.register_parser(subparsers)
30
+ scheme.register_parser(subparsers)
31
+
32
+ return parser
@@ -0,0 +1,51 @@
1
+ import argparse
2
+ from pathlib import Path
3
+
4
+ from monobiome.util import _SubparserType
5
+ from monobiome.palette import generate_palette
6
+
7
+
8
+ def register_parser(subparsers: _SubparserType) -> None:
9
+ parser = subparsers.add_parser(
10
+ "palette",
11
+ help="generate primary palette"
12
+ )
13
+
14
+ parser.add_argument(
15
+ "-n",
16
+ "--notation",
17
+ type=str,
18
+ default="hex",
19
+ choices=["hex", "oklch"],
20
+ help="Color notation to export (either hex or oklch)",
21
+ )
22
+ parser.add_argument(
23
+ "-f",
24
+ "--format",
25
+ type=str,
26
+ default="toml",
27
+ choices=["json", "toml"],
28
+ help="Format of palette file (either JSON or TOML)",
29
+ )
30
+ parser.add_argument(
31
+ "-o",
32
+ "--output",
33
+ type=str,
34
+ help="Output file to write palette content",
35
+ )
36
+
37
+ parser.set_defaults(func=handle_palette)
38
+
39
+
40
+ def handle_palette(args: argparse.Namespace) -> None:
41
+ notation = args.notation
42
+ file_format = args.format
43
+ output = args.output
44
+
45
+ palette_text = generate_palette(notation, file_format)
46
+
47
+ if output is None:
48
+ print(palette_text)
49
+ else:
50
+ with Path(output).open("w") as f:
51
+ f.write(palette_text)
@@ -0,0 +1,155 @@
1
+ import argparse
2
+ from pathlib import Path
3
+
4
+ from monobiome.util import _SubparserType
5
+ from monobiome.scheme import generate_scheme
6
+ from monobiome.constants import monotone_h_map
7
+
8
+
9
+ def register_parser(subparsers: _SubparserType) -> None:
10
+ parser = subparsers.add_parser(
11
+ "scheme",
12
+ help="create scheme variants"
13
+ )
14
+
15
+ parser.add_argument(
16
+ "mode",
17
+ type=str,
18
+ choices=["dark", "light"],
19
+ help="Scheme mode (light or dark)"
20
+ )
21
+ parser.add_argument(
22
+ "biome",
23
+ type=str,
24
+ choices=list(monotone_h_map.keys()),
25
+ help="Biome setting for scheme."
26
+ )
27
+ parser.add_argument(
28
+ "-m",
29
+ "--metric",
30
+ type=str,
31
+ default="oklch",
32
+ choices=["wcag", "oklch", "lightness"],
33
+ help="Metric to use for measuring swatch distances."
34
+ )
35
+
36
+ # e.g., wcag=4.5; oklch=0.40; lightness=40
37
+ parser.add_argument(
38
+ "-d",
39
+ "--distance",
40
+ type=float,
41
+ default=0.40,
42
+ help="Distance threshold for specified metric",
43
+ )
44
+ parser.add_argument(
45
+ "-o",
46
+ "--output",
47
+ type=str,
48
+ help="Output file to write scheme content",
49
+ )
50
+
51
+ # these params remain rooted in lightness; no need to accommodate metric
52
+ # given these are monotone adjustments. You *could* consider rooting these
53
+ # in metric units, but along monotones, distance=lightness and WCAG isn't a
54
+ # particularly good measure of perceptual distinction, so we'd prefer the
55
+ # former.
56
+ parser.add_argument(
57
+ "-l",
58
+ "--l-base",
59
+ type=int,
60
+ default=20,
61
+ help="Minimum lightness level (default: 20)",
62
+ )
63
+ parser.add_argument(
64
+ "--l-step",
65
+ type=int,
66
+ default=5,
67
+ help="Lightness step size (default: 5)",
68
+ )
69
+
70
+ # gaps
71
+ parser.add_argument(
72
+ "--fg-gap",
73
+ type=int,
74
+ default=50,
75
+ help="Foreground lightness gap (default: 50)",
76
+ )
77
+ parser.add_argument(
78
+ "--grey-gap",
79
+ type=int,
80
+ default=30,
81
+ help="Grey lightness gap (default: 30)",
82
+ )
83
+ parser.add_argument(
84
+ "--term-fg-gap",
85
+ type=int,
86
+ default=65,
87
+ help="Terminal foreground lightness gap (default: 60)",
88
+ )
89
+
90
+ parser.set_defaults(func=handle_scheme)
91
+
92
+
93
+ def handle_scheme(args: argparse.Namespace) -> None:
94
+ output = args.output
95
+
96
+ mode = args.mode
97
+ biome = args.biome
98
+ metric = args.metric
99
+ distance = args.distance
100
+ l_base = args.l_base
101
+ l_step = args.l_step
102
+ fg_gap = args.fg_gap
103
+ grey_gap = args.grey_gap
104
+ term_fg_gap = args.term_fg_gap
105
+
106
+ full_color_map = {
107
+ "red": "red",
108
+ "orange": "orange",
109
+ "yellow": "yellow",
110
+ "green": "green",
111
+ "cyan": "cyan",
112
+ "blue": "blue",
113
+ "violet": "violet",
114
+ "magenta": "orange",
115
+ }
116
+ term_color_map = {
117
+ "red": "red",
118
+ "yellow": "yellow",
119
+ "green": "green",
120
+ "cyan": "blue",
121
+ "blue": "blue",
122
+ "magenta": "orange",
123
+ }
124
+ vim_color_map = {
125
+ "red": "red",
126
+ "orange": "orange",
127
+ "yellow": "yellow",
128
+ "green": "green",
129
+ "cyan": "green",
130
+ "blue": "blue",
131
+ "violet": "blue",
132
+ "magenta": "red",
133
+ }
134
+ # vim_color_map = full_color_map
135
+
136
+ scheme_text = generate_scheme(
137
+ mode,
138
+ biome,
139
+ metric,
140
+ distance,
141
+ l_base,
142
+ l_step,
143
+ fg_gap,
144
+ grey_gap,
145
+ term_fg_gap,
146
+ full_color_map,
147
+ term_color_map,
148
+ vim_color_map,
149
+ )
150
+
151
+ if output is None:
152
+ print(scheme_text)
153
+ else:
154
+ with Path(output).open("w") as f:
155
+ f.write(scheme_text)
monobiome/constants.py ADDED
@@ -0,0 +1,123 @@
1
+ import tomllib
2
+ from importlib.resources import files
3
+
4
+ import numpy as np
5
+
6
+ from monobiome.curve import (
7
+ l_maxC_h,
8
+ bezier_y_at_x,
9
+ )
10
+
11
+ parameters_file = files("monobiome.data") / "parameters.toml"
12
+ parameters = tomllib.load(parameters_file.open("rb"))
13
+
14
+ L_min: int = parameters.get("L_min", 10)
15
+ L_max: int = parameters.get("L_max", 98)
16
+ L_step: int = parameters.get("L_step", 5)
17
+
18
+ L_points: list[int] = list(range(L_min, L_max+1))
19
+
20
+ # L-space just affects accuracy of chroma max
21
+ L_space = np.arange(0, 100 + L_step, L_step)
22
+
23
+ monotone_C_map = parameters.get("monotone_C_map", {})
24
+ h_weights = parameters.get("h_weights", {})
25
+ h_L_offsets = parameters.get("h_L_offsets", {})
26
+ h_C_offsets = parameters.get("h_C_offsets", {})
27
+ monotone_h_map = parameters.get("monotone_h_map", {})
28
+ accent_h_map = parameters.get("accent_h_map", {})
29
+ h_map = {**monotone_h_map, **accent_h_map}
30
+
31
+ """
32
+ Compute chroma maxima at provided lightness levels across hues.
