monai-weekly 1.5.dev2508__py3-none-any.whl → 1.5.dev2510__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (60) hide show
  1. monai/__init__.py +1 -1
  2. monai/_version.py +3 -3
  3. monai/apps/deepedit/interaction.py +1 -1
  4. monai/apps/deepgrow/interaction.py +1 -1
  5. monai/apps/detection/networks/retinanet_detector.py +1 -1
  6. monai/apps/detection/networks/retinanet_network.py +5 -5
  7. monai/apps/detection/utils/box_coder.py +2 -2
  8. monai/apps/mmars/mmars.py +1 -1
  9. monai/apps/reconstruction/networks/blocks/varnetblock.py +1 -1
  10. monai/bundle/scripts.py +42 -20
  11. monai/data/dataset.py +2 -9
  12. monai/data/utils.py +1 -1
  13. monai/data/video_dataset.py +1 -1
  14. monai/engines/evaluator.py +11 -16
  15. monai/engines/trainer.py +11 -17
  16. monai/engines/utils.py +1 -1
  17. monai/engines/workflow.py +2 -2
  18. monai/fl/client/monai_algo.py +1 -1
  19. monai/handlers/checkpoint_loader.py +1 -1
  20. monai/inferers/inferer.py +35 -17
  21. monai/inferers/merger.py +16 -13
  22. monai/losses/perceptual.py +1 -1
  23. monai/losses/sure_loss.py +1 -1
  24. monai/networks/blocks/crossattention.py +1 -6
  25. monai/networks/blocks/feature_pyramid_network.py +4 -2
  26. monai/networks/blocks/selfattention.py +1 -6
  27. monai/networks/blocks/upsample.py +3 -11
  28. monai/networks/layers/vector_quantizer.py +2 -2
  29. monai/networks/nets/hovernet.py +5 -4
  30. monai/networks/nets/resnet.py +2 -2
  31. monai/networks/nets/senet.py +1 -1
  32. monai/networks/nets/swin_unetr.py +46 -49
  33. monai/networks/nets/transchex.py +3 -2
  34. monai/networks/nets/vista3d.py +7 -7
  35. monai/networks/utils.py +5 -4
  36. monai/transforms/intensity/array.py +1 -1
  37. monai/transforms/spatial/array.py +6 -6
  38. monai/utils/misc.py +1 -1
  39. monai/utils/state_cacher.py +1 -1
  40. {monai_weekly-1.5.dev2508.dist-info → monai_weekly-1.5.dev2510.dist-info}/METADATA +4 -3
  41. {monai_weekly-1.5.dev2508.dist-info → monai_weekly-1.5.dev2510.dist-info}/RECORD +60 -60
  42. {monai_weekly-1.5.dev2508.dist-info → monai_weekly-1.5.dev2510.dist-info}/WHEEL +1 -1
  43. tests/bundle/test_bundle_download.py +16 -6
  44. tests/config/test_cv2_dist.py +1 -2
  45. tests/inferers/test_controlnet_inferers.py +9 -0
  46. tests/integration/test_integration_bundle_run.py +2 -4
  47. tests/integration/test_integration_classification_2d.py +1 -1
  48. tests/integration/test_integration_fast_train.py +2 -2
  49. tests/integration/test_integration_segmentation_3d.py +1 -1
  50. tests/metrics/test_compute_multiscalessim_metric.py +3 -3
  51. tests/metrics/test_surface_dice.py +3 -3
  52. tests/networks/nets/test_autoencoderkl.py +1 -1
  53. tests/networks/nets/test_controlnet.py +1 -1
  54. tests/networks/nets/test_diffusion_model_unet.py +1 -1
  55. tests/networks/nets/test_network_consistency.py +1 -1
  56. tests/networks/nets/test_swin_unetr.py +1 -1
  57. tests/networks/nets/test_transformer.py +1 -1
  58. tests/networks/test_save_state.py +1 -1
