monai-weekly 1.5.dev2509__py3-none-any.whl → 1.5.dev2510__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- monai/__init__.py +1 -1
- monai/_version.py +3 -3
- monai/apps/deepedit/interaction.py +1 -1
- monai/apps/deepgrow/interaction.py +1 -1
- monai/apps/detection/networks/retinanet_detector.py +1 -1
- monai/apps/detection/networks/retinanet_network.py +5 -5
- monai/apps/detection/utils/box_coder.py +2 -2
- monai/apps/mmars/mmars.py +1 -1
- monai/apps/reconstruction/networks/blocks/varnetblock.py +1 -1
- monai/bundle/scripts.py +3 -4
- monai/data/dataset.py +2 -9
- monai/data/utils.py +1 -1
- monai/data/video_dataset.py +1 -1
- monai/engines/evaluator.py +11 -16
- monai/engines/trainer.py +11 -17
- monai/engines/utils.py +1 -1
- monai/engines/workflow.py +2 -2
- monai/fl/client/monai_algo.py +1 -1
- monai/handlers/checkpoint_loader.py +1 -1
- monai/inferers/inferer.py +6 -6
- monai/inferers/merger.py +16 -13
- monai/losses/perceptual.py +1 -1
- monai/losses/sure_loss.py +1 -1
- monai/networks/blocks/crossattention.py +1 -6
- monai/networks/blocks/feature_pyramid_network.py +4 -2
- monai/networks/blocks/selfattention.py +1 -6
- monai/networks/blocks/upsample.py +3 -11
- monai/networks/layers/vector_quantizer.py +2 -2
- monai/networks/nets/hovernet.py +5 -4
- monai/networks/nets/resnet.py +2 -2
- monai/networks/nets/senet.py +1 -1
- monai/networks/nets/swin_unetr.py +46 -49
- monai/networks/nets/transchex.py +3 -2
- monai/networks/nets/vista3d.py +7 -7
- monai/networks/utils.py +5 -4
- monai/transforms/intensity/array.py +1 -1
- monai/transforms/spatial/array.py +6 -6
- monai/utils/misc.py +1 -1
- monai/utils/state_cacher.py +1 -1
- {monai_weekly-1.5.dev2509.dist-info → monai_weekly-1.5.dev2510.dist-info}/METADATA +4 -3
- {monai_weekly-1.5.dev2509.dist-info → monai_weekly-1.5.dev2510.dist-info}/RECORD +59 -59
- tests/bundle/test_bundle_download.py +16 -6
- tests/config/test_cv2_dist.py +1 -2
- tests/integration/test_integration_bundle_run.py +2 -4
- tests/integration/test_integration_classification_2d.py +1 -1
- tests/integration/test_integration_fast_train.py +2 -2
- tests/integration/test_integration_segmentation_3d.py +1 -1
- tests/metrics/test_compute_multiscalessim_metric.py +3 -3
- tests/metrics/test_surface_dice.py +3 -3
- tests/networks/nets/test_autoencoderkl.py +1 -1
- tests/networks/nets/test_controlnet.py +1 -1
- tests/networks/nets/test_diffusion_model_unet.py +1 -1
- tests/networks/nets/test_network_consistency.py +1 -1
- tests/networks/nets/test_swin_unetr.py +1 -1
- tests/networks/nets/test_transformer.py +1 -1
- tests/networks/test_save_state.py +1 -1
- {monai_weekly-1.5.dev2509.dist-info → monai_weekly-1.5.dev2510.dist-info}/LICENSE +0 -0
- {monai_weekly-1.5.dev2509.dist-info → monai_weekly-1.5.dev2510.dist-info}/WHEEL +0 -0
- {monai_weekly-1.5.dev2509.dist-info → monai_weekly-1.5.dev2510.dist-info}/top_level.txt +0 -0
@@ -1,5 +1,5 @@
|
|
1
|
-
monai/__init__.py,sha256=
|
2
|
-
monai/_version.py,sha256=
|
1
|
+
monai/__init__.py,sha256=l1ax5Ls5iQdysj0z46xZkpVHIq5j_YK57rsd8v_uEJQ,4095
|
2
|
+
monai/_version.py,sha256=aYoA6EoQPJrkhBGJbbOno24738m4YIRubnr5NRpJXCo,503
|
3
3
|
monai/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
4
4
|
monai/_extensions/__init__.py,sha256=NEBPreRhQ8H9gVvgrLr_y52_TmqB96u_u4VQmeNT93I,642
|
5
5
|
monai/_extensions/loader.py,sha256=7SiKw36q-nOzH8CRbBurFrz7GM40GCu7rc93Tm8XpnI,3643
|
@@ -21,19 +21,19 @@ monai/apps/auto3dseg/hpo_gen.py,sha256=VMfN0M5Z8Mq3Epu4fgOD5N6X-BY2PARIC69wW2t5E
|
|
21
21
|
monai/apps/auto3dseg/transforms.py,sha256=V57mf8dTVBjiTfcgnMMdtMLmAzpnNrcl1ae5cYPjjlI,3856
|
22
22
|
monai/apps/auto3dseg/utils.py,sha256=7DPJbsL9YbhRdMZ6dEvCA_t_uLSSz7-WZSU2pMY4_qo,3138
|
23
23
|
monai/apps/deepedit/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
24
|
-
monai/apps/deepedit/interaction.py,sha256=
|
24
|
+
monai/apps/deepedit/interaction.py,sha256=jY_uxPhgaYpMggMKqgMJNc-GWxswRKwaKoUtf3B7TFE,4498
|
25
25
|
monai/apps/deepedit/transforms.py,sha256=Udj35m10Irek5Gtqo6Hgv6Lt7S6jSo-z0NuyVbs800o,38108
|
26
26
|
monai/apps/deepgrow/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
27
27
|
monai/apps/deepgrow/dataset.py,sha256=W0wv1QujA4sZgrAcBS64dl3OBbDBM2cF4RK0fDCQnRU,10054
|
28
|
-
monai/apps/deepgrow/interaction.py,sha256
|
28
|
+
monai/apps/deepgrow/interaction.py,sha256=Und57h06LSZ9W7CAWh7evPU7l97XZIB5KuEMvVCvMtM,3745
|
29
29
|
monai/apps/deepgrow/transforms.py,sha256=RmKMoN4sqhT84ognTJt55t6UtkL_OpkzRcP5VPseSss,43349
|
30
30
|
monai/apps/detection/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
31
31
|
monai/apps/detection/metrics/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
32
32
|
monai/apps/detection/metrics/coco.py,sha256=bpF6hAAMKsBNLfat-Fzh0CR-0swDsAAVcwTaZ-lo1_g,26618
|
33
33
|
monai/apps/detection/metrics/matching.py,sha256=GF4wgH5Let7GwW1SGwzfzz5BRnCVEhDe7_KR7zpLr44,17161
|
34
34
|
monai/apps/detection/networks/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
35
|
-
monai/apps/detection/networks/retinanet_detector.py,sha256
|
36
|
-
monai/apps/detection/networks/retinanet_network.py,sha256=
|
35
|
+
monai/apps/detection/networks/retinanet_detector.py,sha256=8PriT0FTy9Dyt8hw1iaPxpKC7A81PMecJj02F4ndzag,53659
|
36
|
+
monai/apps/detection/networks/retinanet_network.py,sha256=nIIPRReN_4Q0-zvj53o6KFciPEIibbWDpKwbATH9nHc,19170
|
37
37
|
monai/apps/detection/transforms/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
38
38
|
monai/apps/detection/transforms/array.py,sha256=CHc-zl7IPlKYPBVR88zVT6_eBFElPihtkfO9oo2Bsak,24546
|
39
39
|
monai/apps/detection/transforms/box_ops.py,sha256=3RFK8zNH8ufpHT_aB5xFR2wXrQauBQEWQyxNojl1mSY,18035
|
@@ -41,7 +41,7 @@ monai/apps/detection/transforms/dictionary.py,sha256=OGEYrq2F8gFjYRYv7ZdlWFM6yYR
|
|
41
41
|
monai/apps/detection/utils/ATSS_matcher.py,sha256=aajY2UJ-Ot9L5KDwORFOCuMsTQEU02BZ9-tNMfIYH98,13532
|
42
42
|
monai/apps/detection/utils/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
43
43
|
monai/apps/detection/utils/anchor_utils.py,sha256=coSzVq5ictzWL4XqwtlLTKlzdel6cfHFLbvM6zOiq8M,18718
|
44
|
-
monai/apps/detection/utils/box_coder.py,sha256=
|
44
|
+
monai/apps/detection/utils/box_coder.py,sha256=VSbqcNOgH153-3br7kmYpUlcaoE_D4vtFoDjG98hNzE,11174
|
45
45
|