33
+
34
+ A map with max chroma values for each hue across lightness space
35
+
36
+ {
37
+ "red": [ Cmax@L=10, Cmax@L=11, Cmax@L=12, ... ],
38
+ "orange": [ Cmax@L=10, Cmax@L=11, Cmax@L=12, ... ],
39
+ ...
40
+ }
41
+ """
42
+ Lspace_Cmax_Hmap = {
43
+ h_str: [l_maxC_h(_L, _h) for _L in L_space]
44
+ for h_str, _h in h_map.items()
45
+ }
46
+
47
+
48
+ """
49
+ Set QBR curves, *unbounded* chroma curves for all hues
50
+
51
+ 1. Raw bezier chroma values for each hue across the lightness space
52
+
53
+ Lpoints_Cqbr_Hmap = {
54
+ "red": [ Bezier@L=10, Bezier@L=11, Bezier@L=12, ... ],
55
+ ...
56
+ }
57
+
58
+ 2. Three bezier control points for each hue's chroma curve
59
+
60
+ QBR_ctrl_Hmap = {
61
+ "red": np.array([
62
+ [ x1, y1 ],
63
+ [ x2, y2 ],
64
+ [ x3, y3 ]
65
+ ]),
66
+ ...
67
+ }
68
+ """
69
+ Lpoints_Cqbr_Hmap = {}
70
+ QBR_ctrl_Hmap = {}
71
+
72
+ for h_str, _h in monotone_h_map.items():
73
+ Lpoints_Cqbr_Hmap[h_str] = np.array(
74
+ [monotone_C_map[h_str]]*len(L_points)
75
+ )
76
+
77
+ for h_str, _h in accent_h_map.items():
78
+ Lspace_Cmax = Lspace_Cmax_Hmap[h_str]
79
+
80
+ # get L value of max chroma; will be a bezier control
81
+ L_Cmax_idx = np.argmax(Lspace_Cmax)
82
+ L_Cmax = L_space[L_Cmax_idx]
83
+
84
+ # offset control point by any preset x-shift
85
+ L_Cmax += h_L_offsets[h_str]
86
+
87
+ # and get max C at the L offset
88
+ Cmax = l_maxC_h(L_Cmax, _h)
89
+
90
+ # set 3 control points; shift by any global linear offest
91
+ C_offset = h_C_offsets.get(h_str, 0)
92
+
93
+ p_0 = np.array([0, 0])
94
+ p_Cmax = np.array([L_Cmax, Cmax + C_offset])
95
+ p_100 = np.array([100, 0])
96
+
97
+ B_L_points = bezier_y_at_x(
98
+ p_0, p_Cmax, p_100,
99
+ h_weights.get(h_str, 1),
100
+ L_points
101
+ )
102
+ Lpoints_Cqbr_Hmap[h_str] = B_L_points
103
+ QBR_ctrl_Hmap[h_str] = np.vstack([p_0, p_Cmax, p_100])
104
+
105
+
106
+ """
107
+ Bezier chroma values, but bounded to attainable gamut colors (bezier fit
108
+ can produce invalid chroma values)
109
+
110
+ h_L_points_Cstar = {
111
+ "red": [ bounded-bezier@L=10, bounded-bezier@L=11, ... ],
112
+ ...
113
+ }
114
+ """
115
+ Lpoints_Cstar_Hmap = {}
116
+
117
+ for h_str, L_points_C in Lpoints_Cqbr_Hmap.items():
118
+ _h = h_map[h_str]
119
+
120
+ Lpoints_Cstar_Hmap[h_str] = [
121
+ max(0, min(_C, l_maxC_h(_L, _h)))
122
+ for _L, _C in zip(L_points, L_points_C, strict=True)
123
+ ]
monobiome/curve.py ADDED
@@ -0,0 +1,77 @@
1
+ from functools import cache
2
+
3
+ import numpy as np
4
+ from coloraide import Color
5
+
6
+
7
+ def quad_bezier_rational(
8
+ P0: float,
9
+ P1: float,
10
+ P2: float,
11
+ w: float,
12
+ t: np.array,
13
+ ) -> np.array:
14
+ """
15
+ Compute the point values of a quadratic rational Bezier curve.
16
+
17
+ Uses `P0`, `P1`, and `P2` as the three control points of the curve. `w`
18
+ controls the weight toward the middle control point ("sharpness" of the
19
+ curve"), and `t` is the number of sample points used along the curve.
20
+ """
21
+
22
+ t = np.asarray(t)[:, None]
23
+ num = (1-t)**2*P0 + 2*w*(1-t)*t*P1 + t**2*P2
24
+ den = (1-t)**2 + 2*w*(1-t)*t + t**2
25
+
26
+ return num / den
27
+
28
+ def bezier_y_at_x(
29
+ P0: float,
30
+ P1: float,
31
+ P2: float,
32
+ w: float,
33
+ x: float,
34
+ n: int = 400,
35
+ ) -> np.array:
36
+ """
37
+ For the provided QBR parameters, provide the curve value at the given
38
+ input.