  59. {monai_weekly-1.5.dev2508.dist-info → monai_weekly-1.5.dev2510.dist-info}/LICENSE +0 -0
  60. {monai_weekly-1.5.dev2508.dist-info → monai_weekly-1.5.dev2510.dist-info}/top_level.txt +0 -0
@@ -1758,13 +1758,13 @@ class AffineGrid(LazyTransform):
1758
1758
  if self.affine is None:
1759
1759
  affine = torch.eye(spatial_dims + 1, device=_device)
1760
1760
  if self.rotate_params:
1761
- affine @= create_rotate(spatial_dims, self.rotate_params, device=_device, backend=_b)
1761
+ affine @= create_rotate(spatial_dims, self.rotate_params, device=_device, backend=_b) # type: ignore[assignment]
1762
1762
  if self.shear_params:
1763
- affine @= create_shear(spatial_dims, self.shear_params, device=_device, backend=_b)
1763
+ affine @= create_shear(spatial_dims, self.shear_params, device=_device, backend=_b) # type: ignore[assignment]
1764
1764
  if self.translate_params:
1765
- affine @= create_translate(spatial_dims, self.translate_params, device=_device, backend=_b)
1765
+ affine @= create_translate(spatial_dims, self.translate_params, device=_device, backend=_b) # type: ignore[assignment]
1766
1766
  if self.scale_params:
1767
- affine @= create_scale(spatial_dims, self.scale_params, device=_device, backend=_b)
1767
+ affine @= create_scale(spatial_dims, self.scale_params, device=_device, backend=_b) # type: ignore[assignment]
1768
1768
  else:
1769
1769
  affine = self.affine # type: ignore
1770
1770
  affine = to_affine_nd(spatial_dims, affine)
@@ -1780,7 +1780,7 @@ class AffineGrid(LazyTransform):
1780
1780
  grid_ = ((affine @ sc) @ grid_.view((grid_.shape[0], -1))).view([-1] + list(grid_.shape[1:]))
1781
1781
  else:
1782
1782
  grid_ = (affine @ grid_.view((grid_.shape[0], -1))).view([-1] + list(grid_.shape[1:]))
1783
- return grid_, affine
1783
+ return grid_, affine # type: ignore[return-value]
1784
1784
 
1785
1785
 
1786
1786
  class RandAffineGrid(Randomizable, LazyTransform):
@@ -3257,7 +3257,7 @@ class GridPatch(Transform, MultiSampleTrait):
3257
3257
  tuple[NdarrayOrTensor, numpy.ndarray]: tuple of filtered patches and locations.
3258
3258
  """
3259
3259
  n_dims = len(image_np.shape)
3260
- idx = argwhere(image_np.sum(tuple(range(1, n_dims))) < self.threshold).reshape(-1)
3260
+ idx = argwhere(image_np.sum(tuple(range(1, n_dims))) < self.threshold).reshape(-1) # type: ignore[operator]
3261
3261
  idx_np = convert_data_type(idx, np.ndarray)[0]
3262
3262
  return image_np[idx], locations[idx_np]
3263
3263
 
monai/utils/misc.py CHANGED
@@ -546,7 +546,7 @@ class MONAIEnvVars:
546
546
 
547
547
  @staticmethod
548
548
  def algo_hash() -> str | None:
549
- return os.environ.get("MONAI_ALGO_HASH", "e4cf5a1")
549
+ return os.environ.get("MONAI_ALGO_HASH", "c970bdf")
550
550
 
551
551
  @staticmethod
552
552
  def trace_transform() -> str | None:
@@ -124,7 +124,7 @@ class StateCacher:
124
124
  fn = self.cached[key]["obj"] # pytype: disable=attribute-error
125
125
  if not os.path.exists(fn): # pytype: disable=wrong-arg-types
126
126
  raise RuntimeError(f"Failed to load state in {fn}. File doesn't exist anymore.")