monai/apps/detection/utils/box_selector.py,sha256=uXI0YrhugYR68xYshRs5JpPTT1nL3QMMS1nJ_RpddVo,9031
|
46
46
|
monai/apps/detection/utils/detector_utils.py,sha256=pU7bOzH-ay9Lnzu1aHCrIwlaGVf5xj13E7Somx_vFnk,10306
|
47
47
|
monai/apps/detection/utils/hard_negative_sampler.py,sha256=PywdXkFIAdudmp3W8JWM_CcLC3BKWQh5x1y0tuuokcg,13890
|
@@ -53,7 +53,7 @@ monai/apps/generation/maisi/networks/autoencoderkl_maisi.py,sha256=FxHsB7W1I11Np
|
|
53
53
|
monai/apps/generation/maisi/networks/controlnet_maisi.py,sha256=0K2uyMfvc1-2cFCoNDngeMbzcPpvFR1JZ0fqF9pj8r4,7707
|
54
54
|
monai/apps/generation/maisi/networks/diffusion_model_unet_maisi.py,sha256=XFOiy6GngXC_OKM1dUiel_gp71yUFWgPErYdgrVLQAU,19072
|
55
55
|
monai/apps/mmars/__init__.py,sha256=BolpgEi9jNBgrOQd3Kwp-9QQLeWQwQtlN_MJkK1eu5s,726
|
56
|
-
monai/apps/mmars/mmars.py,sha256=
|
56
|
+
monai/apps/mmars/mmars.py,sha256=24JylLuw-qTDsTnTK4Y5kAbF_nWdivrSRS8EMGy69oQ,13134
|
57
57
|
monai/apps/mmars/model_desc.py,sha256=k7WSMRuyQN8xPax8aUmGKiTNZmcVatdqPYCgxDih-x4,9996
|
58
58
|
monai/apps/nnunet/__init__.py,sha256=gyqmg1fxPf3RF6LL25gnpMTfNS14uxweuJ93e4UzjB8,745
|
59
59
|
monai/apps/nnunet/__main__.py,sha256=qrloBLymK98OPcaBKocrlF8io2h4mUuXJPFVLZT-XDo,832
|
@@ -86,7 +86,7 @@ monai/apps/reconstruction/fastmri_reader.py,sha256=CbAWHN9-b8TFgIpsu1UmS0zHZg3lv
|
|
86
86
|
monai/apps/reconstruction/mri_utils.py,sha256=WEentr9IfCdTRcRELYkIgRx2oCaIoc1JEVE1FJfQlqQ,2000
|
87
87
|
monai/apps/reconstruction/networks/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
88
88
|
monai/apps/reconstruction/networks/blocks/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
89
|
-
monai/apps/reconstruction/networks/blocks/varnetblock.py,sha256=
|
89
|
+
monai/apps/reconstruction/networks/blocks/varnetblock.py,sha256=l6Ug_0FQWuwBSoA_rgjjHdaCr8kV2hQm33TzrCDp-dk,4183
|
90
90
|
monai/apps/reconstruction/networks/nets/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
91
91
|
monai/apps/reconstruction/networks/nets/coil_sensitivity_model.py,sha256=ZSmyW4FzN-tFvbbchSUma7VGzCiEZJXN65nXdcFbJzk,6215
|
92
92
|
monai/apps/reconstruction/networks/nets/complex_unet.py,sha256=FMm7DTOCJRb80tRWlqBPzpNkdUwRo7tlbvsrHX53HW4,4775
|
@@ -114,7 +114,7 @@ monai/bundle/config_item.py,sha256=rMjXSGkjJZdi04BwSHwCcIwzIb_TflmC3xDhC3SVJRs,1
|
|
114
114
|
monai/bundle/config_parser.py,sha256=cGyEn-cqNk0rEEZ1Qiv6UydmIDvtWZcMVljyfVm5i50,23025
|
115
115
|
monai/bundle/properties.py,sha256=iN3K4FVmN9ny1Hw9p5j7_ULcCdSD8PmrR7qXxbNz49k,11582
|
116
116
|
monai/bundle/reference_resolver.py,sha256=GXCMK4iogxxE6VocsmAbUrcXosmC5arnjeG9zYhHKpg,16748
|
117
|
-
monai/bundle/scripts.py,sha256=
|
117
|
+
monai/bundle/scripts.py,sha256=VE3hIAcPfncbT1MGyLk0by1ZtA9jit6Hc7djrUUKUX8,91018
|
118
118
|
monai/bundle/utils.py,sha256=t-22uFvLn7Yy-dr1v1U33peNOxgAmU4TJiGAbsBrUKs,10108
|
119
119
|
monai/bundle/workflows.py,sha256=CuhmFq1AWsN3ATiYJCSakPOxrOdGutl6vkpo9sxe8gU,34369
|
120
120
|
monai/config/__init__.py,sha256=CN28CfTdsp301gv8YXfVvkbztCfbAqrLKrJi_C8oP9s,1048
|
@@ -124,7 +124,7 @@ monai/data/__init__.py,sha256=loDwAMF14hb4HS04SwukoIchIfU6iGY-xPrJVGyVwBo,5167
|
|
124
124
|
monai/data/box_utils.py,sha256=YbG6lOoYwUGmwcNmoKzq2xnNTbYA4LMkHmfsqteopCg,50102
|
125
125
|
monai/data/csv_saver.py,sha256=fcZF4kBNQnDFwQjV9TS4zjq_zqsv_u3QldxRprMC7zI,4952
|
126
126
|
monai/data/dataloader.py,sha256=GC1x8aZJaidXN8zaA-Vl6iEHlTP4ocjIvRhCv74elkQ,4459
|
127
|
-
monai/data/dataset.py,sha256=
|
127
|
+
monai/data/dataset.py,sha256=ysGlfrVmiXM6O42s-CcewNo_EqZ29uZ1M_sS_rgo1EQ,78731
|
128
128
|
monai/data/dataset_summary.py,sha256=5DkrzlNb3lw58j6lMR7aAGZH1YIw6b1UFQjkbourxt0,10243
|
129
129
|
monai/data/decathlon_datalist.py,sha256=3z7p-PqEdj41MlkRFmc-Q1HNxI0D6Tgi4fmD3p1oq_E,10310
|
130
130
|
monai/data/fft_utils.py,sha256=in9Zu8hC4oSVzuA-Zl236X6EkvgFka0RXdOxgvdGkv0,4448
|
@@ -143,26 +143,26 @@ monai/data/test_time_augmentation.py,sha256=KgIcPDwF_KelBCX118J5gx13sefGaDgQFUDg
|
|
143
143
|
monai/data/thread_buffer.py,sha256=FtJlRwLHQzU9sf3XJk4G7b_-uKXaRQHAOMauc-zWN2Q,8840
|
144
144
|
monai/data/torchscript_utils.py,sha256=KoJinpJiNepP6i-1DDy3-8m1Qg1bPfAZTScmXr0LT6g,5502
|
145
145
|
monai/data/ultrasound_confidence_map.py,sha256=pEAp4lr-s00_T9d4IEYSJ5B9VQwf_T7BS9GBx8jw_Sg,14464
|
146
|
-
monai/data/utils.py,sha256=
|
147
|
-
monai/data/video_dataset.py,sha256=
|
146
|
+
monai/data/utils.py,sha256=rZ-61OUVeMr37vsxVTMoQBw15-cLNJQP5szFQSZlS_Q,66448
|
147
|
+
monai/data/video_dataset.py,sha256=pUZhaYqSUfacOCAs53UnNXWH2oO99cK8q-7jqujeyqU,9105
|
148
148
|
monai/data/wsi_datasets.py,sha256=Mih4G_rzTQC0Ts8TobnNNXoyCxOAhy0rFqpREDAENWc,18659
|
149
149
|
monai/data/wsi_reader.py,sha256=yVbgl44bS9xF0wsr_ZeLwaljMlTOrtjVTpYKykydEMU,49508
|
150
150
|
monai/engines/__init__.py,sha256=oV0zH5n8qPdCCNZCqLqN4Z7iqADouDtZmtswWQoZWOk,1094
|
151
|
-
monai/engines/evaluator.py,sha256=
|
152
|
-
monai/engines/trainer.py,sha256=
|
153
|
-
monai/engines/utils.py,sha256=
|
154
|
-
monai/engines/workflow.py,sha256=
|
151
|
+
monai/engines/evaluator.py,sha256=GM1E023FSbNw7ieSXKXjfOU8hYF4XjrjsBQwsZQ7bRU,26673
|
152
|
+
monai/engines/trainer.py,sha256=V9wRSJL8FVXv5gJufFFBdz23zexSzzdQPyGOs0IrNoU,38129
|
153
|
+
monai/engines/utils.py,sha256=Lj76ai4jrf3TsCUng3U4I5Pa97skbw2jMNE_Ssyru50,15658
|
154
|
+
monai/engines/workflow.py,sha256=pvMT-dANo_Lf4NsKyzLup2s3VbmKSYEUt4q2Pzfp3Ow,15483
|
155
155
|
monai/fl/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
156
156
|
monai/fl/client/__init__.py,sha256=Wnkcf-Guhi-d29eAH0p51jz1Tn9WSVM4UUGbbb9SAqQ,725
|
157
157
|
monai/fl/client/client_algo.py,sha256=vetQbSNmuvJRBEcu0AKM96gKYbkSXlu4HSriqK7wiiU,5098
|
158
|
-
monai/fl/client/monai_algo.py,sha256=
|
158
|
+
monai/fl/client/monai_algo.py,sha256=Kk1psjpmB5J_KcQz3ieXXYy-MUTHXuJ1ZGmZyuhLbXI,34080
|
159
159
|
monai/fl/utils/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
160
160
|
monai/fl/utils/constants.py,sha256=OjMAE17niYqQh7nz45SC6CXvkMa4-XZsIuoHUHqP7W0,1784
|
161
161
|
monai/fl/utils/exchange_object.py,sha256=q41trOwBdog_g3k_Eh2EFnLufHJ1mj7nGyQ-ShuW5Mo,3527
|
162
162
|
monai/fl/utils/filters.py,sha256=InXplYes52JJqtsNbePAPPAYS8am_uRO7UkBHyYyJCo,1633
|
163
163
|
monai/handlers/__init__.py,sha256=m6SDdtXAZ4ONLCCYrSgONuPaJOz7lewOAzOvZ3J9r14,2442
|
164
164
|
monai/handlers/average_precision.py,sha256=FkIUP2mKqGvybnc_HxuuOdqPeq06wnZP_vwb8K-IhUg,2753
|
165
|
-
