monai-weekly 1.5.dev2510__py3-none-any.whl → 1.5.dev2512__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- monai/__init__.py +1 -1
- monai/_version.py +3 -3
- monai/apps/generation/maisi/networks/autoencoderkl_maisi.py +4 -0
- monai/data/utils.py +1 -1
- monai/inferers/inferer.py +29 -9
- monai/networks/schedulers/__init__.py +1 -0
- monai/networks/schedulers/rectified_flow.py +322 -0
- monai/utils/misc.py +1 -1
- {monai_weekly-1.5.dev2510.dist-info → monai_weekly-1.5.dev2512.dist-info}/METADATA +3 -2
- {monai_weekly-1.5.dev2510.dist-info → monai_weekly-1.5.dev2512.dist-info}/RECORD +17 -15
- {monai_weekly-1.5.dev2510.dist-info → monai_weekly-1.5.dev2512.dist-info}/WHEEL +1 -1
- tests/inferers/test_controlnet_inferers.py +96 -32
- tests/inferers/test_diffusion_inferer.py +99 -1
- tests/inferers/test_latent_diffusion_inferer.py +217 -211
- tests/networks/schedulers/test_scheduler_rflow.py +105 -0
- {monai_weekly-1.5.dev2510.dist-info → monai_weekly-1.5.dev2512.dist-info/licenses}/LICENSE +0 -0
- {monai_weekly-1.5.dev2510.dist-info → monai_weekly-1.5.dev2512.dist-info}/top_level.txt +0 -0
@@ -19,7 +19,7 @@ from parameterized import parameterized
|
|
19
19
|
|
20
20
|
from monai.inferers import LatentDiffusionInferer
|
21
21
|
from monai.networks.nets import VQVAE, AutoencoderKL, DiffusionModelUNet, SPADEAutoencoderKL, SPADEDiffusionModelUNet
|
22
|
-
from monai.networks.schedulers import DDPMScheduler
|
22
|
+
from monai.networks.schedulers import DDPMScheduler, RFlowScheduler
|
23
23
|
from monai.utils import optional_import
|
24
24
|
|
25
25
|
_, has_einops = optional_import("einops")
|
@@ -339,31 +339,32 @@ class TestDiffusionSamplingInferer(unittest.TestCase):
|
|
339
339
|
|
340
340
|
input = torch.randn(input_shape).to(device)
|
341
341
|
noise = torch.randn(latent_shape).to(device)
|
342
|
-
scheduler = DDPMScheduler(num_train_timesteps=10)
|
343
|
-
inferer = LatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
|
344
|
-
scheduler.set_timesteps(num_inference_steps=10)
|
345
|
-
timesteps = torch.randint(0, scheduler.num_train_timesteps, (input_shape[0],), device=input.device).long()
|
346
342
|
|
347
|
-
|
348
|
-
|
349
|
-
|
350
|
-
|
343
|
+
for scheduler in [DDPMScheduler(num_train_timesteps=10), RFlowScheduler(num_train_timesteps=1000)]:
|
344
|
+
inferer = LatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
|
345
|
+
scheduler.set_timesteps(num_inference_steps=10)
|
346
|
+
timesteps = torch.randint(0, scheduler.num_train_timesteps, (input_shape[0],), device=input.device).long()
|
347
|
+
|
348
|
+
if dm_model_type == "SPADEDiffusionModelUNet":
|
349
|
+
input_shape_seg = list(input_shape)
|
350
|
+
if "label_nc" in stage_2_params.keys():
|
351
|
+
input_shape_seg[1] = stage_2_params["label_nc"]
|
352
|
+
else:
|
353
|
+
input_shape_seg[1] = autoencoder_params["label_nc"]
|
354
|
+
input_seg = torch.randn(input_shape_seg).to(device)
|
355
|
+
prediction = inferer(
|
356
|
+
inputs=input,
|
357
|
+
autoencoder_model=stage_1,
|
358
|
+
diffusion_model=stage_2,