127
- data_obj = torch.load(fn, map_location=lambda storage, location: storage)
127
+ data_obj = torch.load(fn, map_location=lambda storage, location: storage, weights_only=False)
128
128
  # copy back to device if necessary
129
129
  if "device" in self.cached[key]:
130
130
  data_obj = data_obj.to(self.cached[key]["device"])
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: monai-weekly
3
- Version: 1.5.dev2508
3
+ Version: 1.5.dev2510
4
4
  Summary: AI Toolkit for Healthcare Imaging
5
5
  Home-page: https://monai.io/
6
6
  Author: MONAI Consortium
@@ -29,8 +29,9 @@ Classifier: Typing :: Typed
29
29
  Requires-Python: >=3.9
30
30
  Description-Content-Type: text/markdown; charset=UTF-8
31
31
  License-File: LICENSE
32
- Requires-Dist: torch>=1.13.1
33
- Requires-Dist: numpy<2.0,>=1.24
32
+ Requires-Dist: torch>=2.3.0; sys_platform != "win32"
33
+ Requires-Dist: torch>=2.4.1; sys_platform == "win32"
34
+ Requires-Dist: numpy<3.0,>=1.24
34
35
  Provides-Extra: all
35
36
  Requires-Dist: nibabel; extra == "all"
36
37
  Requires-Dist: ninja; extra == "all"
@@ -1,5 +1,5 @@
1
- monai/__init__.py,sha256=jHqt9Fx6mJlpL9TD8eihfJTg6IGs40j8bCpjE3PFrVI,4095
2
- monai/_version.py,sha256=sQZ38u2mKWN9p59gP2DeDhflJxmQX4ckQZtIE_MCnbg,503
1
+ monai/__init__.py,sha256=l1ax5Ls5iQdysj0z46xZkpVHIq5j_YK57rsd8v_uEJQ,4095
2
+ monai/_version.py,sha256=aYoA6EoQPJrkhBGJbbOno24738m4YIRubnr5NRpJXCo,503
3
3
  monai/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  monai/_extensions/__init__.py,sha256=NEBPreRhQ8H9gVvgrLr_y52_TmqB96u_u4VQmeNT93I,642
5
5
  monai/_extensions/loader.py,sha256=7SiKw36q-nOzH8CRbBurFrz7GM40GCu7rc93Tm8XpnI,3643
@@ -21,19 +21,19 @@ monai/apps/auto3dseg/hpo_gen.py,sha256=VMfN0M5Z8Mq3Epu4fgOD5N6X-BY2PARIC69wW2t5E
21
21
  monai/apps/auto3dseg/transforms.py,sha256=V57mf8dTVBjiTfcgnMMdtMLmAzpnNrcl1ae5cYPjjlI,3856
22
22
  monai/apps/auto3dseg/utils.py,sha256=7DPJbsL9YbhRdMZ6dEvCA_t_uLSSz7-WZSU2pMY4_qo,3138
23
23
  monai/apps/deepedit/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
24
- monai/apps/deepedit/interaction.py,sha256=h9zTmhHAmwndR315RknqXtLWYqyYGvdcmjP6EpRrzHg,4501
24
+ monai/apps/deepedit/interaction.py,sha256=jY_uxPhgaYpMggMKqgMJNc-GWxswRKwaKoUtf3B7TFE,4498
25
25
  monai/apps/deepedit/transforms.py,sha256=Udj35m10Irek5Gtqo6Hgv6Lt7S6jSo-z0NuyVbs800o,38108
26
26
  monai/apps/deepgrow/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
27
27
  monai/apps/deepgrow/dataset.py,sha256=W0wv1QujA4sZgrAcBS64dl3OBbDBM2cF4RK0fDCQnRU,10054
28
- monai/apps/deepgrow/interaction.py,sha256=-smtOl93i_SDEo_Yo8DE5U3FnDrUcdJWeP14nCq5GS4,3748