39
+ """
40
+
41
+ t = np.linspace(0, 1, n)
42
+ B = quad_bezier_rational(P0, P1, P2, w, t)
43
+ x_vals, y_vals = B[:, 0], B[:, 1]
44
+
45
+ return np.interp(x, x_vals, y_vals)
46
+
47
+ @cache
48
+ def l_maxC_h(
49
+ _l: float,
50
+ _h: float,
51
+ space: str = 'srgb',
52
+ eps: float = 1e-6,
53
+ tol: float = 1e-9
54
+ ) -> float:
55
+ """
56
+ Binary search for max attainable OKLCH chroma at fixed lightness and hue.
57
+
58
+ Parameters:
59
+ _l: lightness
60
+ _h: hue
61
+
62
+ Returns:
63
+ Max in-gamut chroma at provided lightness and hue
64
+ """
65
+
66
+ def chroma_in_gamut(_c: float) -> bool:
67
+ color = Color('oklch', [_l/100, _c, _h])
68
+ return color.convert(space).in_gamut(tolerance=tol)
69
+
70
+ lo, hi = 0.0, 0.1
71
+ while chroma_in_gamut(hi):
72
+ hi *= 2
73
+ while hi - lo > eps:
74
+ m = (lo + hi) / 2
75
+ lo, hi = (m, hi) if chroma_in_gamut(m) else (lo, m)
76
+
77
+ return lo
@@ -0,0 +1,65 @@
1
+ L_min = 10
2
+ L_max = 98
3
+ L_step = 5
4
+
5
+ [monotone_C_map]
6
+ alpine = 0
7
+ badlands = 0.011
8
+ chaparral = 0.011
9
+ savanna = 0.011
10
+ grassland = 0.011
11
+ reef = 0.011
12
+ tundra = 0.011
13
+ heathland = 0.011
14
+ moorland = 0.011
15
+
16
+ [h_weights]
17
+ red = 3.0
18
+ orange = 3.8
19
+ yellow = 3.8
20
+ green = 3.8
21
+ cyan = 3.8
22
+ blue = 3.6
23
+ violet = 3.0
24
+ magenta = 3.6
25
+
26
+ [h_L_offsets]
27
+ red = 0
28
+ orange = -5.5
29
+ yellow = -13.5
30
+ green = -12.5
31
+ cyan = -10.5
32
+ blue = 9
33
+ violet = 7
34
+ magenta = 2
35
+
36
+ [h_C_offsets]
37
+ red = 0
38
+ orange = -0.015
39
+ yellow = -0.052
40
+ green = -0.08
41
+ cyan = -0.009
42
+ blue = -0.01
43
+ violet = -0.047
44
+ magenta = -0.1
45
+
46
+ [monotone_h_map]
47
+ alpine = 0
48
+ badlands = 29
49
+ chaparral = 62.5
50
+ savanna = 104
51
+ grassland = 148
52
+ reef = 205
53
+ tundra = 262
54
+ heathland = 306
55
+ moorland = 350
56
+
57
+ [accent_h_map]
58
+ red = 29
59
+ orange = 62.5
60
+ yellow = 104
61
+ green = 148
62
+ cyan = 205
63
+ blue = 262
64
+ violet = 306
65
+ magenta = 350
monobiome/palette.py ADDED
@@ -0,0 +1,54 @@
1
+ import json
2
+ from functools import cache
3
+ from importlib.metadata import version
4
+
5
+ from coloraide import Color
6
+
7
+ from monobiome.constants import (
8
+ h_map,
9
+ L_points,
10
+ Lpoints_Cstar_Hmap,
11
+ )
12
+
13
+
14
+ @cache
15
+ def compute_hlc_map(notation: str) -> dict[str, dict[int, str]]:
16
+ hlc_map = {}
17
+
18
+ for h_str, Lpoints_Cstar in Lpoints_Cstar_Hmap.items():
19
+ _h = h_map[h_str]
20
+ hlc_map[h_str] = {}
21
+
22
+ for _l, _c in zip(L_points, Lpoints_Cstar, strict=True):
23
+ oklch = Color('oklch', [_l/100, _c, _h])
24
+
25
+ if notation == "hex":
26
+ srgb = oklch.convert('srgb')
27
+ c_str = srgb.to_string(hex=True)
28
+ elif notation == "oklch":
29
+ ol, oc, oh = oklch.convert('oklch').coords()
30
+ c_str = f"oklch({ol*100:.1f}% {oc:.4f} {oh:.1f})"
31
+
32
+ hlc_map[h_str][_l] = c_str
33
+
34
+ return hlc_map
35
+
36
+ def generate_palette(
37
+ notation: str,
38
+ file_format: str,
39
+ ) -> str:
40
+ mb_version = version("monobiome")
41
+ hlc_map = compute_hlc_map(notation)
42
+
43
+ if file_format == "json":
44
+ hlc_map["version"] = mb_version
45
+ return json.dumps(hlc_map, indent=4)
46
+ else:
47
+ toml_lines = [f"version = {mb_version}", ""]
48
+ for _h, _lc_map in hlc_map.items():
49
+ toml_lines.append(f"[{_h}]")
50
+ for _l, _c in _lc_map.items():
51
+ toml_lines.append(f'l{_l} = "{_c}"')
52
+ toml_lines.append("")
53
+
54
+ return "\n".join(toml_lines)
monobiome/plotting.py ADDED
@@ -0,0 +1,176 @@
1
+ import numpy as np
2
+ import matplotlib.pyplot as plt
3
+
4
+ from monobiome.constants import (
5
+ h_map,
6
+ L_space,
7
+ L_points,
8
+ accent_h_map,
9
+ monotone_h_map,
10
+ Lspace_Cmax_Hmap,
11
+ Lpoints_Cstar_Hmap,
12
+ )
13
+
14
+
15
+ def plot_hue_chroma_bounds() -> None:
16
+ name_h_map = {}
17
+ ax_h_map = {}
18
+ fig, axes = plt.subplots(
19
+ len(monotone_h_map),
20
+ 1,
21
+ sharex=True,
22
+ sharey=True,
23
+ figsize=(4, 10)
24
+ )
25
+
26
+ for i, h_str in enumerate(Lpoints_Cstar_Hmap):
27
+ _h = h_map[h_str]
28
+
29
+ l_space_Cmax = Lspace_Cmax_Hmap[h_str]
30
+ l_points_Cstar = Lpoints_Cstar_Hmap[h_str]
31
+
32
+ if _h not in ax_h_map:
33
+ ax_h_map[_h] = axes[i]
34
+ ax = ax_h_map[_h]
35
+
36
+ if _h not in name_h_map:
37
+ name_h_map[_h] = []
38
+ name_h_map[_h].append(h_str)
39
+
40
+ # plot Cmax and Cstar
41