monai/handlers/checkpoint_loader.py,sha256=
|
165
|
+
monai/handlers/checkpoint_loader.py,sha256=kbnfhwEgdnOJFjKQCuHlwJllckC1xWkhj-cwXDyDmkU,7452
|
166
166
|
monai/handlers/checkpoint_saver.py,sha256=z_w5HtNSeRM3QwHQIgQKqVodSYNy8dhL8KTBUzHuF0g,16047
|
167
167
|
monai/handlers/classification_saver.py,sha256=CNzdU9GrKj8KEC42jaBy2rEgpd3mqgz-YZg4dr61Jyg,7605
|
168
168
|
monai/handlers/clearml_handlers.py,sha256=bMVhGUlUlilTJfkwb4YHEgrGBOUnveObfHgqzDy3SVw,7545
|
@@ -195,8 +195,8 @@ monai/handlers/trt_handler.py,sha256=uWFdgC8QKRkcNwWfKIbQMdK6-MX_1ON0mKabeIn1ltI
|
|
195
195
|
monai/handlers/utils.py,sha256=Ib1u-PLrtIkiLqTfREnrCWpN4af1btdNzkyMZuuuYyU,10239
|
196
196
|
monai/handlers/validation_handler.py,sha256=NZO21c6zzXbmAgJZHkkdoZQSQIHwuxh94QD3PLUldGU,3674
|
197
197
|
monai/inferers/__init__.py,sha256=K74t_RCeUPdEZvHzIPzVAwZ9DtmouLqhb3qDEmFBWs4,1107
|
198
|
-
monai/inferers/inferer.py,sha256=
|
199
|
-
monai/inferers/merger.py,sha256=
|
198
|
+
monai/inferers/inferer.py,sha256=HcP9xNYkIiOoRJU_xugJrfOcOOWbBq7wOk_ntzXfJBw,93705
|
199
|
+
monai/inferers/merger.py,sha256=JxSLdlXTKW1xug11UWQNi6dNtpqVRbGCLc-ifj06g8U,16613
|
200
200
|
monai/inferers/splitter.py,sha256=_hTnFdvDNRckkA7ZGQehVsNZw83oXoGFWyk5VXNqgJg,21149
|
201
201
|
monai/inferers/utils.py,sha256=dvZBCAjaPa8xXcJuXRzNQ-fBzteauzkKbxE5YZdGBGY,20374
|
202
202
|
monai/losses/__init__.py,sha256=igy7BjoQzM3McmJPD2tmeiW2ljSXfB2HBdc4YiDzYEg,1778
|
@@ -213,11 +213,11 @@ monai/losses/hausdorff_loss.py,sha256=XhOGtYxs-BYRN0NDXX3J3_79so5jEzh9wB8EBm5NoL
|
|
213
213
|
monai/losses/image_dissimilarity.py,sha256=fIIY1zyxfxl-hKi797xpyDDknUGkdLWGJDBwK3IvJ18,15460
|
214
214
|
monai/losses/multi_scale.py,sha256=7hL4clBLa3f0tz9-74brq5XOFChrpyd_h9cHQKPnseQ,3636
|
215
215
|
monai/losses/nacl_loss.py,sha256=IP4Y2qKcPNn60rgA3zUSvjqnvCiIsbvmwm25ao9appg,5052
|
216
|
-
monai/losses/perceptual.py,sha256=
|
216
|
+
monai/losses/perceptual.py,sha256=rPylPBQHmwan87JUawKSRwWn10cIb24xvx5qjXZkUIo,19487
|
217
217
|
monai/losses/spatial_mask.py,sha256=rPyW8fJPSdqHUS7YB7m30Sq4G-YYpobO_fvKsFSAFQ0,2955
|
218
218
|
monai/losses/spectral_loss.py,sha256=PqmZdmJOAzaarW0bzBu8SeL9sOy3XQhul7pnLY4Ih-I,3368
|
219
219
|
monai/losses/ssim_loss.py,sha256=v8LaVXtBzpTey80CBtsWTs5qWw7fiJwYAXqXcCgo5kA,5058
|
220
|
-
monai/losses/sure_loss.py,sha256=
|
220
|
+
monai/losses/sure_loss.py,sha256=QrXCmy7YwASZNufroDTjiZo8w5FahVd07asDeTd6r3s,8195
|
221
221
|
monai/losses/tversky.py,sha256=uLuqCvsac8OabTJzKQEzAfAvlwrflYCh0s76rgbcVJ0,6955
|
222
222
|
monai/losses/unified_focal_loss.py,sha256=rCj8IpueYH_UMrOUXU0tjbXIN4Uix3bGnRZQtRvl7Sg,10224
|
223
223
|
monai/losses/utils.py,sha256=wrpKcEO0XhbFOHz_jJRqeAeIgpMiMxmepnRf31_DNRU,2786
|
@@ -245,7 +245,7 @@ monai/metrics/utils.py,sha256=eQ9QGGvuNmYFrgtVFNiA44pBhaHLCkmpyeK2FcK_2Pc,46941
|
|
245
245
|
monai/metrics/wrapper.py,sha256=c1zg-xcypQyZ840TEuhhLgr4sClYMWTxlv1OieJTtvE,11781
|
246
246
|
monai/networks/__init__.py,sha256=ZzU2Qo8gDXNiRBF0JapIo3xlecZHjXsJuarF0IKVKKY,1086
|
247
247
|
monai/networks/trt_compiler.py,sha256=IFfsM1qFZvmCUBbEvbHnZe6_zmMcXghkpkzmP43dZbk,27535
|
248
|
-
monai/networks/utils.py,sha256=
|
248
|
+
monai/networks/utils.py,sha256=8kxdwqV_nxGgwjF7lt_9tsJhesCjnE1eSCvQWzqr5RQ,56372
|
249
249
|
monai/networks/blocks/__init__.py,sha256=xf-4SLQjL3bU7T_vCnAIbeBzz0Ys2rrtlegJM5bej-Q,2355
|
250
250
|
monai/networks/blocks/acti_norm.py,sha256=bVGXbTZ_ssRvmED5R7LOQ7jj4V6WbVFl8JMO-4iZ2Dk,4275
|
251
251
|
monai/networks/blocks/activation.py,sha256=S5k3zcP2PsHBkeIxgWgNg8ppW80tTResVP2j9ZsvTFw,5839
|
@@ -254,14 +254,14 @@ monai/networks/blocks/attention_utils.py,sha256=UAlttLpn8vJCIiYyWXEUF-NzVTQBOK-a
|
|
254
254
|
monai/networks/blocks/backbone_fpn_utils.py,sha256=mdXFwtnRgwuaisTlY-c7OkY1ZZBY3I82dAjpXFAZFbg,7488
|
255
255
|
monai/networks/blocks/convolutions.py,sha256=gRmbYfy3IR4taiXuxeH5KGOFjP55FoVWfP4e1L6ai0s,11686
|
256
256
|
monai/networks/blocks/crf.py,sha256=gHyRgBWD9DmmbCJnXwsMa6WN7N9fDLuT_SwH8MnHhXE,5009
|
257
|
-
monai/networks/blocks/crossattention.py,sha256=
|
257
|
+
monai/networks/blocks/crossattention.py,sha256=8rb1n41NRGjMHDegWXm9jlBHTaXFxEqgNLN8xsxXQzI,8348
|
258
258
|
monai/networks/blocks/denseblock.py,sha256=hs1rcBp95euZT5ULjgefPApZH75-hqSaVKKNtHdGt10,4747
|
259
259
|
monai/networks/blocks/dints_block.py,sha256=-JWz4-nnAjrOxU2oJ86-qN8Krb8FayKS8Zpbp1wLXzc,9255
|
260
260
|
monai/networks/blocks/downsample.py,sha256=18cwYXL5H3DC5Yq12cdqTIijDJfMCE2YNHlPetFB6UY,2413
|
261
261
|
monai/networks/blocks/dynunet_block.py,sha256=kg8NNTL4nBqsy6gBcxmS5ZCPxlhWM_iB0ByyTQ4AfPs,11063
|
262
262
|
monai/networks/blocks/encoder.py,sha256=NwH5VSQLwamJqrSbZSdQqMwZCk80CPbSpMGEE0r0Cwo,3669
|
263
263
|
monai/networks/blocks/fcn.py,sha256=mnCMrxhUdj2yZ0DPIj0Xf9OKVdv-qhG1BpnAg5j7q6c,9024
|
264
|
-
monai/networks/blocks/feature_pyramid_network.py,sha256=
|
264
|
+
monai/networks/blocks/feature_pyramid_network.py,sha256=zHMXB_hl92kmuJIe0rTvQlzQn1W77WTQZ7XaoivktEw,10631
|
265
265
|
monai/networks/blocks/fft_utils_t.py,sha256=8bOvhLgP5nDLz8QwzD4XnRaxE9-tGba2-b_QDK8IWSs,8263
|
266
266
|
monai/networks/blocks/localnet_block.py,sha256=b2-ZZvkMPphHJZYTbwEZDhqA-mMBSFM5WQOoohk_6W4,11456
|
267
267
|
monai/networks/blocks/mednext_block.py,sha256=GKaFkRvmho79yxwfYyeSaJtHFtk185dY0tA4_rPnsQA,10487
|
@@ -271,14 +271,14 @@ monai/networks/blocks/pos_embed_utils.py,sha256=alvCh5x_OF2lv8fO6vvhAwkQJHV7TJT6
|
|
271
271
|
monai/networks/blocks/regunet_block.py,sha256=1FLIwVBtk66II6xQ7Q4LMY8DP0rMmeftN7HuaEgnf3A,8825
|
272
272
|
monai/networks/blocks/rel_pos_embedding.py,sha256=wuTJsk_NHSDX-3V0X9ctF99WIh2-SHLDbQxzrG7tz_4,2208
|
273
273
|
monai/networks/blocks/segresnet_block.py,sha256=dREFa0CWuSWlSOm53fT7vZz6UC2J_7JAEaeHB9rYjAk,3339
|
274
|
-
monai/networks/blocks/selfattention.py,sha256=
|
274
|
+
monai/networks/blocks/selfattention.py,sha256=oH4rOT_OpalGeZOTIanBWWJ88RjriQ9W629tZ6-W-iE,9553
|
275
275
|
monai/networks/blocks/spade_norm.py,sha256=Kq2ImmCQBaFURMnOTj08aphgGkF3ghDm19kXpPRq91c,3654
|
276
276
|
monai/networks/blocks/spatialattention.py,sha256=HhoOnp0YfygOZne8jZjxQezRXIwQg1kfs-Cdo0ruxhw,3442
|
277
277
|
monai/networks/blocks/squeeze_and_excitation.py,sha256=y2kXgoSFxywu-KCGYbI_d-NCCAEbuKAIY5gSqO_T7TI,12752
|
278
278
|
monai/networks/blocks/text_embedding.py,sha256=HIlCTQCSyOEXnqo1l9TOC05duCoeWd9Kb4Oc0gvLZKw,3814
|
279