28
+ monai/apps/deepgrow/interaction.py,sha256=Und57h06LSZ9W7CAWh7evPU7l97XZIB5KuEMvVCvMtM,3745
29
29
  monai/apps/deepgrow/transforms.py,sha256=RmKMoN4sqhT84ognTJt55t6UtkL_OpkzRcP5VPseSss,43349
30
30
  monai/apps/detection/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
31
31
  monai/apps/detection/metrics/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
32
32
  monai/apps/detection/metrics/coco.py,sha256=bpF6hAAMKsBNLfat-Fzh0CR-0swDsAAVcwTaZ-lo1_g,26618
33
33
  monai/apps/detection/metrics/matching.py,sha256=GF4wgH5Let7GwW1SGwzfzz5BRnCVEhDe7_KR7zpLr44,17161
34
34
  monai/apps/detection/networks/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
35
- monai/apps/detection/networks/retinanet_detector.py,sha256=-EcGvDJK13o7qqx6bUHtxEniIdCXriIzwty1o5pmG90,53640
36
- monai/apps/detection/networks/retinanet_network.py,sha256=Xbx1WeGWHkQC7VJUAgYD3GjGizehF8_wWntjdFYySD4,19038
35
+ monai/apps/detection/networks/retinanet_detector.py,sha256=8PriT0FTy9Dyt8hw1iaPxpKC7A81PMecJj02F4ndzag,53659
36
+ monai/apps/detection/networks/retinanet_network.py,sha256=nIIPRReN_4Q0-zvj53o6KFciPEIibbWDpKwbATH9nHc,19170
37
37
  monai/apps/detection/transforms/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
38
38
  monai/apps/detection/transforms/array.py,sha256=CHc-zl7IPlKYPBVR88zVT6_eBFElPihtkfO9oo2Bsak,24546
39
39
  monai/apps/detection/transforms/box_ops.py,sha256=3RFK8zNH8ufpHT_aB5xFR2wXrQauBQEWQyxNojl1mSY,18035
@@ -41,7 +41,7 @@ monai/apps/detection/transforms/dictionary.py,sha256=OGEYrq2F8gFjYRYv7ZdlWFM6yYR
41
41
  monai/apps/detection/utils/ATSS_matcher.py,sha256=aajY2UJ-Ot9L5KDwORFOCuMsTQEU02BZ9-tNMfIYH98,13532
42
42
  monai/apps/detection/utils/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
43
43
  monai/apps/detection/utils/anchor_utils.py,sha256=coSzVq5ictzWL4XqwtlLTKlzdel6cfHFLbvM6zOiq8M,18718
44
- monai/apps/detection/utils/box_coder.py,sha256=81Qe8wf6IRb4kJgcS957yWdOpY_G8nUdyIFPXxpMQvk,11120
44
+ monai/apps/detection/utils/box_coder.py,sha256=VSbqcNOgH153-3br7kmYpUlcaoE_D4vtFoDjG98hNzE,11174
45
45
  monai/apps/detection/utils/box_selector.py,sha256=uXI0YrhugYR68xYshRs5JpPTT1nL3QMMS1nJ_RpddVo,9031
46
46
  monai/apps/detection/utils/detector_utils.py,sha256=pU7bOzH-ay9Lnzu1aHCrIwlaGVf5xj13E7Somx_vFnk,10306
47
47
  monai/apps/detection/utils/hard_negative_sampler.py,sha256=PywdXkFIAdudmp3W8JWM_CcLC3BKWQh5x1y0tuuokcg,13890
@@ -53,7 +53,7 @@ monai/apps/generation/maisi/networks/autoencoderkl_maisi.py,sha256=FxHsB7W1I11Np
53
53