+ ax.plot(L_space, l_space_Cmax, c="g", alpha=0.3, label="Cmax")
42
+
43
+ cstar_label = f"{'accent' if h_str in accent_h_map else 'monotone'} C*"
44
+ ax.plot(L_points, l_points_Cstar, alpha=0.7, label=cstar_label)
45
+
46
+ ax.title.set_text(f"Hue [${_h}$] - {'|'.join(name_h_map[_h])}")
47
+
48
+ axes[-1].set_xlabel("Lightness (%)")
49
+ axes[-1].set_xticks([L_points[0], L_points[-1]])
50
+
51
+ fig.tight_layout()
52
+ fig.subplots_adjust(top=0.9)
53
+
54
+ handles, labels = axes[-1].get_legend_handles_labels()
55
+ unique = dict(zip(labels, handles))
56
+ fig.legend(unique.values(), unique.keys(), loc='lower center', bbox_to_anchor=(0.5, -0.06), ncol=3)
57
+
58
+ plt.suptitle("$C^*$ curves for hue groups")
59
+ plt.show()
60
+
61
+
62
+ def plot_hue_chroma_star() -> None:
63
+ fig, ax = plt.subplots(1, 1, figsize=(8, 6))
64
+
65
+ # uncomment to preview 5 core term colors
66
+ colors = accent_h_map.keys()
67
+ #colors = set(["red", "orange", "yellow", "green", "blue"])
68
+
69
+ for h_str in Lpoints_Cstar_Hmap:
70
+ if h_str not in accent_h_map or h_str not in colors:
71
+ continue
72
+ ax.fill_between(
73
+ L_points,
74
+ Lpoints_Cstar_Hmap[h_str],
75
+ alpha=0.2,
76
+ color='grey',
77
+ label=h_str
78
+ )
79
+
80
+ x, y = L_points, Lpoints_Cstar_Hmap[h_str]
81
+ n = int(0.45*len(x))
82
+ ax.text(x[n], y[n]-0.01, h_str, rotation=10, va='center', ha='left')
83
+
84
+ ax.set_xlabel("Lightness (%)")
85
+ ax.set_xticks([L_points[0], 45, 50, 55, 60, 65, 70, L_points[-1]])
86
+ plt.suptitle("$C^*$ curves (v1.4.0)")
87
+ fig.show()
88
+
89
+
90
+ def palette_image(palette, cell_size=40, keys=None):
91
+ if keys is None:
92
+ names = list(palette.keys())
93
+ else:
94
+ names = keys
95
+
96
+ row_count = len(names)
97
+ col_counts = [len(palette[n]) for n in names]
98
+ max_cols = max(col_counts)
99
+
100
+ h = row_count * cell_size
101
+ w = max_cols * cell_size
102
+ img = np.ones((h, w, 3), float)
103
+
104
+ lightness_keys_per_row = []
105
+
106
+ for r, name in enumerate(names):
107
+ shades = palette[name]
108
+ keys = sorted(shades.keys())
109
+ lightness_keys_per_row.append(keys)
110
+ for c, k in enumerate(keys):
111
+ col = Color(shades[k]).convert("srgb").fit(method="clip")
112
+ rgb = [col["r"], col["g"], col["b"]]
113
+ r0, r1 = r * cell_size, (r + 1) * cell_size
114
+ c0, c1 = c * cell_size, (c + 1) * cell_size
115
+ img[r0:r1, c0:c1, :] = rgb
116
+
117
+ return img, names, lightness_keys_per_row, cell_size, max_cols
118
+
119
+
120
+ def show_palette(palette, cell_size=40, keys=None):
121
+ img, names, keys, cell_size, max_cols = palette_image(palette, cell_size, keys=keys)
122
+
123
+ fig_w = img.shape[1] / 100
124
+ fig_h = img.shape[0] / 100
125
+ fig, ax = plt.subplots(figsize=(fig_w, fig_h))
126
+
127
+ ax.imshow(img, interpolation="none", origin="upper")
128
+ ax.set_xticks([])
129
+
130
+ ytick_pos = [(i + 0.5) * cell_size for i in range(len(names))]
131
+ ax.set_yticks(ytick_pos)
132
+ ax.set_yticklabels(names)
133
+
134
+ ax.set_ylim(img.shape[0], 0) # ensures rows render correctly without half-cells
135
+
136
+ plt.show()
137
+
138
+
139
+ if __name__ == "__main__":
140
+ from monobiome.constants import OKLCH_hL_dict
141
+
142
+ keys = [
143
+ "alpine",
144
+ "badlands",
145
+ "chaparral",
146
+ "savanna",
147
+ "grassland",
148
+ "reef",
149
+ "tundra",
150
+ "heathland",
151
+ "moorland",
152
+ "orange",
153
+ "yellow",
154
+ "green",
155
+ "cyan",
156
+ "blue",
157
+ "violet",
158
+ "magenta",
159
+ "red",
160
+ ]
161
+ term_keys = [
162
+ "alpine",
163
+ "badlands",
164
+ "chaparral",
165
+ "savanna",
166
+ "grassland",
167
+ "tundra",
168
+ "red",
169
+ "orange",
170
+ "yellow",
171
+ "green",
172
+ "blue",
173
+ ]
174
+
175
+ show_palette(OKLCH_hL_dict, cell_size=25, keys=keys)
176
+ # show_palette(OKLCH_hL_dict, cell_size=1, keys=term_keys)
monobiome/scheme.py ADDED
@@ -0,0 +1,254 @@
1
+ from functools import cache
2
+ from collections.abc import Callable
3
+
4
+ from coloraide import Color
5
+
6
+ from monobiome.util import oklch_distance
7
+ from monobiome.palette import compute_hlc_map
8
+ from monobiome.constants import (
9
+ accent_h_map,
10
+ monotone_h_map,
11
+ )
12
+
13
+
14
+ @cache
15
+ def compute_dma_map(
16
+ dT: float,
17
+ metric: Callable | None = None
18
+ ) -> dict[str, dict]:
19
+ """
20
+ For threshold `dT`, compute the nearest accent shades that exceed that
21
+ threshold for every monotone shade.