|
359
|
+
seg=input_seg,
|
360
|
+
noise=noise,
|
361
|
+
timesteps=timesteps,
|
362
|
+
)
|
351
363
|
else:
|
352
|
-
|
353
|
-
|
354
|
-
|
355
|
-
|
356
|
-
autoencoder_model=stage_1,
|
357
|
-
diffusion_model=stage_2,
|
358
|
-
seg=input_seg,
|
359
|
-
noise=noise,
|
360
|
-
timesteps=timesteps,
|
361
|
-
)
|
362
|
-
else:
|
363
|
-
prediction = inferer(
|
364
|
-
inputs=input, autoencoder_model=stage_1, diffusion_model=stage_2, noise=noise, timesteps=timesteps
|
365
|
-
)
|
366
|
-
self.assertEqual(prediction.shape, latent_shape)
|
364
|
+
prediction = inferer(
|
365
|
+
inputs=input, autoencoder_model=stage_1, diffusion_model=stage_2, noise=noise, timesteps=timesteps
|
366
|
+
)
|
367
|
+
self.assertEqual(prediction.shape, latent_shape)
|
367
368
|
|
368
369
|
@parameterized.expand(TEST_CASES)
|
369
370
|
@skipUnless(has_einops, "Requires einops")
|
@@ -388,29 +389,30 @@ class TestDiffusionSamplingInferer(unittest.TestCase):
|
|
388
389
|
stage_2.eval()
|
389
390
|
|
390
391
|
noise = torch.randn(latent_shape).to(device)
|
391
|
-
scheduler = DDPMScheduler(num_train_timesteps=10)
|
392
|
-
inferer = LatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
|
393
|
-
scheduler.set_timesteps(num_inference_steps=10)
|
394
392
|
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
393
|
+
for scheduler in [DDPMScheduler(num_train_timesteps=10), RFlowScheduler(num_train_timesteps=1000)]:
|
394
|
+
inferer = LatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
|
395
|
+
scheduler.set_timesteps(num_inference_steps=10)
|
396
|
+
|
397
|
+
if ae_model_type == "SPADEAutoencoderKL" or dm_model_type == "SPADEDiffusionModelUNet":
|
398
|
+
input_shape_seg = list(input_shape)
|
399
|
+
if "label_nc" in stage_2_params.keys():
|
400
|
+
input_shape_seg[1] = stage_2_params["label_nc"]
|
401
|
+
else:
|
402
|
+
input_shape_seg[1] = autoencoder_params["label_nc"]
|
403
|
+
input_seg = torch.randn(input_shape_seg).to(device)
|
404
|
+
sample = inferer.sample(
|
405
|
+
input_noise=noise,
|
406
|
+
autoencoder_model=stage_1,
|
407
|
+
diffusion_model=stage_2,
|
408
|
+
scheduler=scheduler,
|
409
|
+
seg=input_seg,
|
410
|
+
)
|
399
411
|
else:
|
400
|
-
|
401
|
-
|
402
|
-
|
403
|
-
|
404
|
-
autoencoder_model=stage_1,
|
405
|
-
diffusion_model=stage_2,
|
406
|
-
scheduler=scheduler,
|
407
|
-
seg=input_seg,
|
408
|
-
)
|
409
|
-
else:
|
410
|
-
sample = inferer.sample(
|
411
|
-
input_noise=noise, autoencoder_model=stage_1, diffusion_model=stage_2, scheduler=scheduler
|
412
|
-
)
|
413
|
-
self.assertEqual(sample.shape, input_shape)
|
412
|
+
sample = inferer.sample(
|
413
|
+
input_noise=noise, autoencoder_model=stage_1, diffusion_model=stage_2, scheduler=scheduler
|
414
|
+
)
|
415
|
+
self.assertEqual(sample.shape, input_shape)
|
414
416
|
|
415
417
|
@parameterized.expand(TEST_CASES)
|
416
418
|
@skipUnless(has_einops, "Requires einops")
|
@@ -437,37 +439,38 @@ class TestDiffusionSamplingInferer(unittest.TestCase):
|
|
437
439
|
stage_2.eval()
|
438
440
|
|
439
441
|