  monai/apps/generation/maisi/networks/controlnet_maisi.py,sha256=0K2uyMfvc1-2cFCoNDngeMbzcPpvFR1JZ0fqF9pj8r4,7707
54
54
  monai/apps/generation/maisi/networks/diffusion_model_unet_maisi.py,sha256=XFOiy6GngXC_OKM1dUiel_gp71yUFWgPErYdgrVLQAU,19072
55
55
  monai/apps/mmars/__init__.py,sha256=BolpgEi9jNBgrOQd3Kwp-9QQLeWQwQtlN_MJkK1eu5s,726
56
- monai/apps/mmars/mmars.py,sha256=AYsx5FDmJ0dT0hAkWGYhM470aPIG23PYloHihDZfOKE,13115
56
+ monai/apps/mmars/mmars.py,sha256=24JylLuw-qTDsTnTK4Y5kAbF_nWdivrSRS8EMGy69oQ,13134
57
57
  monai/apps/mmars/model_desc.py,sha256=k7WSMRuyQN8xPax8aUmGKiTNZmcVatdqPYCgxDih-x4,9996
58
58
  monai/apps/nnunet/__init__.py,sha256=gyqmg1fxPf3RF6LL25gnpMTfNS14uxweuJ93e4UzjB8,745
59
59
  monai/apps/nnunet/__main__.py,sha256=qrloBLymK98OPcaBKocrlF8io2h4mUuXJPFVLZT-XDo,832
@@ -86,7 +86,7 @@ monai/apps/reconstruction/fastmri_reader.py,sha256=CbAWHN9-b8TFgIpsu1UmS0zHZg3lv
86
86
  monai/apps/reconstruction/mri_utils.py,sha256=WEentr9IfCdTRcRELYkIgRx2oCaIoc1JEVE1FJfQlqQ,2000
87
87
  monai/apps/reconstruction/networks/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
88
88
  monai/apps/reconstruction/networks/blocks/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
89
- monai/apps/reconstruction/networks/blocks/varnetblock.py,sha256=wloM8wy_DbFCuCDrK68q5tH4DPMve7raPnZWPmDgrCk,4167
89
+ monai/apps/reconstruction/networks/blocks/varnetblock.py,sha256=l6Ug_0FQWuwBSoA_rgjjHdaCr8kV2hQm33TzrCDp-dk,4183
90
90
  monai/apps/reconstruction/networks/nets/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
91
91
  monai/apps/reconstruction/networks/nets/coil_sensitivity_model.py,sha256=ZSmyW4FzN-tFvbbchSUma7VGzCiEZJXN65nXdcFbJzk,6215
92
92
  monai/apps/reconstruction/networks/nets/complex_unet.py,sha256=FMm7DTOCJRb80tRWlqBPzpNkdUwRo7tlbvsrHX53HW4,4775
@@ -114,7 +114,7 @@ monai/bundle/config_item.py,sha256=rMjXSGkjJZdi04BwSHwCcIwzIb_TflmC3xDhC3SVJRs,1
114
114
  monai/bundle/config_parser.py,sha256=cGyEn-cqNk0rEEZ1Qiv6UydmIDvtWZcMVljyfVm5i50,23025
115
115
  monai/bundle/properties.py,sha256=iN3K4FVmN9ny1Hw9p5j7_ULcCdSD8PmrR7qXxbNz49k,11582
116
116
  monai/bundle/reference_resolver.py,sha256=GXCMK4iogxxE6VocsmAbUrcXosmC5arnjeG9zYhHKpg,16748
117
- monai/bundle/scripts.py,sha256=D0GnyZF0FCQyHZtqjoX9jen3IiAvnUeM1mtSWa2fu4E,89935
117
+ monai/bundle/scripts.py,sha256=VE3hIAcPfncbT1MGyLk0by1ZtA9jit6Hc7djrUUKUX8,91018
118
118
  monai/bundle/utils.py,sha256=t-22uFvLn7Yy-dr1v1U33peNOxgAmU4TJiGAbsBrUKs,10108
119
119
  monai/bundle/workflows.py,sha256=CuhmFq1AWsN3ATiYJCSakPOxrOdGutl6vkpo9sxe8gU,34369
120
120