22
+
23
+ Returns: map of minimum constraint satisfying accent colors for monotone
24
+ spectra
25
+
26
+ {
27
+ "alpine": {
28
+ "oklch( ... )": {
29
+ "red": *nearest oklch >= dT from M base*,
30
+ ...
31
+ },
32
+ ...
33
+ },
34
+ ...
35
+ }
36
+ """
37
+
38
+ if metric is None:
39
+ metric = oklch_distance
40
+
41
+ oklch_hlc_map = compute_hlc_map("oklch")
42
+ oklch_color_map = {
43
+ c_name: [Color(c_str) for c_str in c_str_dict.values()]
44
+ for c_name, c_str_dict in oklch_hlc_map.items()
45
+ }
46
+
47
+ dT_mL_acol_map = {}
48
+ for m_name in monotone_h_map:
49
+ mL_acol_map = {}
50
+ m_colors = oklch_color_map[m_name]
51
+
52
+ for m_color in m_colors:
53
+ acol_min_map = {}
54
+
55
+ for a_name in accent_h_map:
56
+ a_colors = oklch_color_map[a_name]
57
+ oklch_dists = filter(
58
+ lambda d: (d[1] - dT) >= 0,
59
+ [
60
+ (ac, metric(m_color, ac))
61
+ for ac in a_colors
62
+ ]
63
+ )
64
+ oklch_dists = list(oklch_dists)
65
+ if oklch_dists:
66
+ min_a_color = min(oklch_dists, key=lambda t: t[1])[0]
67
+ acol_min_map[a_name] = min_a_color
68
+
69
+ # make sure the current monotone level has *all* accents; o/w
70
+ # ignore
71
+ if len(acol_min_map) < len(accent_h_map):
72
+ continue
73
+
74
+ mL = m_color.coords()[0]
75
+ mL_acol_map[int(mL*100)] = acol_min_map
76
+ dT_mL_acol_map[m_name] = mL_acol_map
77
+
78
+ return dT_mL_acol_map
79
+
80
+ def generate_scheme_groups(
81
+ mode: str,
82
+ biome: str,
83
+ metric: str,
84
+ distance: float,
85
+ l_base: int,
86
+ l_step: int,
87
+ fg_gap: int,
88
+ grey_gap: int,
89
+ term_fg_gap: int,
90
+ accent_color_map: dict[str, str],
91
+ ) -> tuple[dict[str, str], ...]:
92
+ """
93
+ Parameters:
94
+ mode: one of ["dark", "light"]
95
+ biome: biome setting
96
+ metric: one of ["wcag", "oklch", "lightness"]
97
+ """
98
+
99
+ metric_map = {
100
+ "wcag": lambda mc,ac: ac.contrast(mc, method='wcag21'),
101
+ "oklch": oklch_distance,
102
+ "lightness": lambda mc,ac: abs(mc.coords()[0]-ac.coords()[0])*100,
103
+ }
104
+
105
+ metric_func = metric_map[metric]
106
+ dT_mL_acol_map = compute_dma_map(distance, metric=metric_func)
107
+ Lma_map = {
108
+ m_name: mL_acol_dict[l_base]
109
+ for m_name, mL_acol_dict in dT_mL_acol_map.items()
110
+ if l_base in mL_acol_dict
111
+ }
112
+
113
+ # the `mL_acol_dict` only includes lightnesses where all accent colors were
114
+ # within threshold. Coverage here will be partial if, at the `mL`, there is
115
+ # some monotone base that doesn't have all accents within threshold. This
116
+ # can happen at the edge, e.g., alpine@L15 has all accents w/in the
117
+ # distance, but the red accent was too far under tundra@L15, so there's no
118
+ # entry. This particular case is fairly rare; it's more likely that *all*
119
+ # monotones are undefined. Either way, both such cases lead to partial
120
+ # scheme coverage.
121
+ if len(Lma_map) < len(monotone_h_map):
122
+ print(f"Warning: partial scheme coverage for {l_base=}@{distance=}")
123
+ if biome not in Lma_map:
124
+ print(f"Biome {biome} unable to meet {metric} constraints")
125
+ accent_colors = Lma_map.get(biome, {})
126
+
127
+ meta_pairs = [
128
+ ("mode", mode),
129
+ ("biome", biome),
130
+ ("metric", metric),
131
+ ("distance", distance),
132
+ ("l_base", l_base),
133
+ ("l_step", l_step),
134
+ ("fg_gap", fg_gap),
135
+ ("grey_gap", grey_gap),
136
+ ("term_fg_gap", term_fg_gap),
137
+ ]
138
+
139
+ # note how selection_bg steps up by `l_step`, selection_fg steps down by
140
+ # `l_step` (from their respective bases)
141
+ term_pairs = [
142
+ ("background", f"f{{{{{biome}.l{l_base}}}}}"),
143
+ ("selection_bg", f"f{{{{{biome}.l{l_base+l_step}}}}}"),
144
+ ("selection_fg", f"f{{{{{biome}.l{l_base+term_fg_gap-l_step}}}}}"),
145
+ ("foreground", f"f{{{{{biome}.l{l_base+term_fg_gap}}}}}"),
146
+ ("cursor", f"f{{{{{biome}.l{l_base+term_fg_gap-l_step}}}}}"),
147
+ ("cursor_text", f"f{{{{{biome}.l{l_base+l_step}}}}}"),
148
+ ]
149
+
150
+ monotone_pairs = []
151
+ monotone_pairs += [
152
+ (f"bg{i}", f"f{{{{{biome}.l{l_base+i*l_step}}}}}")
153
+ for i in range(4)
154
+ ]
155
+ monotone_pairs += [
156
+ (f"fg{3-i}", f"f{{{{{biome}.l{fg_gap+l_base+i*l_step}}}}}")
157
+ for i in range(4)
158
+ ]
159
+
160
+ accent_pairs = [
161
+ ("black", f"f{{{{{biome}.l{l_base}}}}}"),
162
+ ("grey", f"f{{{{{biome}.l{l_base+grey_gap}}}}}"),
163
+ ("white", f"f{{{{{biome}.l{l_base+term_fg_gap-2*l_step}}}}}"),
164
+ ]
165
+ for color_name, mb_accent in accent_color_map.items():
166
+ aL = int(100*accent_colors[mb_accent].coords()[0])
167
+ accent_pairs.append(
168
+ (
169
+ color_name,
170
+ f"f{{{{{mb_accent}.l{aL}}}}}"
171
+ )
172
+ )
173
+
174
+ return meta_pairs, term_pairs, monotone_pairs, accent_pairs
175
+
176