279
|
monai/networks/blocks/transformerblock.py,sha256=dGqVoLoQuRjIO1mi5FpTNUZ0nrgvOVqksfQK6oZdhZc,3957
|
280
280
|
monai/networks/blocks/unetr_block.py,sha256=d_rqE76OFfd3QRcHuor5Zei2pOrupoleBWu3eYUup0c,9049
|
281
|
-
monai/networks/blocks/upsample.py,sha256=
|
281
|
+
monai/networks/blocks/upsample.py,sha256=WZXqstlYSYQ3BlA-QXS94z7olM1wEXoCZh12cDOm8_U,13523
|
282
282
|
monai/networks/blocks/warp.py,sha256=XVFZKZR0kBhEtU5-xQsaqL06a-pAI7JJVupQCD2X4e8,7255
|
283
283
|
monai/networks/layers/__init__.py,sha256=eSiNtHu0EZ1A8fw_lPTi_4szdRMsgZlZhtL6TR7fUnc,1689
|
284
284
|
monai/networks/layers/conjugate_gradient.py,sha256=kCAwjtX_j5wrgR8x52WdGl4yCwZmcnUFONnM00G1sWU,3717
|
@@ -290,7 +290,7 @@ monai/networks/layers/gmm.py,sha256=Aq-YCHgUalgOZQ0x5mwYKJe1G7aiCiJybdkPTiiT120,
|
|
290
290
|
monai/networks/layers/simplelayers.py,sha256=bX7JnDJJRqTla9siNuJ2YAKV2VcH0gCJNRE5hmrQn24,27967
|
291
291
|
monai/networks/layers/spatial_transforms.py,sha256=fz2t7-ibijNLqTYpAn4ZgdXtzBSIyWlaF35mQtqWRY4,25581
|
292
292
|
monai/networks/layers/utils.py,sha256=k_2xVO8BTEMMVJtemUyKBWw4_5xtqd6OOTOG8qld8To,4916
|
293
|
-
monai/networks/layers/vector_quantizer.py,sha256=
|
293
|
+
monai/networks/layers/vector_quantizer.py,sha256=N1WrUjlGsYc3GYF-aJyvf9XIF7xfnSGYYoD3fyAji9c,10056
|
294
294
|
monai/networks/layers/weight_init.py,sha256=ehwI5F7jm_lmDkK4qVL7ocIzCEPx5UPgLaURcsfMNwk,2253
|
295
295
|
monai/networks/nets/__init__.py,sha256=QS_r_mjmymo3YX6DnWftREug1zVRUV56b2xjj5rvWDU,4209
|
296
296
|
monai/networks/nets/ahnet.py,sha256=RT-loCa5Z_3I2DWB8lmRkhxGXSsnMVBCEDpwo68-YB4,21570
|
@@ -312,7 +312,7 @@ monai/networks/nets/flexible_unet.py,sha256=VN3cJQPMmY--TpZkuDwEWonPgJc4R3JKBwJC
|
|
312
312
|
monai/networks/nets/fullyconnectednet.py,sha256=j5uo68qnYSxgH_sEMRh7s3QGNKFaJAIxmx8OixEv2Ig,7212
|
313
313
|
monai/networks/nets/generator.py,sha256=q20EAl9N7Q56t78JiZaUEkPhYWyD02oqO0yekJCd9x0,6581
|
314
314
|
monai/networks/nets/highresnet.py,sha256=1Mx8lR5K4sRXGWjspDAHaKq0WrX9Q7qz8CcBCKZxIXk,8883
|
315
|
-
monai/networks/nets/hovernet.py,sha256=
|
315
|
+
monai/networks/nets/hovernet.py,sha256=CeksvFWFsIcV70q-JS1QneuMf7vKR8aH1LBz7yaSswA,28734
|
316
316
|
monai/networks/nets/masked_autoencoder_vit.py,sha256=U2DmyKOP-GqFfzbpyMwCoGfcBvMHYeua5G2ZpwqzKpw,9610
|
317
317
|
monai/networks/nets/mednext.py,sha256=svsIk0dH7MdNI8Fr7eP2YM8j1IBJ2paF7m_2VWpLOZ4,13258
|
318
318
|
monai/networks/nets/milmodel.py,sha256=aUDgYJG0kS3p4nBW_dF7b4cWwuC31w3KIzmUzXA08HE,9813
|
@@ -321,21 +321,21 @@ monai/networks/nets/patchgan_discriminator.py,sha256=yTT0on0lzlDwSu4B9McMqdxqu5x
|
|
321
321
|
monai/networks/nets/quicknat.py,sha256=ko1BO9l4i4BVYG5V4ohkwUEyoRrPPPzmqNqnFhLTZ0k,20463
|
322
322
|
monai/networks/nets/regressor.py,sha256=6Nz5yJuQDJJOr5R0rhot_mHu7_MDCA4ybV48wS1HS1M,6482
|
323
323
|
monai/networks/nets/regunet.py,sha256=-A6ygR7lVyAflFyqWkVVOsY94uMXWol1f2xr_HmsU1c,18664
|
324
|
-
monai/networks/nets/resnet.py,sha256=
|
324
|
+
monai/networks/nets/resnet.py,sha256=owsWu9lK26ijhRHDCLEBLf03t681TyehVCflcPqGIec,28179
|
325
325
|
monai/networks/nets/segresnet.py,sha256=xNkSIvdk7kAyc3eVn-U_gGj8MoGVc5nklFKc_fkgOUs,13994
|
326
326
|
monai/networks/nets/segresnet_ds.py,sha256=XFF7HKMt9Wbfc9fZSgfjVdfYQcP0d19ygp3VT7OHzJg,20644
|
327
|
-
monai/networks/nets/senet.py,sha256=
|
327
|
+
monai/networks/nets/senet.py,sha256=yLhP9gDPoa-h9UwJZJm5qxPdPvF9calY95lButXJESs,19308
|
328
328
|
monai/networks/nets/spade_autoencoderkl.py,sha256=-b2Sbl4jPpwo3ukTgsTcON26cSTB35K9sy1S9DKlZz0,19566
|
329
329
|
monai/networks/nets/spade_diffusion_model_unet.py,sha256=zYsXhkHNpHWWyal5ljAMxOICJ1loYQQMAOuzWzdLBCM,39007
|
330
330
|
monai/networks/nets/spade_network.py,sha256=GguYucjIRyT_rZa9DrvUmv00FtqXHZtY1VfJM9Rygns,16479
|
331
|
-
monai/networks/nets/swin_unetr.py,sha256=
|
331
|
+
monai/networks/nets/swin_unetr.py,sha256=cPbA_M_BmPa4ziA6lHZrLW1zOBI4HH7eLxKaOCbCbgM,45677
|
332
332
|
monai/networks/nets/torchvision_fc.py,sha256=3g5PD7C1MSkQ8xndhnVd0b3aN8zfshT8uiFS0OHyQaY,6309
|
333
|
-
monai/networks/nets/transchex.py,sha256=
|
333
|
+
monai/networks/nets/transchex.py,sha256=5b8luTeajjbl3P560Y5xpwblT3j1-0ghuhmQbkIat0U,15822
|
334
334
|
monai/networks/nets/transformer.py,sha256=-nzl20Z5xdtn7xChOd_cRbbPVoPIFGVfTQw3fIEGMuE,6395
|
335
335
|
monai/networks/nets/unet.py,sha256=t2an-NZ8QRpWal6uh1WpxG1tbekKRDgQtpT7YeXWFvY,13543
|
336
336
|
monai/networks/nets/unetr.py,sha256=G67kjiBMz13MzP4eV8XK-GydSogMwgXaBMFDShF5sB8,8252
|
337
337
|
monai/networks/nets/varautoencoder.py,sha256=Pd9BdXW1iVjmAVCZIc2ElGtSDAWRBaLwEKxLDicyxZI,6282
|
338
|
-
monai/networks/nets/vista3d.py,sha256=
|
338
|
+
monai/networks/nets/vista3d.py,sha256=sm8h9qlmz7D08PWo1zd7Wu8pXqGV9WR1OEBb1O6-qUc,43496
|
339
339
|
monai/networks/nets/vit.py,sha256=yEzFFQln5ieknnF8A1_ecB_c0SuOBBnrXPesm_kzVts,5934
|
340
340
|
monai/networks/nets/vitautoenc.py,sha256=vfQBWjTb0k7EY4uC76rmuOCIUUgeBvf_EIXBofCzVHQ,5740
|
341
341
|
monai/networks/nets/vnet.py,sha256=zaJi5kSiTLAuFHThSZfhJvHP6zKh3oBWsTWG-328O_g,10820
|
@@ -369,7 +369,7 @@ monai/transforms/croppad/batch.py,sha256=5ukcYk3VCDpk62AL5Q_jTqpXmSNTlw0UCUhDeAB
|
|
369
369
|
monai/transforms/croppad/dictionary.py,sha256=WOzj_PjmoB3zLEmtQlafb9-PWgXd-s5K7Z5Doc8Adns,60746
|
370
370
|
monai/transforms/croppad/functional.py,sha256=iroD0XBaMG1Mox6-EotIh2nAUxJPrpIyUrHopc83Sug,12640
|
371
371
|
monai/transforms/intensity/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
372
|
-
monai/transforms/intensity/array.py,sha256=
|
372
|
+
monai/transforms/intensity/array.py,sha256=jVHHMvmUTYrqIp6i_MhvLt_-fup_Bl770RRV7cald3g,121808
|
373
373
|
monai/transforms/intensity/dictionary.py,sha256=MEeMKQckn6X-cEk51Z2YTGjt89RohBzFfO_jU3D06wk,85086
|
374
374
|
monai/transforms/io/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
375
375
|
monai/transforms/io/array.py,sha256=370Cxm6XBfJ8V0yMB3qZrG9dp3jrU_A5_IcvVjrekWo,27480
|
@@ -394,7 +394,7 @@ monai/transforms/smooth_field/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6F
|
|
394
394
|
monai/transforms/smooth_field/array.py,sha256=Pz4ErmcfVTRZpBe4_IAXTWHlGSmRfExegNKYyrSVwsE,17856
|
395
395
|
monai/transforms/smooth_field/dictionary.py,sha256=iU4V2VjSy2H1K03KgumMUr3cyZVWEJS0W-tgc6SZtP4,11194
|
396
396
|
monai/transforms/spatial/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
397
|
-
