monai-weekly 1.5.dev2513__py3-none-any.whl → 1.5.dev2515__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- monai/__init__.py +1 -1
- monai/_version.py +3 -3
- monai/apps/nnunet/__init__.py +8 -0
- monai/apps/nnunet/nnunet_bundle.py +594 -0
- monai/bundle/scripts.py +9 -18
- monai/networks/blocks/fft_utils_t.py +12 -20
- monai/transforms/inverse.py +39 -7
- monai/utils/misc.py +1 -1
- {monai_weekly-1.5.dev2513.dist-info → monai_weekly-1.5.dev2515.dist-info}/METADATA +3 -1
- {monai_weekly-1.5.dev2513.dist-info → monai_weekly-1.5.dev2515.dist-info}/RECORD +21 -18
- tests/bundle/test_bundle_download.py +5 -0
- tests/integration/test_integration_nnunet_bundle.py +150 -0
- tests/networks/nets/test_transchex.py +3 -2
- tests/transforms/inverse/test_inverse_dict.py +105 -0
- tests/transforms/inverse/test_traceable_transform.py +2 -2
- {monai_weekly-1.5.dev2513.dist-info → monai_weekly-1.5.dev2515.dist-info}/WHEEL +0 -0
- {monai_weekly-1.5.dev2513.dist-info → monai_weekly-1.5.dev2515.dist-info}/licenses/LICENSE +0 -0
- {monai_weekly-1.5.dev2513.dist-info → monai_weekly-1.5.dev2515.dist-info}/top_level.txt +0 -0
- /tests/transforms/{test_inverse.py → inverse/test_inverse.py} +0 -0
- /tests/transforms/{test_invert.py → inverse/test_invert.py} +0 -0
- /tests/transforms/{test_invertd.py → inverse/test_invertd.py} +0 -0
@@ -0,0 +1,105 @@
|
|
1
|
+
# Copyright (c) MONAI Consortium
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
+
# you may not use this file except in compliance with the License.
|
4
|
+
# You may obtain a copy of the License at
|
5
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6
|
+
# Unless required by applicable law or agreed to in writing, software
|
7
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
8
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
9
|
+
# See the License for the specific language governing permissions and
|
10
|
+
# limitations under the License.
|
11
|
+
|
12
|
+
from __future__ import annotations
|
13
|
+
|
14
|
+
import unittest
|
15
|
+
from itertools import product
|
16
|
+
|
17
|
+
import torch
|
18
|
+
from parameterized import parameterized
|
19
|
+
|
20
|
+
from monai.data import DataLoader, Dataset, MetaTensor, ThreadDataLoader, create_test_image_2d
|
21
|
+
from monai.engines.evaluator import SupervisedEvaluator
|
22
|
+
from monai.transforms import Compose, EnsureChannelFirstd, Invertd, Spacingd
|
23
|
+
from monai.utils.enums import CommonKeys
|
24
|
+
from tests.test_utils import TEST_DEVICES, SkipIfNoModule
|
25
|
+
|
26
|
+
|
27
|
+
class TestInvertDict(unittest.TestCase):
|
28
|
+
|
29
|
+
def setUp(self):
|
30
|
+
self.orig_size = (60, 60)
|
31
|
+
img, _ = create_test_image_2d(*self.orig_size, 2, 10, num_seg_classes=2)
|
32
|
+
self.img = MetaTensor(img, meta={"original_channel_dim": float("nan"), "pixdim": [1.0, 1.0]})
|
33
|
+
self.key = CommonKeys.IMAGE
|
34
|
+
self.pred = CommonKeys.PRED
|
35
|
+
self.new_pixdim = 2.0
|
36
|
+
|
37
|
+
self.preprocessing = Compose([EnsureChannelFirstd(self.key), Spacingd(self.key, pixdim=[self.new_pixdim] * 2)])
|
38
|
+
|
39
|
+
self.postprocessing = Compose([Invertd(self.pred, transform=self.preprocessing, orig_keys=self.key)])
|
40
|
+
|
41
|
+
@parameterized.expand(TEST_DEVICES)
|
42
|
+
def test_simple_processing(self, device):
|
43
|
+
"""
|
44
|
+
Tests postprocessing operations perform correctly, in particular that `Invertd` does inversion correctly.