+ def generate_scheme(
177
+ mode: str,
178
+ biome: str,
179
+ metric: str,
180
+ distance: float,
181
+ l_base: int,
182
+ l_step: int,
183
+ fg_gap: int,
184
+ grey_gap: int,
185
+ term_fg_gap: int,
186
+ full_color_map: dict[str, str],
187
+ term_color_map: dict[str, str],
188
+ vim_color_map: dict[str, str],
189
+ ) -> str:
190
+ l_sys = l_base
191
+ l_app = l_base + l_step
192
+
193
+ term_bright_offset = 10
194
+
195
+ # negate gaps if mode is light
196
+ if mode == "light":
197
+ l_step *= -1
198
+ fg_gap *= -1
199
+ grey_gap *= -1
200
+ term_fg_gap *= -1
201
+ term_bright_offset *= -1
202
+
203
+ meta, _, mt, ac = generate_scheme_groups(
204
+ mode, biome, metric, distance,
205
+ l_sys, l_step,
206
+ fg_gap, grey_gap, term_fg_gap,
207
+ full_color_map
208
+ )
209
+
210
+ _, term, _, term_norm_ac = generate_scheme_groups(
211
+ mode, biome, metric, distance,
212
+ l_app, l_step,
213
+ fg_gap, grey_gap, term_fg_gap,
214
+ term_color_map
215
+ )
216
+ _, _, _, term_bright_ac = generate_scheme_groups(
217
+ mode, biome, metric, distance,
218
+ l_app + term_bright_offset, l_step,
219
+ fg_gap, grey_gap, term_fg_gap,
220
+ term_color_map
221
+ )
222
+
223
+ _, _, vim_mt, vim_ac = generate_scheme_groups(
224
+ mode, biome, metric, distance,
225
+ l_app, l_step,
226
+ fg_gap, grey_gap, term_fg_gap,
227
+ vim_color_map
228
+ )
229
+
230
+ def pair_strings(pair_list: list[tuple[str, str]]) -> list[str]:
231
+ return [
232
+ f"{lhs:<12} = \"{rhs}\""
233
+ for lhs, rhs in pair_list
234
+ ]
235
+
236
+ scheme_pairs = []
237
+ scheme_pairs += pair_strings(meta)
238
+ scheme_pairs += pair_strings(mt)
239
+ scheme_pairs += pair_strings(ac)
240
+
241
+ scheme_pairs += ["", "[term]"]
242
+ scheme_pairs += pair_strings(term)
243
+
244
+ scheme_pairs += ["", "[term.normal]"]
245
+ scheme_pairs += pair_strings(term_norm_ac)
246
+
247
+ scheme_pairs += ["", "[term.bright]"]
248
+ scheme_pairs += pair_strings(term_bright_ac)
249
+
250
+ scheme_pairs += ["", "[vim]"]
251
+ scheme_pairs += pair_strings(vim_mt)
252
+ scheme_pairs += pair_strings(vim_ac)
253
+
254
+ return "\n".join(scheme_pairs)
monobiome/util.py ADDED
@@ -0,0 +1,35 @@
1
+ import math
2
+ from types import GenericAlias
3
+ from argparse import ArgumentParser, _SubParsersAction
4
+
5
+ from coloraide import Color
6
+
7
+ _SubParsersAction.__class_getitem__ = classmethod(GenericAlias)
8
+ _SubparserType = _SubParsersAction[ArgumentParser]
9
+
10
+ def oklch_distance(xc: Color, yc: Color) -> float:
11
+ """
12
+ Compute the distance between two colors in OKLCH space.
13
+
14
+ Note: `xc` and `yc` are presumed to be OKLCH colors already, such that
15
+ `.coords()` yields an `(l, c, h)` triple directly rather than first
16
+ requiring conversion. When we can make this assumption, we save roughly an
17
+ order of magnitude in runtime.
18
+
19
+ 1. `xc.distance(yc, space="oklch")`: 500k evals takes ~2s
20
+ 2. This method: 500k evals takes ~0.2s
21
+ """
22
+
23
+ l1, c1, h1 = xc.coords()
24
+ l2, c2, h2 = yc.coords()
25
+
26
+ rad1 = h1 / 180 * math.pi
27
+ rad2 = h2 / 180 * math.pi
28
+ x1, y1 = c1 * math.cos(rad1), c1 * math.sin(rad1)
29
+ x2, y2 = c2 * math.cos(rad2), c2 * math.sin(rad2)
30
+
31
+ dx = x1 - x2
32
+ dy = y1 - y2
33
+ dz = l1 - l2
34
+
35
+ return (dx**2 + dy**2 + dz**2)**0.5
@@ -0,0 +1,231 @@
1
+ Metadata-Version: 2.4
2
+ Name: monobiome
3
+ Version: 1.3.1
4
+ Summary: Monobiome color palette
5
+ Project-URL: Homepage, https://doc.olog.io/monobiome
6
+ Project-URL: Documentation, https://doc.olog.io/monobiome
7
+ Project-URL: Repository, https://git.olog.io/olog/monobiome
8
+ Project-URL: Issues, https://git.olog.io/olog/monobiome/issues
9
+ Requires-Python: >=3.12
10
+ Description-Content-Type: text/markdown
11
+ Requires-Dist: coloraide>=5.1
12
+ Requires-Dist: imageio[ffmpeg]>=2.37.2
13
+ Requires-Dist: ipython>=9.6.0
14
+ Requires-Dist: kaleido>=1.1.0
15
+ Requires-Dist: matplotlib>=3.10.7
16
+ Requires-Dist: nbformat>=5.10.4
17
+ Requires-Dist: numpy>=2.3.4
18
+ Requires-Dist: pillow>=12.0.0
19
+ Requires-Dist: plotly>=6.3.1
20
+ Requires-Dist: scipy>=1.16.2
21
+
22
+ # Monobiome
23
+ `monobiome` is a minimal, balanced color palette for use in terminals and text
24
+ editors. It was designed in OKLCH space to achieve perceptual uniformity across
25
+ all hues at various levels of luminance, and does so for _five_ monotone bases
26
+ and _five_ accent colors (plus one gray "default"). Each of the monotone base
27
+ colors (named according to a natural biome whose colors they loosely resemble)
28
+ are designed to achieve identical contrast with the accents, and thus any one
29
+ of the options can be selected to change the feeling of the palette without
30
+ sacrificing readability.