noise = torch.randn(latent_shape).to(device)
|
440
|
-
scheduler = DDPMScheduler(num_train_timesteps=10)
|
441
|
-
inferer = LatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
|
442
|
-
scheduler.set_timesteps(num_inference_steps=10)
|
443
442
|
|
444
|
-
|
445
|
-
|
446
|
-
|
447
|
-
|
443
|
+
for scheduler in [DDPMScheduler(num_train_timesteps=10), RFlowScheduler(num_train_timesteps=1000)]:
|
444
|
+
inferer = LatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
|
445
|
+
scheduler.set_timesteps(num_inference_steps=10)
|
446
|
+
|
447
|
+
if ae_model_type == "SPADEAutoencoderKL" or dm_model_type == "SPADEDiffusionModelUNet":
|
448
|
+
input_shape_seg = list(input_shape)
|
449
|
+
if "label_nc" in stage_2_params.keys():
|
450
|
+
input_shape_seg[1] = stage_2_params["label_nc"]
|
451
|
+
else:
|
452
|
+
input_shape_seg[1] = autoencoder_params["label_nc"]
|
453
|
+
input_seg = torch.randn(input_shape_seg).to(device)
|
454
|
+
sample, intermediates = inferer.sample(
|
455
|
+
input_noise=noise,
|
456
|
+
autoencoder_model=stage_1,
|
457
|
+
diffusion_model=stage_2,
|
458
|
+
scheduler=scheduler,
|
459
|
+
seg=input_seg,
|
460
|
+
save_intermediates=True,
|
461
|
+
intermediate_steps=1,
|
462
|
+
)
|
448
463
|
else:
|
449
|
-
|
450
|
-
|
451
|
-
|
452
|
-
|
453
|
-
|
454
|
-
|
455
|
-
|
456
|
-
|
457
|
-
|
458
|
-
|
459
|
-
)
|
460
|
-
else:
|
461
|
-
sample, intermediates = inferer.sample(
|
462
|
-
input_noise=noise,
|
463
|
-
autoencoder_model=stage_1,
|
464
|
-
diffusion_model=stage_2,
|
465
|
-
scheduler=scheduler,
|
466
|
-
save_intermediates=True,
|
467
|
-
intermediate_steps=1,
|
468
|
-
)
|
469
|
-
self.assertEqual(len(intermediates), 10)
|
470
|
-
self.assertEqual(intermediates[0].shape, input_shape)
|
464
|
+
sample, intermediates = inferer.sample(
|
465
|
+
input_noise=noise,
|
466
|
+
autoencoder_model=stage_1,
|
467
|
+
diffusion_model=stage_2,
|
468
|
+
scheduler=scheduler,
|
469
|
+
save_intermediates=True,
|
470
|
+
intermediate_steps=1,
|
471
|
+
)
|
472
|
+
self.assertEqual(len(intermediates), 10)
|
473
|
+
self.assertEqual(intermediates[0].shape, input_shape)
|
471
474
|
|
472
475
|
@parameterized.expand(TEST_CASES)
|
473
476
|
@skipUnless(has_einops, "Requires einops")
|
@@ -614,40 +617,40 @@ class TestDiffusionSamplingInferer(unittest.TestCase):
|
|
614
617
|
conditioning_shape[1] = n_concat_channel
|
615
618
|
conditioning = torch.randn(conditioning_shape).to(device)
|
616
619
|
|
617
|
-
scheduler
|
618
|
-
|
619
|
-
|
620
|
-
|
621
|
-
|
622
|
-
|
623
|
-
|
624
|
-
|
625
|
-
|
626
|
-
|
620
|
+
for scheduler in [DDPMScheduler(num_train_timesteps=10), RFlowScheduler(num_train_timesteps=1000)]:
|
621
|
+
inferer = LatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
|
622
|
+
scheduler.set_timesteps(num_inference_steps=10)
|
623
|
+
|
624
|
+
timesteps = torch.randint(0, scheduler.num_train_timesteps, (input_shape[0],), device=input.device).long()
|
625
|
+
|
626
|
+
if dm_model_type == "SPADEDiffusionModelUNet":
|
627
|
+
input_shape_seg = list(input_shape)