|
45
|
+
|
46
|
+
This will apply the preprocessing sequence which resizes the result, then the postprocess sequence which
|
47
|
+
returns it to the original shape using Invertd. This tests that the shape of the output is the same as the
|
48
|
+
original image. This will also test that Invertd doesn't get confused if transforms in the postprocessing
|
49
|
+
sequence are tracing and so adding information to `applied_operations`, this is what `Lambdad` is doing in
|
50
|
+
`self.postprocessing`.
|
51
|
+
"""
|
52
|
+
|
53
|
+
item = {self.key: self.img.to(device)}
|
54
|
+
pre = self.preprocessing(item)
|
55
|
+
|
56
|
+
nw = int(self.orig_size[0] / self.new_pixdim)
|
57
|
+
nh = int(self.orig_size[1] / self.new_pixdim)
|
58
|
+
|
59
|
+
self.assertTupleEqual(pre[self.key].shape, (1, nh, nw), "Pre-processing did not reshape input correctly")
|
60
|
+
self.assertTrue(len(pre[self.key].applied_operations) > 0, "Pre-processing transforms did not trace correctly")
|
61
|
+
|
62
|
+
pre[self.pred] = pre[self.key] # the inputs are the prediction for this test
|
63
|
+
|
64
|
+
post = self.postprocessing(pre)
|
65
|
+
|
66
|
+
self.assertTupleEqual(
|
67
|
+
post[self.pred].shape, (1, *self.orig_size), "Result does not have same shape as original input"
|
68
|
+
)
|
69
|
+
|
70
|
+
@parameterized.expand(product(sum(TEST_DEVICES, []), [True, False]))
|
71
|
+
@SkipIfNoModule("ignite")
|
72
|
+
def test_workflow(self, device, use_threads):
|
73
|
+
"""
|
74
|
+
This tests the interaction between pre and postprocesing transform sequences being executed in parallel.
|
75
|
+
|
76
|
+
When the `ThreadDataLoader` is used to load batches, this is done in parallel at times with the execution of
|
77
|
+
the post-process transform sequence. Previously this encountered a race condition at times because the
|
78
|
+
`TraceableTransform.tracing` variables of transforms was being toggled in different threads, so at times a
|
79
|
+
pre-process transform wouldn't trace correctly and so confuse `Invertd`. Using a `SupervisedEvaluator` is
|
80
|
+
the best way to induce this race condition, other methods didn't get the timing right..
|
81
|
+
"""
|
82
|
+
batch_size = 2
|
83
|
+
ds_size = 4
|
84
|
+
test_data = [{self.key: self.img.clone().to(device)} for _ in range(ds_size)]
|
85
|
+
ds = Dataset(test_data, transform=self.preprocessing)
|
86
|
+
dl_type = ThreadDataLoader if use_threads else DataLoader
|
87
|
+
dl = dl_type(ds, num_workers=0, batch_size=batch_size)
|
88
|
+
|
89
|
+
class AssertAppliedOps(torch.nn.Module):
|
90
|
+
def forward(self, x):
|
91
|
+
assert len(x.applied_operations) == x.shape[0]
|
92
|
+
assert all(len(a) > 0 for a in x.applied_operations)
|
93
|
+
return x
|
94
|
+
|
95
|
+
evaluator = SupervisedEvaluator(
|
96
|
+
device=device, network=AssertAppliedOps(), postprocessing=self.postprocessing, val_data_loader=dl
|
97
|
+
)
|
98
|
+
|
99
|
+
evaluator.run()
|
100
|
+
|
101
|
+
self.assertTupleEqual(evaluator.state.output[0][self.pred].shape, (1, *self.orig_size))
|
102
|
+
|
103
|
+
|
104
|
+
if __name__ == "__main__":
|
105
|
+
unittest.main()
|
@@ -45,13 +45,13 @@ class TestTraceable(unittest.TestCase):
|
|
45
45
|
self.assertEqual(len(data[expected_key]), 2)
|
46
46
|
self.assertEqual(data[expected_key][-1]["class"], "_TraceTest")
|
47
47
|
|
48
|
-
with self.assertRaises(
|
48
|
+
with self.assertRaises(ValueError):
|
49
49
|
a.pop({"test": "test"}) # no stack in the data
|
50
50
|
data = a.pop(data)
|
51
51
|
data = a.pop(data)
|
52
52
|
self.assertEqual(data[expected_key], [])
|
53
53
|
|
54
|
-
with self.assertRaises(
|
54
|
+
with self.assertRaises(ValueError): # no more items
|
55
55
|
a.pop(data)
|
56
56
|
|
57
57
|
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|