31
+
32
+ ![Theme preview](images/repo_preview_four_split.png)
33
+ _(Preview of default light and dark theme variants)_
34
+
35
+ See screenshots for the full set of theme variants in [THEMES](THEMES.md) (also
36
+ discussed below).
37
+
38
+ The name "monobiome" connects the palette to its two key sources of
39
+ inspiration:
40
+
41
+ - `mono-`: `monobiome` is inspired by the [`monoindustrial` theme][1], and
42
+ attempts to extend and balance its accents while retaining similar color
43
+ identities.
44
+ - `-biome`: the desire for several distinct monotone options entailed finding a
45
+ way to ground the subtle color variations that were needed, and I liked the
46
+ idea of tying the choices to naturally occurring environmental variation like
47
+ Earth's biomes (even if it is a very loose affiliation, e.g., green-ish =
48
+ grass, basically).
49
+
50
+ ## Palette
51
+ The `monobiome` palette consists of four monotone bases and five accent colors,
52
+ each of which is anchored by hue and spread uniformly across lightness levels
53
+ 15 to 95 (in OKLCH space).
54
+
55
+ ![Diagram of palette accents and monotones](images/palette.png)
56
+
57
+ The chroma curve for each accent is carefully designed to vary smoothly across
58
+ the lightness spectrum, with the goal of retaining strong color identity in all
59
+ settings. Additionally, as alluded to above, the (WCAG 2) contrast ratio
60
+ between any choice of monotone background at a given lightness level and the
61
+ accent colors is virtually identical ($\pm 0.1$). Put another way, the relative
62
+ contrast between accents depends only on the _lightness_ of the background
63
+ monotone, not its hue. *(Note that this is not generally the case; at a fixed
64
+ lightness level, the contrast between two colors depends on their hue.)*
65
+
66
+ ## Concrete themes
67
+
68
+ ![Split view of Alpine and Tundra biomes](images/theme-split-view.png)
69
+
70
+ *(Light and dark theme splits of Alpine and Tundra biomes)*
71
+
72
+ Themes are derived from the `monobiome` palette by varying both the monotone
73
+ hue (the "biome") and the extent of the background/foreground lightness (the
74
+ "harshness"). This is done for both light and dark schemes, and in each case
75
+ accent colors are selected at a lightness level that ensures each meet a
76
+ minimum contrast relative to the primary background. The following diagram
77
+ shows each of the 36 resulting combinations:
78
+
79
+ ![Diagram of the 36 available concrete theme options](images/themes.png)
80
+
81
+ The "soft" harshness level uses monotone shades closer to the mid-shade
82
+ (lightness level 55), whereas "hard" harshness uses shades further from it.
83
+ Once the biome and harshness level are chosen, we're left with a bounded
84
+ monotone range over which common theme elements can be defined. For example,
85
+ the following demonstrates how background and foreground elements are chosen
86
+ for the `monobiome` Vim themes:
87
+
88
+ ![
89
+ Diagram depicting how themes colors are selected by harshness and mapped onto
90
+ application-specific elements
91
+ ](images/vim_theme_elements.png)
92
+
93
+ Note how theme elements are mapped onto the general identifiers `bg0-bg3` for
94
+ backgrounds, `fg0-fg3` for foregrounds, and `gray` for a central gray tone. The
95
+ relative properties (lightness differences, contrast ratios) between colors
96
+ assigned to these identifiers are preserved regardless of biome or harshness
97
+ (e.g., `bg3` and `gray` are _always_ separated by 20 lightness points in any
98
+ theme). As a result, applying `monobiome` themes to specific applications can
99
+ effectively boil down to defining a single "relative template" that uses these
100
+ identifiers, after which any of the 36 theme options can applied immediately.
101
+
102
+ Read more about how themes are created in [DESIGN](DESIGN.md).
103
+
104
+ # Usage
105
+ This repo provides the 36 theme files for `kitty`, `vim`/`neovim`, and `fzf` in
106
+ the `app-config/` directory. You can also find raw palette colors in
107
+ `colors/monobiome.toml` if you want to use them to define themes for other
108
+ applications.
109
+
110
+ Each of the files in the `app-config/` directory are named according to
111
+
112
+ ```sh
113
+ <harshness>-<biome>-monobiome-<mode>.<ext>
114
+ ```
115
+
116
+ For example, `monobiome-tundra-dark-soft.vim` is the Vim theme file for the
117
+ dark `tundra` variant with the soft harshness level.
118
+
119
+ ## Applications
120
+ - `kitty`
121
+
122
+ Find `kitty` themes in `app-config/kitty`. Themes can be activated in your
123
+ `kitty.conf` with
124
+
125
+ ```sh
126
+ include <theme-file>
127
+ ```
128
+
129
+ Themes are generated using the [`kitty` theme
130
+ template](templates/apps/kitty/templates/active.theme).
131
+
132
+ - `vim`/`neovim`
133
+
134
+ Find `vim`/`neovim` themes in `app-config/nvim`. Themes can be activated by placing a
135
+ theme file on Vim's runtime path and setting it in your `.vimrc`/`init.vim`
136
+ with
137
+
138
+ ```sh
139
+ colorscheme <theme-name>
140
+ ```
141
+
142
+ Themes are generated using the [`vim` theme
143
+ template](templates/apps/nvim/templates/theme.vim).