monai/transforms/spatial/array.py,sha256=
|
397
|
+
monai/transforms/spatial/array.py,sha256=fEmwe1O1f0eTh_32OhkPfQQfafK2v-MwFA4G9dSdAxo,185104
|
398
398
|
monai/transforms/spatial/dictionary.py,sha256=t0SvEDSVNFUEw2fK66OVF20sqSzCNxil17HmvsMFBt8,133752
|
399
399
|
monai/transforms/spatial/functional.py,sha256=IwS0witCqbGkyuxzu_R4Ztp90S0pg9hY1irG7feXqig,33886
|
400
400
|
monai/transforms/utility/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
@@ -407,12 +407,12 @@ monai/utils/deprecate_utils.py,sha256=gKeEV4MsI51qeQ5gci2me_C-0e-tDwa3VZzd3XPQqL
|
|
407
407
|
monai/utils/dist.py,sha256=7brB42CvdS8Jvr8Y7hfqov1uk6NNnYea9dYfgMYy0BY,8578
|
408
408
|
monai/utils/enums.py,sha256=jXtLaNDxG3BRBgLG2t13_S_G4iVWYHZO_GztykAtmXg,19594
|
409
409
|
monai/utils/jupyter_utils.py,sha256=BYtj80LWQAYg5RWPj5g4j2AMCzLECvAcnZdXns0Ruw8,15651
|
410
|
-
monai/utils/misc.py,sha256=
|
410
|
+
monai/utils/misc.py,sha256=j1w0AcuAAW_4MGuxiohi1pYsHfZpsZq5wLAz_kQKzD4,31759
|
411
411
|
monai/utils/module.py,sha256=R37PpCNCcHQvjjZFbNjNyzWb3FURaKLxQucjhzQk0eU,26087
|
412
412
|
monai/utils/nvtx.py,sha256=i9JBxR1uhW1ZCgLPLlTx8b907QlXkFzJyTBLMlFjhtU,6876
|
413
413
|
monai/utils/ordering.py,sha256=0nlA5b5QpVCHbtiCbTC-YsqjTmjm0bub0IeJhGFBOes,8270
|
414
414
|
monai/utils/profiling.py,sha256=V2_cSHgrcmVF48_G3nUi2-O6fnXsS89nSlb8jj58YLo,15937
|
415
|
-
monai/utils/state_cacher.py,sha256=
|
415
|
+
monai/utils/state_cacher.py,sha256=M4fxe4aqOS6GTYt2nCiZIx1HRYmEtlWpXWbGcriwvuU,6002
|
416
416
|
monai/utils/tf32.py,sha256=FA_Upq2evvWGl2UYdrEsd7GoIsIEsLyPfP9oD_su9Go,2643
|
417
417
|
monai/utils/type_conversion.py,sha256=fj1mUWf-5WBv9m-fpe8gjcGljGBGSA8-RppBpKD_wv0,21754
|
418
418
|
monai/visualize/__init__.py,sha256=p7dv9-hRa9vAhlpHyk86yap9HgeDeJRO3pXmFhDx8Mc,1038
|
@@ -503,7 +503,7 @@ tests/apps/vista3d/test_vista3d_sampler.py,sha256=-luQCe3Hhle2PC9AkFCUgK8gozOD0O
|
|
503
503
|
tests/apps/vista3d/test_vista3d_transforms.py,sha256=nAPiDBNWeXLoW7ax3HHL63t5jqzQ3HFa-6wTvdyqVJk,3280
|
504
504
|
tests/bundle/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
505
505
|
tests/bundle/test_bundle_ckpt_export.py,sha256=VnpigCoBAAc2lo0rWOpVMg0IYGB6vbHXL8xLtB1Pkio,4622
|
506
|
-
tests/bundle/test_bundle_download.py,sha256=
|
506
|
+
tests/bundle/test_bundle_download.py,sha256=sM6bIaCjIdDbHWpMigYx4T7qFLXSeexnRpGubUKbx9U,20404
|
507
507
|
tests/bundle/test_bundle_get_data.py,sha256=lQh321mev_7fsLXRg0Tq5uEjuQILethDHRKzB6VV0o4,3667
|
508
508
|
tests/bundle/test_bundle_push_to_hf_hub.py,sha256=Zjl6xDwRKgkS6jvO5dzMBaTLEd4EXyMXp0_wzDNSY3g,1740
|
509
509
|
tests/bundle/test_bundle_trt_export.py,sha256=png-2SGjBSt46LXSz-PLprOXwJ0WkC_3YLR3Ibk_WBc,6344
|
@@ -516,7 +516,7 @@ tests/bundle/test_config_item.py,sha256=tM6gNRE7q_jywig7OcHu2R4qrQySYRhx9PAqhoI7
|
|
516
516
|
tests/bundle/test_config_parser.py,sha256=tP45BGOkt1uAkgMTCjnEP9tXyJVJjwI57DM-QM8iGg4,16131
|
517
517
|
tests/bundle/test_reference_resolver.py,sha256=3skwzGtooAHi81KRrso9Bwv4fx4ddAPoSDA2MTWBsOg,4284
|
518
518
|
tests/config/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
519
|
-
tests/config/test_cv2_dist.py,sha256=
|
519
|
+
tests/config/test_cv2_dist.py,sha256=e8DCBCWHhLIhZQneEchwYPSavxsOEjTsoUxt9uT5Kps,1953
|
520
520
|
tests/engines/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
521
521
|
tests/engines/test_ensemble_evaluator.py,sha256=28hQGMswONlZSFT9dKN7kDnoBnRWiotDIJCNPp0irIc,3147
|
522
522
|
tests/engines/test_prepare_batch_default.py,sha256=W0S-BXwoDbI_Tzjj7N0yEWX34TZfkI0f3MTnEfRLmqE,2814
|
@@ -587,14 +587,14 @@ tests/integration/test_deepedit_interaction.py,sha256=tmryp1cP_QlI_tgguZybRZc7-F
|
|
587
587
|
tests/integration/test_downsample_block.py,sha256=qvqSeTwFQHwiJ0y8uwWE8U_9ffhltJ_4U5Zg5rBnQ6M,1794
|
588
588
|
tests/integration/test_hovernet_nuclear_type_post_processingd.py,sha256=yTRmYdQBXEMMmXJjPDBPMxPSkLWj2U3bdRhaAfDXrpE,2661
|
589
589
|
tests/integration/test_integration_autorunner.py,sha256=tDK1XkMZp4hehfuzMr2LQIgavP36L_vkFcOcI1Z68Lk,7571
|
590
|
-
tests/integration/test_integration_bundle_run.py,sha256=
|
591
|
-
tests/integration/test_integration_classification_2d.py,sha256=
|
590
|
+
tests/integration/test_integration_bundle_run.py,sha256=uO87WnnG3EYnAxhudpfHy7fyxHNNzifFTw2rrMm_6XU,10734
|
591
|
+
tests/integration/test_integration_classification_2d.py,sha256=psUvLWNtndkPkgc14YCKqvVQJ9oS1EBdxpg3dOqoF7E,11373
|
592
592
|
tests/integration/test_integration_determinism.py,sha256=AiSBXHcPwDtKRbt_lejI-IDDkYtDWccMkNVoHuyrtU0,3172
|
593
|
-
tests/integration/test_integration_fast_train.py,sha256=
|
593
|
+
tests/integration/test_integration_fast_train.py,sha256=WxEIJV52F0Cf2wmGlIQDiVs1m2QZrvxmta_UAsa0OCI,9736
|
594
594
|
tests/integration/test_integration_gpu_customization.py,sha256=z-w6iBaY72LEi8TBVxZuzvsEBgBecZAP2YPwl6KFUhA,5547
|
595
595
|
tests/integration/test_integration_lazy_samples.py,sha256=d_4GNy_ixiizvehIYJBht4dQropRsqQy7rJOpW7OkZ8,9198
|
596
596
|
tests/integration/test_integration_nnunetv2_runner.py,sha256=KgyAI0Irl93KDLZyo8fGZjEL8dS5UXPKQz_osRfhtSU,4332
|
597
|
-
tests/integration/test_integration_segmentation_3d.py,sha256=
|
597
|
+
tests/integration/test_integration_segmentation_3d.py,sha256=TSV8tdiloK4_E03DgM1SqJxMo4fcH-Ta1NutG-3cPFc,13229
|
598
598
|
tests/integration/test_integration_sliding_window.py,sha256=N0CYquebXk8N3KiPcGWbD9KAf5UHuXx2pqAZY5PQVSE,3769
|
599
599
|
tests/integration/test_integration_stn.py,sha256=1bwzCn8X-1xjV-SGalOtlpRPLFnYpDGO_kxoWSe-itY,4946
|
600
600
|
tests/integration/test_integration_unet_2d.py,sha256=rMOCG7eYt3jrCjG5HXCfTdF-XnCvyO1X631H7l-F1w4,2376
|
@@ -657,7 +657,7 @@ tests/metrics/test_compute_generalized_dice.py,sha256=m5468hRvCYdfEF4B459e2LW3gD
|
|
657
657
|
tests/metrics/test_compute_meandice.py,sha256=kC7JEqHUe54GrPxypoEjlmUZtxVZxjbhfRWEsZPP7CY,11381
|
658
658
|
tests/metrics/test_compute_meaniou.py,sha256=hphLbY6S-DA3CQiKOug-DblzqwPK0F7aF3Pujz6H0vk,8020
|
659
659
|
tests/metrics/test_compute_mmd_metric.py,sha256=9rwvmZaj4wQKLY3xfuF85gFvZrnyWSXXDd6m7zy63sg,2025
|
660
|
-
tests/metrics/test_compute_multiscalessim_metric.py,sha256=
|
660
|
+
tests/metrics/test_compute_multiscalessim_metric.py,sha256=bLL6eNE_bhL4tL4EJO5XcaGurbE5utemc4b6PmJ766k,3080
|
661
661
|
tests/metrics/test_compute_panoptic_quality.py,sha256=DvHzBiaWmDEze3QONzJqxXhTgDv9Q-3_mKqaApaGMvk,5087
|