|
628
|
+
if "label_nc" in stage_2_params.keys():
|
629
|
+
input_shape_seg[1] = stage_2_params["label_nc"]
|
630
|
+
else:
|
631
|
+
input_shape_seg[1] = autoencoder_params["label_nc"]
|
632
|
+
input_seg = torch.randn(input_shape_seg).to(device)
|
633
|
+
prediction = inferer(
|
634
|
+
inputs=input,
|
635
|
+
autoencoder_model=stage_1,
|
636
|
+
diffusion_model=stage_2,
|
637
|
+
noise=noise,
|
638
|
+
timesteps=timesteps,
|
639
|
+
condition=conditioning,
|
640
|
+
mode="concat",
|
641
|
+
seg=input_seg,
|
642
|
+
)
|
627
643
|
else:
|
628
|
-
|
629
|
-
|
630
|
-
|
631
|
-
|
632
|
-
|
633
|
-
|
634
|
-
|
635
|
-
|
636
|
-
|
637
|
-
|
638
|
-
seg=input_seg,
|
639
|
-
)
|
640
|
-
else:
|
641
|
-
prediction = inferer(
|
642
|
-
inputs=input,
|
643
|
-
autoencoder_model=stage_1,
|
644
|
-
diffusion_model=stage_2,
|
645
|
-
noise=noise,
|
646
|
-
timesteps=timesteps,
|
647
|
-
condition=conditioning,
|
648
|
-
mode="concat",
|
649
|
-
)
|
650
|
-
self.assertEqual(prediction.shape, latent_shape)
|
644
|
+
prediction = inferer(
|
645
|
+
inputs=input,
|
646
|
+
autoencoder_model=stage_1,
|
647
|
+
diffusion_model=stage_2,
|
648
|
+
noise=noise,
|
649
|
+
timesteps=timesteps,
|
650
|
+
condition=conditioning,
|
651
|
+
mode="concat",
|
652
|
+
)
|
653
|
+
self.assertEqual(prediction.shape, latent_shape)
|
651
654
|
|
652
655
|
@parameterized.expand(TEST_CASES)
|
653
656
|
@skipUnless(has_einops, "Requires einops")
|
@@ -681,36 +684,36 @@ class TestDiffusionSamplingInferer(unittest.TestCase):
|
|
681
684
|
conditioning_shape[1] = n_concat_channel
|
682
685
|
conditioning = torch.randn(conditioning_shape).to(device)
|
683
686
|
|
684
|
-
scheduler
|
685
|
-
|
686
|
-
|
687
|
-
|
688
|
-
|
689
|
-
|
690
|
-
|
691
|
-
|
687
|
+
for scheduler in [DDPMScheduler(num_train_timesteps=10), RFlowScheduler(num_train_timesteps=1000)]:
|
688
|
+
inferer = LatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
|
689
|
+
scheduler.set_timesteps(num_inference_steps=10)
|
690
|
+
|
691
|
+
if dm_model_type == "SPADEDiffusionModelUNet":
|
692
|
+
input_shape_seg = list(input_shape)
|
693
|
+
if "label_nc" in stage_2_params.keys():
|
694
|
+
input_shape_seg[1] = stage_2_params["label_nc"]
|
695
|
+
else:
|
696
|
+
input_shape_seg[1] = autoencoder_params["label_nc"]
|
697
|
+
input_seg = torch.randn(input_shape_seg).to(device)
|
698
|
+
sample = inferer.sample(
|
699
|
+
input_noise=noise,
|
700
|
+
autoencoder_model=stage_1,
|
701
|
+
diffusion_model=stage_2,
|
702
|
+
scheduler=scheduler,
|
703
|
+
conditioning=conditioning,
|
704
|
+
mode="concat",
|
705
|
+
seg=input_seg,
|
706
|
+
)
|
692
707
|
else:
|
693
|
-
|
694
|
-
|
695
|
-
|
696
|
-
|
697
|
-
|
698
|
-
|
699
|
-
|
700
|
-
|
701
|
-
|
702
|
-
seg=input_seg,
|
703
|
-
)
|
704
|
-
else:
|
705
|
-
sample = inferer.sample(
|
706
|
-
input_noise=noise,
|
707
|
-
autoencoder_model=stage_1,
|
708
|
-
diffusion_model=stage_2,
|
709
|
-
scheduler=scheduler,
|
710
|
-
conditioning=conditioning,
|
711
|
-
mode="concat",
|
712
|
-
)
|
713