  monai/config/__init__.py,sha256=CN28CfTdsp301gv8YXfVvkbztCfbAqrLKrJi_C8oP9s,1048
@@ -124,7 +124,7 @@ monai/data/__init__.py,sha256=loDwAMF14hb4HS04SwukoIchIfU6iGY-xPrJVGyVwBo,5167
124
124
  monai/data/box_utils.py,sha256=YbG6lOoYwUGmwcNmoKzq2xnNTbYA4LMkHmfsqteopCg,50102
125
125
  monai/data/csv_saver.py,sha256=fcZF4kBNQnDFwQjV9TS4zjq_zqsv_u3QldxRprMC7zI,4952
126
126
  monai/data/dataloader.py,sha256=GC1x8aZJaidXN8zaA-Vl6iEHlTP4ocjIvRhCv74elkQ,4459
127
- monai/data/dataset.py,sha256=iVDyCv7t2VG55CVp6hUOhg4eZcEc8bZBHRJX14VW2YI,79067
127
+ monai/data/dataset.py,sha256=ysGlfrVmiXM6O42s-CcewNo_EqZ29uZ1M_sS_rgo1EQ,78731
128
128
  monai/data/dataset_summary.py,sha256=5DkrzlNb3lw58j6lMR7aAGZH1YIw6b1UFQjkbourxt0,10243
129
129
  monai/data/decathlon_datalist.py,sha256=3z7p-PqEdj41MlkRFmc-Q1HNxI0D6Tgi4fmD3p1oq_E,10310
130
130
  monai/data/fft_utils.py,sha256=in9Zu8hC4oSVzuA-Zl236X6EkvgFka0RXdOxgvdGkv0,4448
@@ -143,26 +143,26 @@ monai/data/test_time_augmentation.py,sha256=KgIcPDwF_KelBCX118J5gx13sefGaDgQFUDg
143
143
  monai/data/thread_buffer.py,sha256=FtJlRwLHQzU9sf3XJk4G7b_-uKXaRQHAOMauc-zWN2Q,8840
144
144
  monai/data/torchscript_utils.py,sha256=KoJinpJiNepP6i-1DDy3-8m1Qg1bPfAZTScmXr0LT6g,5502
145
145
  monai/data/ultrasound_confidence_map.py,sha256=pEAp4lr-s00_T9d4IEYSJ5B9VQwf_T7BS9GBx8jw_Sg,14464
146
- monai/data/utils.py,sha256=80SjoKYSoyIBz2AZm0F8jHELfBxCanlK6CR6NJ_xiaw,66422
147
- monai/data/video_dataset.py,sha256=mMTZCkgAx_BBoF4HHWcmEuT9zoNoUVPFtPeYYt76t-A,9075
146
+ monai/data/utils.py,sha256=rZ-61OUVeMr37vsxVTMoQBw15-cLNJQP5szFQSZlS_Q,66448
147
+ monai/data/video_dataset.py,sha256=pUZhaYqSUfacOCAs53UnNXWH2oO99cK8q-7jqujeyqU,9105
148
148
  monai/data/wsi_datasets.py,sha256=Mih4G_rzTQC0Ts8TobnNNXoyCxOAhy0rFqpREDAENWc,18659
149
149
  monai/data/wsi_reader.py,sha256=yVbgl44bS9xF0wsr_ZeLwaljMlTOrtjVTpYKykydEMU,49508
150
150
  monai/engines/__init__.py,sha256=oV0zH5n8qPdCCNZCqLqN4Z7iqADouDtZmtswWQoZWOk,1094
151
- monai/engines/evaluator.py,sha256=d0V4Ko1mcVsr9PtOhhtJYy4SVtrXuKdZ9yWM9mCYpAA,26961
152
- monai/engines/trainer.py,sha256=CmCw0C20A1EUgmpBt_eGHp9ObIJO5shqF7bQGJVskc0,38448
153
- monai/engines/utils.py,sha256=YGaa1Gk2b3bBtodbToGaSOD-s9X7wMgfgESOozZCLrM,15632
154
- monai/engines/workflow.py,sha256=FXZt8wN8m2U7wmXwoI0t1ILeieqsHtPwt5P8cMX71_A,15495
151
+ monai/engines/evaluator.py,sha256=GM1E023FSbNw7ieSXKXjfOU8hYF4XjrjsBQwsZQ7bRU,26673
152
+ monai/engines/trainer.py,sha256=V9wRSJL8FVXv5gJufFFBdz23zexSzzdQPyGOs0IrNoU,38129
153
+ monai/engines/utils.py,sha256=Lj76ai4jrf3TsCUng3U4I5Pa97skbw2jMNE_Ssyru50,15658
154