144
+
145
+ - `fzf`
146
+
147
+ In `app-config/fzf`, you can find scripts that can be ran to export FZF theme
148
+ variables. In your shell config (e.g., `.bashrc` or `.zshrc`), you can source
149
+ these files to apply them in your terminal:
150
+
151
+ ```sh
152
+ source <theme-file>
153
+ ```
154
+
155
+ Themes are generated using the [`fzf` theme
156
+ template](templates/apps/fzf/templates/active.theme).
157
+
158
+ - Firefox
159
+
160
+ Firefox themes for all monotone backgrounds are publicly listed as [Mozilla
161
+ add-ons][2], and switch between light/dark schemes based on system settings.
162
+ You can also download raw XPI files for each theme in `app-config/firefox/`,
163
+ each of which is generated using the [Firefox `manifest.json`
164
+ template](templates/apps/firefox/templates/none-dark.manifest.json).
165
+
166
+ Static [light][4] and [dark][5] are additionally available.
167
+
168
+ ![Firefox theme previews](images/firefox/themes.png)
169
+
170
+ # Switching themes
171
+ [`symconf`][3] is a general-purpose application config manager that can be used
172
+ to generate all `monobiome` variants from a single palette file, and set themes
173
+ for all apps at once. You can find example theme templates in
174
+ `templates/groups/theme`, which provide general theme variables you can use in
175
+ your own config templates.
176
+
177
+ For instance, in an app like `kitty`, you can define a template like
178
+
179
+ ```conf
180
+ # base settings
181
+ background f{{theme.term.background}}
182
+ foreground f{{theme.term.foreground}}
183
+
184
+ selection_background f{{theme.term.selection_bg}}
185
+ selection_foreground f{{theme.term.selection_fg}}
186
+
187
+ cursor f{{theme.term.cursor}}
188
+ cursor_text_color f{{theme.term.cursor_text_color}}
189
+
190
+ # black
191
+ color0 f{{theme.term.normal.black}}
192
+ color8 f{{theme.term.bright.black}}
193
+
194
+ # red
195
+ color1 f{{theme.term.normal.red}}
196
+ color9 f{{theme.term.bright.red}}
197
+
198
+ # green
199
+ color2 f{{theme.term.normal.green}}
200
+ color10 f{{theme.term.bright.green}}
201
+
202
+ # yellow
203
+ color3 f{{theme.term.normal.yellow}}
204
+ color11 f{{theme.term.bright.yellow}}
205
+
206
+ # blue
207
+ color4 f{{theme.term.normal.blue}}
208
+ color12 f{{theme.term.bright.blue}}
209
+
210
+ # purple (red)
211
+ color5 f{{theme.term.normal.purple}}
212
+ color13 f{{theme.term.bright.purple}}
213
+
214
+ # cyan (blue)
215
+ color6 f{{theme.term.normal.cyan}}
216
+ color14 f{{theme.term.bright.cyan}}
217
+
218
+ ## white
219
+ color7 f{{theme.term.normal.white}}
220
+ color15 f{{theme.term.bright.white}}
221
+ ```
222
+
223
+ and use `symconf` to dynamically fill these variables based on a selected
224
+ biome/harshness/mode. This can be done for any app config file.
225
+
226
+
227
+ [1]: https://github.com/isa/TextMate-Themes/blob/master/monoindustrial.tmTheme
228
+ [2]: https://addons.mozilla.org/en-US/firefox/collections/18495484/monobiome/
229
+ [3]: https://github.com/ologio/symconf
230
+ [4]: https://addons.mozilla.org/en-US/firefox/collections/18495484/monobiome-light/
231
+ [5]: https://addons.mozilla.org/en-US/firefox/collections/18495484/monobiome-dark/
@@ -0,0 +1,17 @@
1
+ monobiome/__init__.py,sha256=ChC5YFLK0kgvi0MJwD68LtZgUMJVCtNbtY32UQTvdA4,75
2
+ monobiome/__main__.py,sha256=k2Pu_FeAsW_wnE55Y-JJaRP_GgxAZEjW3z_Kmk3O8C8,431
3
+ monobiome/constants.py,sha256=w4H9V2Tp2ZK3ddcjtBdDtokZdj2Y1ssW3RSopxqP7rw,3105
4
+ monobiome/curve.py,sha256=tw44OoRGDSxTzljxJkgifWhCTEj05TBYnw4jOdrNgfA,1748
5
+ monobiome/palette.py,sha256=fReZD1Aa7xOKQQgnYB8qRxszZy1nq9XLqjUIblENsvI,1489
6
+ monobiome/plotting.py,sha256=1eAJY-0PLtq2r4ZHYCY3YYnVlCVu7PXteAcs1zV4irY,4679
7
+ monobiome/scheme.py,sha256=CFP_WqTk-CwbgpVt2E_TczC9cZymAh_lqbkWmN4AsOg,7541
8
+ monobiome/util.py,sha256=qHLC-azOgslJcW1tNNX5TVeG3RPGpleUO2s9Nu1rbjY,1068
9
+ monobiome/cli/__init__.py,sha256=wtBhzdyyRy0-WM4fUpDESJBiedYy8MbwousVCdangUE,774
10
+ monobiome/cli/palette.py,sha256=i3baWZs4Sverbd79YMBPYnH0P2rT0i7z3ZAtO_UBWNw,1219
11
+ monobiome/cli/scheme.py,sha256=CkwtGBCPUEPt2TnK_WDQBg8TKTw_hjGoQtbjjBlNmH0,3725
12
+ monobiome/data/parameters.toml,sha256=7ru0j_1G5rNFWc7AFKSHJUpyL_I2qdZYeDFt6q5wtQw,801
13
+ monobiome-1.3.1.dist-info/METADATA,sha256=n_gLP_F0ghbpq3eco0ULz37Lmc1GnhFhsIPgHGnhNn0,8947
14
+ monobiome-1.3.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
15
+ monobiome-1.3.1.dist-info/entry_points.txt,sha256=LpqkPxdTacTY_TaRn8eczICmPbVlXdRSoMqaxSfVxh4,54
16
+ monobiome-1.3.1.dist-info/top_level.txt,sha256=ZA2wgRkPoG4xG0rSjyHKkuG8cdSHRr1U_DcrplXoi3A,10
17
+ monobiome-1.3.1.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.9.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1,2 @@
1
+ [console_scripts]
2
+ monobiome = monobiome.__main__:main
@@ -0,0 +1 @@
1
+ monobiome