|
-
self.assertEqual(sample.shape, input_shape)
|
708
|
+
sample = inferer.sample(
|
709
|
+
input_noise=noise,
|
710
|
+
autoencoder_model=stage_1,
|
711
|
+
diffusion_model=stage_2,
|
712
|
+
scheduler=scheduler,
|
713
|
+
conditioning=conditioning,
|
714
|
+
mode="concat",
|
715
|
+
)
|
716
|
+
self.assertEqual(sample.shape, input_shape)
|
714
717
|
|
715
718
|
@parameterized.expand(TEST_CASES_DIFF_SHAPES)
|
716
719
|
@skipUnless(has_einops, "Requires einops")
|
@@ -738,39 +741,39 @@ class TestDiffusionSamplingInferer(unittest.TestCase):
|
|
738
741
|
|
739
742
|
input = torch.randn(input_shape).to(device)
|
740
743
|
noise = torch.randn(latent_shape).to(device)
|
741
|
-
scheduler
|
742
|
-
|
743
|
-
|
744
|
-
|
745
|
-
|
746
|
-
|
747
|
-
|
748
|
-
|
749
|
-
)
|
750
|
-
scheduler.set_timesteps(num_inference_steps=10)
|
751
|
-
|
752
|
-
timesteps = torch.randint(0, scheduler.num_train_timesteps, (input_shape[0],), device=input.device).long()
|
753
|
-
|
754
|
-
if dm_model_type == "SPADEDiffusionModelUNet":
|
755
|
-
input_shape_seg = list(input_shape)
|
756
|
-
if "label_nc" in stage_2_params.keys():
|
757
|
-
input_shape_seg[1] = stage_2_params["label_nc"]
|
758
|
-
else:
|
759
|
-
input_shape_seg[1] = autoencoder_params["label_nc"]
|
760
|
-
input_seg = torch.randn(input_shape_seg).to(device)
|
761
|
-
prediction = inferer(
|
762
|
-
inputs=input,
|
763
|
-
autoencoder_model=stage_1,
|
764
|
-
diffusion_model=stage_2,
|
765
|
-
noise=noise,
|
766
|
-
timesteps=timesteps,
|
767
|
-
seg=input_seg,
|
768
|
-
)
|
769
|
-
else:
|
770
|
-
prediction = inferer(
|
771
|
-
inputs=input, autoencoder_model=stage_1, diffusion_model=stage_2, noise=noise, timesteps=timesteps
|
744
|
+
for scheduler in [DDPMScheduler(num_train_timesteps=10), RFlowScheduler(num_train_timesteps=1000)]:
|
745
|
+
# We infer the VAE shape
|
746
|
+
autoencoder_latent_shape = [i // (2 ** (len(autoencoder_params["channels"]) - 1)) for i in input_shape[2:]]
|
747
|
+
inferer = LatentDiffusionInferer(
|
748
|
+
scheduler=scheduler,
|
749
|
+
scale_factor=1.0,
|
750
|
+
ldm_latent_shape=list(latent_shape[2:]),
|
751
|
+
autoencoder_latent_shape=autoencoder_latent_shape,
|
772
752
|
)
|
773
|
-
|
753
|
+
scheduler.set_timesteps(num_inference_steps=10)
|
754
|
+
|
755
|
+
timesteps = torch.randint(0, scheduler.num_train_timesteps, (input_shape[0],), device=input.device).long()
|
756
|
+
|
757
|
+
if dm_model_type == "SPADEDiffusionModelUNet":
|
758
|
+
input_shape_seg = list(input_shape)
|
759
|
+
if "label_nc" in stage_2_params.keys():
|
760
|
+
input_shape_seg[1] = stage_2_params["label_nc"]
|
761
|
+
else:
|
762
|
+
input_shape_seg[1] = autoencoder_params["label_nc"]
|
763
|
+
input_seg = torch.randn(input_shape_seg).to(device)
|
764
|
+
prediction = inferer(
|
765
|
+
inputs=input,
|
766
|
+
autoencoder_model=stage_1,
|
767
|
+
diffusion_model=stage_2,
|
768
|
+
noise=noise,
|
769
|
+
timesteps=timesteps,
|
770
|
+
seg=input_seg,
|
771
|
+
)
|
772
|
+
else:
|
773
|
+
prediction = inferer(
|
774
|
+