662
662
|
tests/metrics/test_compute_regression_metrics.py,sha256=zEDCcnV-E4VXwyqAFfsbdYIYbtCXADEv0ipvp9ky81A,8135
|
663
663
|
tests/metrics/test_compute_roc_auc.py,sha256=9pupbW1aLvCtpRZ0qhfPpBYZPqu3pT2Xiucou5j9GOA,4579
|
@@ -670,14 +670,14 @@ tests/metrics/test_label_quality_score.py,sha256=AT7A8cfr0wsrAZ-li2cAWNiO2SS0BIr
|
|
670
670
|
tests/metrics/test_loss_metric.py,sha256=S0ZEGdKRg4df5vcXqxNj0XVelml_ogdNCaS8E82Okl8,2106
|
671
671
|
tests/metrics/test_metrics_reloaded.py,sha256=U8KRl3B369npmcFgzcSxXi4bDotVDR9o9ubOM5iJ598,4654
|
672
672
|
tests/metrics/test_ssim_metric.py,sha256=DHPWky52kWVdCHXmoEFkKMlyWMm4XOqXQLNzv0sg4Lc,2896
|
673
|
-
tests/metrics/test_surface_dice.py,sha256=
|
673
|
+
tests/metrics/test_surface_dice.py,sha256=tsHUP91hn2jw_KGZp8QePFQ8os-9ixypgJ-1fbdi43o,21760
|
674
674
|
tests/metrics/test_surface_distance.py,sha256=gkW0dai3vHjXubLNBilqFnV5Up-abSMgQ53v0iCTVeE,6237
|
675
675
|
tests/networks/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
676
676
|
tests/networks/test_bundle_onnx_export.py,sha256=_lEnAJhq7D2IOuVEdgBVsA8vySgs34FkfMrvNsCLfUg,2853
|
677
677
|
tests/networks/test_convert_to_onnx.py,sha256=h1Sjb0SZmiwwbx0_PrzeFDOE3-JRSp18qDS6G_PdD6g,3673
|
678
678
|
tests/networks/test_convert_to_torchscript.py,sha256=NhrJMCfQtC0sftrhDjL28omS7VKzg_niRK0KtY5Mr_A,1636
|
679
679
|
tests/networks/test_convert_to_trt.py,sha256=5TkuUvCPgW5mAvYUysRRrSjtSbDoDDAoJb2kJtuXOVk,2656
|
680
|
-
tests/networks/test_save_state.py,sha256=
|
680
|
+
tests/networks/test_save_state.py,sha256=OnUJEX6vqWoIAIEvVXHbAL4Yrv1GeY0YHw2DposmS3k,2373
|
681
681
|
tests/networks/test_to_onehot.py,sha256=QlT6RkkG7CJeh0gppSohl4kb0bmhISdx_19IybYES0Q,2224
|
682
682
|
tests/networks/test_varnet.py,sha256=-9Ew5epHVvRLc34VCFwKNpsKKoAdudpBRlqDAShpIio,2800
|
683
683
|
tests/networks/blocks/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
@@ -745,15 +745,15 @@ tests/networks/nets/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZL
|
|
745
745
|
tests/networks/nets/test_ahnet.py,sha256=1pLU9g1dAYByA14r46CgcEj4Bs_nGkuCESojA4b3ghQ,8348
|
746
746
|
tests/networks/nets/test_attentionunet.py,sha256=AUdp94j6un9sg35Q0GPNINo4HhXizUT8QBJDKTqK1pA,3376
|
747
747
|
tests/networks/nets/test_autoencoder.py,sha256=LrYSDtlFUyNe23JT6sULuAr-3cDukqTPEJ7KbNU_2Q4,2964
|
748
|
-
tests/networks/nets/test_autoencoderkl.py,sha256=
|
748
|
+
tests/networks/nets/test_autoencoderkl.py,sha256=cohtIQshgBPaUwjVozxbSFRi60N2wK_cCkVJJcd4YTU,12171
|
749
749
|
tests/networks/nets/test_basic_unet.py,sha256=3261vqW_CjwDKi4lEGQ-KoMfcszWzo_01EDvYh0bKz8,3337
|
750
750
|
tests/networks/nets/test_basic_unetplusplus.py,sha256=2skwJyzZ34N_iCCmU-waKUZFojfS1GsY08NT8PJrvcU,3712
|
751
751
|
tests/networks/nets/test_bundle_init_bundle.py,sha256=hQGXchLGk6wvT1rUirRS7ToPDSBAvK7FvsnaNNe8NHw,1934
|
752
752
|
tests/networks/nets/test_cell_sam_wrapper.py,sha256=4tW0tcxtpdWgPQ_boVW_68-SMatcJ8-OA6vy4ebXIR0,2215
|
753
|
-
tests/networks/nets/test_controlnet.py,sha256=
|
753
|
+
tests/networks/nets/test_controlnet.py,sha256=opJhley8-CAFko3uOQGI0IFETwsjt17wXalGJS9O5oU,7373
|
754
754
|
tests/networks/nets/test_daf3d.py,sha256=Ko58wtl8im1makMEHPDIMWyJV5aOoRaGDPMUlL0vM9s,2331
|
755
755
|
tests/networks/nets/test_densenet.py,sha256=t5QsIN_hiirm9p3zEEGvgN928N0WN14bjbWD4B9M6pU,4439
|
756
|
-
tests/networks/nets/test_diffusion_model_unet.py,sha256=
|
756
|
+
tests/networks/nets/test_diffusion_model_unet.py,sha256=mCgCdT-j42pnnoTb-Tyy9yCEiwYaV5K0nygxXwgWf-0,18931
|
757
757
|
tests/networks/nets/test_dints_network.py,sha256=pdoK8663ga8UgafbavWy14XdCwzaYrbU90eerleAHT8,5785
|
758
758
|
tests/networks/nets/test_discriminator.py,sha256=gsw3qCTCHzjPoX_ylhYbhQ-tNY5emg2xUJLeweZV-2I,1916
|
759
759
|
tests/networks/nets/test_dynunet.py,sha256=bdpTk0O-4ionxgFZgfjhvP-R6XEGGYQDihst6H79pHw,7406
|
@@ -767,7 +767,7 @@ tests/networks/nets/test_hovernet.py,sha256=Ad6z1k5Ef-Xms14TFeF14LnyTv4_lxOJWZtH
|
|
767
767
|
tests/networks/nets/test_mednext.py,sha256=RxcZeKErrp7yrtU2rYU8yo0_jlbqa-_ZXDx0xqDfBLI,4715
|
768
768
|
tests/networks/nets/test_milmodel.py,sha256=3n1vZs7YXGuSxH_x3vtk3HwElzz85pBrAUQjhQ_K06E,3233
|
769
769
|
tests/networks/nets/test_net_adapter.py,sha256=r-VQTK18Tx1km8_mVNENaVKmLbbZ_Zax07ZNUo1GZAA,2641
|
770
|
-
tests/networks/nets/test_network_consistency.py,sha256=
|
770
|
+
tests/networks/nets/test_network_consistency.py,sha256=OuEsjkCzQEIxQ9CNJxNXqI8KrW4XNALQRvKeNDOAPvU,2886
|
771
771
|
tests/networks/nets/test_patch_gan_dicriminator.py,sha256=5qhzL55pid_9ShuALPzvW21eZtdlpKupw8hdu1N4sVE,5266
|
772
772
|
tests/networks/nets/test_quicknat.py,sha256=iuJRChBt6OoOvBGUe2bZ5wvcx0AfId4gZJ7K12SP7w8,2601
|
773
773
|
tests/networks/nets/test_resnet.py,sha256=nIx9ZrHWN36iiGP9KffiEdJ5kLctySh5_zdAddl9gTc,10475
|
@@ -777,10 +777,10 @@ tests/networks/nets/test_senet.py,sha256=V9HyDyYMR2r2F6FzZUl6INDipH5mk-IrExkkeZw
|
|
777
777
|
tests/networks/nets/test_spade_autoencoderkl.py,sha256=vU9j-flnprLJT-VctKuiLK1KyKw1UrAO87mpddE0sNs,9289
|
778
778
|
tests/networks/nets/test_spade_diffusion_model_unet.py,sha256=LEN1PAGid0DMdP2NySi94RrlE8FgomJ9ZV3YRe0ubaE,18347
|
779
779
|
tests/networks/nets/test_spade_vaegan.py,sha256=ur1SPoXEmpr_8KwVS6-E_1tIPMBKpNqsvHJ7z5-obzA,5632
|
780
|
-
tests/networks/nets/test_swin_unetr.py,sha256=
|
780
|
+
tests/networks/nets/test_swin_unetr.py,sha256=gj1Jqg8xTBYdCZWCR4Y9_ZlGNNYVTkCPmB2sdF2xIDM,5690
|
781
781
|
tests/networks/nets/test_torchvision_fc_model.py,sha256=oNb-PaOhIAjOrpnsXApC2hKSUK6lMutIEinMrCOKQoA,6397
|
782
782
|
tests/networks/nets/test_transchex.py,sha256=vUUsCd_CJrW_q0jcaGQegBoanJQVoufrs_EP3MC46Xo,3220
|
783
|
-
tests/networks/nets/test_transformer.py,sha256=
|
783
|
+
tests/networks/nets/test_transformer.py,sha256=rsGjemv0JV9SMTTWiZ8Sz_w5t5Rkz15b2rjJit4R2XA,4218
|
784
784
|
tests/networks/nets/test_unet.py,sha256=wXwaXkufYDjFXzQ-AygbePAwigZLLaY58sGygizF3Q4,5801
|
785
785
|
tests/networks/nets/test_unetr.py,sha256=3_V4VWfsQVB22-T8XTSRra3Her2XrLx5gzIRHis2zPs,5325
|
786
786
|
tests/networks/nets/test_varautoencoder.py,sha256=wk9ra-X0ri03ZZ_YyoyhPb90z6WpiOcTi1SztLl3ytg,3547
|
@@ -1178,8 +1178,8 @@ tests/visualize/test_vis_gradcam.py,sha256=WpA-pvTB75eZs7JoIc5qyvOV9PwgkzWI8-Vow
|
|
1178
1178
|
tests/visualize/utils/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
1179
1179
|