inputs=input, autoencoder_model=stage_1, diffusion_model=stage_2, noise=noise, timesteps=timesteps
|
775
|
+
)
|
776
|
+
self.assertEqual(prediction.shape, latent_shape)
|
774
777
|
|
775
778
|
@parameterized.expand(TEST_CASES_DIFF_SHAPES)
|
776
779
|
@skipUnless(has_einops, "Requires einops")
|
@@ -797,40 +800,42 @@ class TestDiffusionSamplingInferer(unittest.TestCase):
|
|
797
800
|
stage_2.eval()
|
798
801
|
|
799
802
|
noise = torch.randn(latent_shape).to(device)
|
800
|
-
scheduler
|
801
|
-
|
802
|
-
|
803
|
-
|
804
|
-
else:
|
805
|
-
autoencoder_latent_shape = [i // (2 ** (len(autoencoder_params["channels"]) - 1)) for i in input_shape[2:]]
|
806
|
-
|
807
|
-
inferer = LatentDiffusionInferer(
|
808
|
-
scheduler=scheduler,
|
809
|
-
scale_factor=1.0,
|
810
|
-
ldm_latent_shape=list(latent_shape[2:]),
|
811
|
-
autoencoder_latent_shape=autoencoder_latent_shape,
|
812
|
-
)
|
813
|
-
scheduler.set_timesteps(num_inference_steps=10)
|
814
|
-
|
815
|
-
if dm_model_type == "SPADEDiffusionModelUNet" or ae_model_type == "SPADEAutoencoderKL":
|
816
|
-
input_shape_seg = list(input_shape)
|
817
|
-
if "label_nc" in stage_2_params.keys():
|
818
|
-
input_shape_seg[1] = stage_2_params["label_nc"]
|
803
|
+
for scheduler in [DDPMScheduler(num_train_timesteps=10), RFlowScheduler(num_train_timesteps=1000)]:
|
804
|
+
# We infer the VAE shape
|
805
|
+
if ae_model_type == "VQVAE":
|
806
|
+
autoencoder_latent_shape = [i // (2 ** (len(autoencoder_params["channels"]))) for i in input_shape[2:]]
|
819
807
|
else:
|
820
|
-
|
821
|
-
|
822
|
-
|
823
|
-
|
824
|
-
|
825
|
-
|
826
|
-
|
827
|
-
|
828
|
-
|
829
|
-
else:
|
830
|
-
prediction = inferer.sample(
|
831
|
-
autoencoder_model=stage_1, diffusion_model=stage_2, input_noise=noise, save_intermediates=False
|
808
|
+
autoencoder_latent_shape = [
|
809
|
+
i // (2 ** (len(autoencoder_params["channels"]) - 1)) for i in input_shape[2:]
|
810
|
+
]
|
811
|
+
|
812
|
+
inferer = LatentDiffusionInferer(
|
813
|
+
scheduler=scheduler,
|
814
|
+
scale_factor=1.0,
|
815
|
+
ldm_latent_shape=list(latent_shape[2:]),
|
816
|
+
autoencoder_latent_shape=autoencoder_latent_shape,
|
832
817
|
)
|
833
|
-
|
818
|
+
scheduler.set_timesteps(num_inference_steps=10)
|
819
|
+
|
820
|
+
if dm_model_type == "SPADEDiffusionModelUNet" or ae_model_type == "SPADEAutoencoderKL":
|
821
|
+
input_shape_seg = list(input_shape)
|
822
|
+
if "label_nc" in stage_2_params.keys():
|
823
|
+
input_shape_seg[1] = stage_2_params["label_nc"]
|
824
|
+
else:
|
825
|
+
input_shape_seg[1] = autoencoder_params["label_nc"]
|
826
|
+
input_seg = torch.randn(input_shape_seg).to(device)
|
827
|
+
prediction, _ = inferer.sample(
|
828
|
+
autoencoder_model=stage_1,
|
829
|
+
diffusion_model=stage_2,
|
830
|
+
input_noise=noise,
|
831
|
+
save_intermediates=True,
|
832
|
+
seg=input_seg,
|
833
|
+
)
|
834
|
+
else:
|
835
|
+
prediction = inferer.sample(
|
836
|
+
autoencoder_model=stage_1, diffusion_model=stage_2, input_noise=noise, save_intermediates=False
|
837
|
+
)
|
838
|
+
self.assertEqual(prediction.shape, input_shape)
|
834
839
|
|
835
840
|
@skipUnless(has_einops, "Requires einops")
|
836
841
|
def test_incompatible_spade_setup(self):
|
@@ -866,18 +871,19 @@ class TestDiffusionSamplingInferer(unittest.TestCase):
|
|
866
871
|
stage_2.eval()
|
867
872
|
noise = torch.randn((1, 3, 4, 4)).to(device)
|
868
873
|
input_seg = torch.randn((1, 3, 8, 8)).to(device)
|
869
|
-
scheduler = DDPMScheduler(num_train_timesteps=10)
|
870
|
-
inferer = LatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
|
871
|
-
scheduler.set_timesteps(num_inference_steps=10)
|
872
874
|
|
873
|
-
|
874
|
-
|
875
|
-
|
876
|
-
|
877
|
-
|
878
|
-
|
879
|
-
|
880
|
-
|
875
|
+
for scheduler in [DDPMScheduler(num_train_timesteps=10), RFlowScheduler(num_train_timesteps=1000)]:
|
876
|
+
inferer = LatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
|
877
|
+
scheduler.set_timesteps(num_inference_steps=10)
|
878
|
+
|
879
|
+
with self.assertRaises(ValueError):
|
880
|
+
_ = inferer.sample(
|
881
|
+
input_noise=noise,
|
882
|
+
autoencoder_model=stage_1,
|
883
|
+
diffusion_model=stage_2,
|
884
|
+
scheduler=scheduler,
|
885
|
+
seg=input_seg,
|
886
|
+
)
|
881
887
|
|
882
888
|
|
883
889
|
if __name__ == "__main__":
|
@@ -0,0 +1,105 @@
|
|
1
|
+
# Copyright (c) MONAI Consortium
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
+
# you may not use this file except in compliance with the License.
|
4
|
+
# You may obtain a copy of the License at
|
5
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6
|
+
# Unless required by applicable law or agreed to in writing, software
|
7
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
8
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
9
|
+
# See the License for the specific language governing permissions and
|
10
|
+
# limitations under the License.
|
11
|
+
|
12
|
+
from __future__ import annotations
|
13
|
+
|
14
|
+
import unittest
|
15
|
+
|
16
|
+
import torch
|
17
|
+
from parameterized import parameterized
|
18
|
+
|
19
|
+
from monai.networks.schedulers import RFlowScheduler
|
20
|
+
from tests.test_utils import assert_allclose
|
21
|
+
|
22
|
+
TEST_2D_CASE = []
|
23
|
+
for sample_method in ["uniform", "logit-normal"]:
|
24
|
+
TEST_2D_CASE.append(
|
25
|
+
[{"sample_method": sample_method, "use_timestep_transform": False}, (2, 6, 16, 16), (2, 6, 16, 16)]
|
26
|
+
)
|
27
|
+
|
28
|
+
for sample_method in ["uniform", "logit-normal"]:
|
29
|
+
TEST_2D_CASE.append(
|
30
|
+
[
|
31
|
+
{"sample_method": sample_method, "use_timestep_transform": True, "spatial_dim": 2},
|
32
|
+
(2, 6, 16, 16),
|
33
|
+
(2, 6, 16, 16),
|
34
|
+
]
|
35
|
+
)
|
36
|
+
|
37
|
+
|
38
|
+
TEST_3D_CASE = []
|
39
|
+
for sample_method in ["uniform", "logit-normal"]:
|
40
|
+
TEST_3D_CASE.append(
|
41
|
+
[{"sample_method": sample_method, "use_timestep_transform": False}, (2, 6, 16, 16, 16), (2, 6, 16, 16, 16)]
|
42
|
+
)
|
43
|
+
|
44
|
+
for sample_method in ["uniform", "logit-normal"]:
|
45
|
+
TEST_3D_CASE.append(
|
46
|
+
[
|
47
|
+