tests/visualize/utils/test_blend_images.py,sha256=RVs2p_8RWQDfhLHDNNtZaMig27v8o0km7XxNa-zWjKE,2274
|
1180
1180
|
tests/visualize/utils/test_matshow3d.py,sha256=wXYj77L5Jvnp0f6DvL1rsi_-YlCxS0HJ9hiPmrbpuP8,5021
|
1181
|
-
monai_weekly-1.5.
|
1182
|
-
monai_weekly-1.5.
|
1183
|
-
monai_weekly-1.5.
|
1184
|
-
monai_weekly-1.5.
|
1185
|
-
monai_weekly-1.5.
|
1181
|
+
monai_weekly-1.5.dev2510.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
1182
|
+
monai_weekly-1.5.dev2510.dist-info/METADATA,sha256=EwQi6m9OMtupNit5BbaClOKoMMq6u_NN4SYRQ3LaHIU,11986
|
1183
|
+
monai_weekly-1.5.dev2510.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
|
1184
|
+
monai_weekly-1.5.dev2510.dist-info/top_level.txt,sha256=hn2Y6P9xBf2R8faMeVMHhPMvrdDKxMsIOwMDYI0yTjs,12
|
1185
|
+
monai_weekly-1.5.dev2510.dist-info/RECORD,,
|
@@ -266,6 +266,7 @@ class TestLoad(unittest.TestCase):
|
|
266
266
|
with skip_if_downloading_fails():
|
267
267
|
# download bundle, and load weights from the downloaded path
|
268
268
|
with tempfile.TemporaryDirectory() as tempdir:
|
269
|
+
bundle_root = os.path.join(tempdir, bundle_name)
|
269
270
|
# load weights
|
270
271
|
weights = load(
|
271
272
|
name=bundle_name,
|
@@ -278,7 +279,7 @@ class TestLoad(unittest.TestCase):
|
|
278
279
|
return_state_dict=True,
|
279
280
|
)
|
280
281
|
# prepare network
|
281
|
-
with open(os.path.join(
|
282
|
+
with open(os.path.join(bundle_root, bundle_files[2])) as f:
|
282
283
|
net_args = json.load(f)["network_def"]
|
283
284
|
model_name = net_args["_target_"]
|
284
285
|
del net_args["_target_"]
|
@@ -288,9 +289,13 @@ class TestLoad(unittest.TestCase):
|
|
288
289
|
model.eval()
|
289
290
|
|
290
291
|
# prepare data and test
|
291
|
-
input_tensor = torch.load(
|
292
|
+
input_tensor = torch.load(
|
293
|
+
os.path.join(bundle_root, bundle_files[4]), map_location=device, weights_only=True
|
294
|
+
)
|
292
295
|
output = model.forward(input_tensor)
|
293
|
-
expected_output = torch.load(
|
296
|
+
expected_output = torch.load(
|
297
|
+
os.path.join(bundle_root, bundle_files[3]), map_location=device, weights_only=True
|
298
|
+
)
|
294
299
|
assert_allclose(output, expected_output, atol=1e-4, rtol=1e-4, type_test=False)
|
295
300
|
|
296
301
|
# load instantiated model directly and test, since the bundle has been downloaded,
|
@@ -350,7 +355,7 @@ class TestLoad(unittest.TestCase):
|
|
350
355
|
config_file=f"{tempdir}/spleen_ct_segmentation/configs/train.json", workflow_type="train"
|
351
356
|
)
|
352
357
|
expected_model = workflow.network_def.to(device)
|
353
|
-
expected_model.load_state_dict(torch.load(model_path))
|
358
|
+
expected_model.load_state_dict(torch.load(model_path, weights_only=True))
|
354
359
|
expected_output = expected_model(input_tensor)
|
355
360
|
assert_allclose(output, expected_output, atol=1e-4, rtol=1e-4, type_test=False)
|
356
361
|
|
@@ -378,6 +383,7 @@ class TestLoad(unittest.TestCase):
|
|
378
383
|
with skip_if_downloading_fails():
|
379
384
|
# load ts module
|
380
385
|
with tempfile.TemporaryDirectory() as tempdir:
|
386
|
+
bundle_root = os.path.join(tempdir, bundle_name)
|
381
387
|
# load ts module
|
382
388
|
model_ts, metadata, extra_file_dict = load(
|
383
389
|
name=bundle_name,
|
@@ -393,9 +399,13 @@ class TestLoad(unittest.TestCase):
|
|
393
399
|
)
|
394
400
|
|
395
401
|
# prepare and test ts
|
396
|
-
input_tensor = torch.load(
|
402
|
+
input_tensor = torch.load(
|
403
|
+
os.path.join(bundle_root, bundle_files[1]), map_location=device, weights_only=True
|
404
|
+
)
|
397
405
|
output = model_ts.forward(input_tensor)
|
398
|
-
expected_output = torch.load(
|
406
|
+
expected_output = torch.load(
|
407
|
+
os.path.join(bundle_root, bundle_files[0]), map_location=device, weights_only=True
|
408
|
+
)
|
399
409
|
assert_allclose(output, expected_output, atol=1e-4, rtol=1e-4, type_test=False)
|
400
410
|
# test metadata
|
401
411
|
self.assertTrue(metadata["pytorch_version"] == "1.7.1")
|
tests/config/test_cv2_dist.py
CHANGED
@@ -16,7 +16,6 @@ import unittest
|
|
16
16
|
import numpy as np
|
17
17
|
import torch
|
18
18
|
import torch.distributed as dist
|
19
|
-
from torch.cuda.amp import autocast
|
20
19
|
|
21
20
|
# FIXME: test for the workaround of https://github.com/Project-MONAI/MONAI/issues/5291
|
22
21
|
from monai.config.deviceconfig import print_config
|
@@ -33,7 +32,7 @@ def main_worker(rank, ngpus_per_node, port):
|
|
33
32
|
model, device_ids=[rank], output_device=rank, find_unused_parameters=False
|
34
33
|
)
|
35
34
|
x = torch.ones(1, 1, 12, 12, 12).to(rank)
|
36
|
-
with autocast(
|
35
|
+
with torch.autocast("cuda"):
|
37
36
|
model(x)
|
38
37
|
|
39
38
|
if dist.is_initialized():
|
@@ -76,8 +76,7 @@ class TestBundleRun(unittest.TestCase):
|
|
76
76
|
)
|
77
77
|
with open(meta_file, "w") as f:
|
78
78
|
json.dump(
|
79
|
-
{"version": "0.1.0", "monai_version": "1.1.0", "pytorch_version": "
|
80
|
-
f,
|
79
|
+
{"version": "0.1.0", "monai_version": "1.1.0", "pytorch_version": "2.3.0", "numpy_version": "1.22.2"}, f
|
81
80
|
)
|
82
81
|
cmd = ["coverage", "run", "-m", "monai.bundle"]
|
83
82
|
# test both CLI entry "run" and "run_workflow"
|
@@ -114,8 +113,7 @@ class TestBundleRun(unittest.TestCase):
|
|
114
113
|
)
|
115
114
|
with open(meta_file, "w") as f:
|
116
115
|
json.dump(
|
117
|
-
{"version": "0.1.0", "monai_version": "1.1.0", "pytorch_version": "
|
118
|
-
f,
|
116
|
+
{"version": "0.1.0", "monai_version": "1.1.0", "pytorch_version": "2.3.0", "numpy_version": "1.22.2"}, f
|
119
117
|
)
|
120
118
|
|
121
119
|
os.mkdir(scripts_dir)
|
@@ -166,7 +166,7 @@ def run_inference_test(root_dir, test_x, test_y, device="cuda:0", num_workers=10
|
|
166
166
|
model = DenseNet121(spatial_dims=2, in_channels=1, out_channels=len(np.unique(test_y))).to(device)
|
167
167
|
|
168
168
|
model_filename = os.path.join(root_dir, "best_metric_model.pth")
|
169
|
-
model.load_state_dict(torch.load(model_filename))
|
169
|
+
model.load_state_dict(torch.load(model_filename, weights_only=True))
|
170
170
|
y_true = []
|
171
171
|
y_pred = []
|
172
172
|
with eval_mode(model):
|
@@ -186,7 +186,7 @@ class IntegrationFastTrain(DistTestCase):
|
|
186
186
|
step += 1
|
187
187
|
optimizer.zero_grad()
|
188
188
|
# set AMP for training
|
189
|
-
with torch.
|
189
|
+
with torch.autocast("cuda"):
|
190
190
|
outputs = model(batch_data["image"])
|
191
191
|
loss = loss_function(outputs, batch_data["label"])
|
192
192
|
scaler.scale(loss).backward()
|
@@ -207,7 +207,7 @@ class IntegrationFastTrain(DistTestCase):
|
|
207
207
|
roi_size = (96, 96, 96)
|
208
208
|
sw_batch_size = 4
|
209
209
|
# set AMP for validation
|
210
|
-
with torch.
|
210
|
+
with torch.autocast("cuda"):
|
211
211
|
val_outputs = sliding_window_inference(val_data["image"], roi_size, sw_batch_size, model)
|
212
212
|
|
213
213
|
val_outputs = [post_pred(i) for i in decollate_batch(val_outputs)]
|
@@ -216,7 +216,7 @@ def run_inference_test(root_dir, device="cuda:0"):
|
|
216
216
|
).to(device)
|
217
217
|
|
218
218
|
model_filename = os.path.join(root_dir, "best_metric_model.pth")
|
219
|
-
model.load_state_dict(torch.load(model_filename))
|
219
|
+
model.load_state_dict(torch.load(model_filename, weights_only=True))
|
220
220
|
with eval_mode(model):
|
221
221
|
# resampling with align_corners=True or dtype=float64 will generate
|
222
222
|
# slight different results between PyTorch 1.5 an 1.6
|
@@ -32,7 +32,7 @@ class TestMultiScaleSSIMMetric(unittest.TestCase):
|
|
32
32
|
metric(preds, target)
|
33
33
|
result = metric.aggregate()
|
34
34
|
expected_value = 0.023176
|
35
|
-
self.
|
35
|
+
self.assertAlmostEqual(expected_value, result.item(), 4)
|
36
36
|
|
37
37
|
def test2d_uniform(self):
|
38
38
|
set_determinism(0)
|
@@ -45,7 +45,7 @@ class TestMultiScaleSSIMMetric(unittest.TestCase):
|
|
45
45
|
metric(preds, target)
|
46
46
|
result = metric.aggregate()
|
47
47
|
expected_value = 0.022655
|
48
|
-
self.
|
48
|
+
self.assertAlmostEqual(expected_value, result.item(), 4)
|
49
49
|
|
50
50
|
def test3d_gaussian(self):
|
51
51
|
set_determinism(0)
|
@@ -58,7 +58,7 @@ class TestMultiScaleSSIMMetric(unittest.TestCase):
|
|
58
58
|
metric(preds, target)
|
59
59
|
result = metric.aggregate()
|
60
60
|
expected_value = 0.061796
|
61
|
-
self.
|
61
|
+
self.assertAlmostEqual(expected_value, result.item(), 4)
|
62
62
|
|
63
63
|
def input_ill_input_shape2d(self):
|
64
64
|
metric = MultiScaleSSIMMetric(spatial_dims=3, weights=[0.5, 0.5])
|
@@ -82,7 +82,7 @@ class TestAllSurfaceDiceMetrics(unittest.TestCase):
|
|
82
82
|
expected_res0[1, 1] = np.nan
|
83
83
|
for b, c in np.ndindex(batch_size, n_class):
|
84
84
|
np.testing.assert_allclose(expected_res0[b, c], res0[b, c].cpu())
|
85
|
-
np.testing.
|
85
|
+
np.testing.assert_allclose(agg0.cpu(), np.nanmean(np.nanmean(expected_res0, axis=1), axis=0))
|
86
86
|
np.testing.assert_equal(not_nans.cpu(), torch.tensor(2))
|
87
87
|
|
88
88
|
def test_tolerance_euclidean_distance(self):
|
@@ -126,7 +126,7 @@ class TestAllSurfaceDiceMetrics(unittest.TestCase):
|
|
126
126
|
expected_res0[1, 1] = np.nan
|
127
127
|
for b, c in np.ndindex(batch_size, n_class):
|
128
128
|
np.testing.assert_allclose(expected_res0[b, c], res0[b, c].cpu())
|
129
|
-
np.testing.
|
129
|
+
np.testing.assert_allclose(agg0.cpu(), np.nanmean(np.nanmean(expected_res0, axis=1), axis=0))
|
130
130
|
np.testing.assert_equal(not_nans.cpu(), torch.tensor(2))
|
131
131
|
|
132
132
|
def test_tolerance_euclidean_distance_3d(self):
|
@@ -173,7 +173,7 @@ class TestAllSurfaceDiceMetrics(unittest.TestCase):
|
|
173
173
|
expected_res0[1, 1] = np.nan
|
174
174
|
for b, c in np.ndindex(batch_size, n_class):
|
175
175
|
np.testing.assert_allclose(expected_res0[b, c], res0[b, c].cpu())
|
176
|
-
np.testing.
|
176
|
+
np.testing.assert_allclose(agg0.cpu(), np.nanmean(np.nanmean(expected_res0, axis=1), axis=0))
|
177
177
|
np.testing.assert_equal(not_nans.cpu(), torch.tensor(2))
|
178
178
|
|
179
179
|
def test_tolerance_all_distances(self):
|
@@ -330,7 +330,7 @@ class TestAutoEncoderKL(unittest.TestCase):
|
|
330
330
|
weight_path = os.path.join(tmpdir, filename)
|
331
331
|
download_url(url=url, filepath=weight_path, hash_val=hash_val, hash_type=hash_type)
|
332
332
|
|
333
|
-
net.load_old_state_dict(torch.load(weight_path), verbose=False)
|
333
|
+
net.load_old_state_dict(torch.load(weight_path, weights_only=True), verbose=False)
|
334
334
|
|
335
335
|
|
336
336
|
if __name__ == "__main__":
|
@@ -208,7 +208,7 @@ class TestControlNet(unittest.TestCase):
|
|
208
208
|
weight_path = os.path.join(tmpdir, filename)
|
209
209
|
download_url(url=url, filepath=weight_path, hash_val=hash_val, hash_type=hash_type)
|
210
210
|
|
211
|
-
net.load_old_state_dict(torch.load(weight_path), verbose=False)
|
211
|
+
net.load_old_state_dict(torch.load(weight_path, weights_only=True), verbose=False)
|
212
212
|
|
213
213
|
|
214
214
|
if __name__ == "__main__":
|
@@ -578,7 +578,7 @@ class TestDiffusionModelUNet3D(unittest.TestCase):
|
|
578
578
|
weight_path = os.path.join(tmpdir, filename)
|
579
579
|
download_url(url=url, filepath=weight_path, hash_val=hash_val, hash_type=hash_type)
|
580
580
|
|
581
|
-
net.load_old_state_dict(torch.load(weight_path), verbose=False)
|
581
|
+
net.load_old_state_dict(torch.load(weight_path, weights_only=True), verbose=False)
|
582
582
|
|
583
583
|
|
584
584
|
if __name__ == "__main__":
|