{"sample_method": sample_method, "use_timestep_transform": True, "spatial_dim": 3},
|
48
|
+
(2, 6, 16, 16, 16),
|
49
|
+
(2, 6, 16, 16, 16),
|
50
|
+
]
|
51
|
+
)
|
52
|
+
|
53
|
+
TEST_CASES = TEST_2D_CASE + TEST_3D_CASE
|
54
|
+
|
55
|
+
TEST_FULl_LOOP = [
|
56
|
+
[{"sample_method": "uniform"}, (1, 1, 2, 2), torch.Tensor([[[[-0.786166, -0.057519], [2.442662, -0.407664]]]])]
|
57
|
+
]
|
58
|
+
|
59
|
+
|
60
|
+
class TestRFlowScheduler(unittest.TestCase):
|
61
|
+
@parameterized.expand(TEST_CASES)
|
62
|
+
def test_add_noise(self, input_param, input_shape, expected_shape):
|
63
|
+
scheduler = RFlowScheduler(**input_param)
|
64
|
+
original_sample = torch.zeros(input_shape)
|
65
|
+
timesteps = scheduler.sample_timesteps(original_sample)
|
66
|
+
noise = torch.randn_like(original_sample)
|
67
|
+
timesteps = torch.randint(0, scheduler.num_train_timesteps, (original_sample.shape[0],)).long()
|
68
|
+
noisy = scheduler.add_noise(original_samples=original_sample, noise=noise, timesteps=timesteps)
|
69
|
+
self.assertEqual(noisy.shape, expected_shape)
|
70
|
+
|
71
|
+
@parameterized.expand(TEST_CASES)
|
72
|
+
def test_step_shape(self, input_param, input_shape, expected_shape):
|
73
|
+
scheduler = RFlowScheduler(**input_param)
|
74
|
+
model_output = torch.randn(input_shape)
|
75
|
+
sample = torch.randn(input_shape)
|
76
|
+
scheduler.set_timesteps(num_inference_steps=100, input_img_size_numel=torch.numel(sample[0, 0, ...]))
|
77
|
+
output_step = scheduler.step(model_output=model_output, timestep=500, sample=sample)
|
78
|
+
self.assertEqual(output_step[0].shape, expected_shape)
|
79
|
+
self.assertEqual(output_step[1].shape, expected_shape)
|
80
|
+
|
81
|
+
@parameterized.expand(TEST_FULl_LOOP)
|
82
|
+
def test_full_timestep_loop(self, input_param, input_shape, expected_output):
|
83
|
+
scheduler = RFlowScheduler(**input_param)
|
84
|
+
torch.manual_seed(42)
|
85
|
+
model_output = torch.randn(input_shape)
|
86
|
+
sample = torch.randn(input_shape)
|
87
|
+
scheduler.set_timesteps(50, input_img_size_numel=torch.numel(sample[0, 0, ...]))
|
88
|
+
for t in range(50):
|
89
|
+
sample, _ = scheduler.step(model_output=model_output, timestep=t, sample=sample)
|
90
|
+
assert_allclose(sample, expected_output, rtol=1e-3, atol=1e-3)
|
91
|
+
|
92
|
+
def test_set_timesteps(self):
|
93
|
+
scheduler = RFlowScheduler(num_train_timesteps=1000)
|
94
|
+
scheduler.set_timesteps(num_inference_steps=100, input_img_size_numel=16 * 16 * 16)
|
95
|
+
self.assertEqual(scheduler.num_inference_steps, 100)
|
96
|
+
self.assertEqual(len(scheduler.timesteps), 100)
|
97
|
+
|
98
|
+
def test_set_timesteps_with_num_inference_steps_bigger_than_num_train_timesteps(self):
|
99
|
+
scheduler = RFlowScheduler(num_train_timesteps=1000)
|
100
|
+
with self.assertRaises(ValueError):
|
101
|
+
scheduler.set_timesteps(num_inference_steps=2000, input_img_size_numel=16 * 16 * 16)
|
102
|
+
|
103
|
+
|
104
|
+
if __name__ == "__main__":
|
105
|
+
unittest.main()
|
File without changes
|
File without changes
|