+ monai/engines/workflow.py,sha256=pvMT-dANo_Lf4NsKyzLup2s3VbmKSYEUt4q2Pzfp3Ow,15483
155
155
  monai/fl/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
156
156
  monai/fl/client/__init__.py,sha256=Wnkcf-Guhi-d29eAH0p51jz1Tn9WSVM4UUGbbb9SAqQ,725
157
157
  monai/fl/client/client_algo.py,sha256=vetQbSNmuvJRBEcu0AKM96gKYbkSXlu4HSriqK7wiiU,5098
158
- monai/fl/client/monai_algo.py,sha256=XLanS6pYuCXdb6b019hiOPjlvIVqupBEvACC_R8jMto,34061
158
+ monai/fl/client/monai_algo.py,sha256=Kk1psjpmB5J_KcQz3ieXXYy-MUTHXuJ1ZGmZyuhLbXI,34080
159
159
  monai/fl/utils/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
160
160
  monai/fl/utils/constants.py,sha256=OjMAE17niYqQh7nz45SC6CXvkMa4-XZsIuoHUHqP7W0,1784
161
161
  monai/fl/utils/exchange_object.py,sha256=q41trOwBdog_g3k_Eh2EFnLufHJ1mj7nGyQ-ShuW5Mo,3527
162
162
  monai/fl/utils/filters.py,sha256=InXplYes52JJqtsNbePAPPAYS8am_uRO7UkBHyYyJCo,1633
163
163
  monai/handlers/__init__.py,sha256=m6SDdtXAZ4ONLCCYrSgONuPaJOz7lewOAzOvZ3J9r14,2442
164
164
  monai/handlers/average_precision.py,sha256=FkIUP2mKqGvybnc_HxuuOdqPeq06wnZP_vwb8K-IhUg,2753
165
- monai/handlers/checkpoint_loader.py,sha256=Y0qNBq5b-GJ-XOJNjuslegCpIGPZYOdNs3PxzNYCCm8,7432
165
+ monai/handlers/checkpoint_loader.py,sha256=kbnfhwEgdnOJFjKQCuHlwJllckC1xWkhj-cwXDyDmkU,7452
166
166
  monai/handlers/checkpoint_saver.py,sha256=z_w5HtNSeRM3QwHQIgQKqVodSYNy8dhL8KTBUzHuF0g,16047
167
167
  monai/handlers/classification_saver.py,sha256=CNzdU9GrKj8KEC42jaBy2rEgpd3mqgz-YZg4dr61Jyg,7605
168
168
  monai/handlers/clearml_handlers.py,sha256=bMVhGUlUlilTJfkwb4YHEgrGBOUnveObfHgqzDy3SVw,7545
@@ -195,8 +195,8 @@ monai/handlers/trt_handler.py,sha256=uWFdgC8QKRkcNwWfKIbQMdK6-MX_1ON0mKabeIn1ltI
195
195
  monai/handlers/utils.py,sha256=Ib1u-PLrtIkiLqTfREnrCWpN4af1btdNzkyMZuuuYyU,10239
196
196
  monai/handlers/validation_handler.py,sha256=NZO21c6zzXbmAgJZHkkdoZQSQIHwuxh94QD3PLUldGU,3674
197
197
  monai/inferers/__init__.py,sha256=K74t_RCeUPdEZvHzIPzVAwZ9DtmouLqhb3qDEmFBWs4,1107
198
- monai/inferers/inferer.py,sha256=UNZpsb97qpl9c7ylNV32_jk52nsX77BqYySOl0XxDQw,92802
199
- monai/inferers/merger.py,sha256=dZm-FVyXPlFb59q4DG52mbtPm8Iy4cNFWv3un0Z8k0M,16262
198
+ monai/inferers/inferer.py,sha256=HcP9xNYkIiOoRJU_xugJrfOcOOWbBq7wOk_ntzXfJBw,93705
199
+ monai/inferers/merger.py,sha256=JxSLdlXTKW1xug11UWQNi6dNtpqVRbGCLc-ifj06g8U,16613
200
200
  monai/inferers/splitter.py,sha256=_hTnFdvDNRckkA7ZGQehVsNZw83oXoGFWyk5VXNqgJg,21149
201
201
  monai/inferers/utils.py,sha256=dvZBCAjaPa8xXcJuXRzNQ-fBzteauzkKbxE5YZdGBGY,20374
202
202
  monai/losses/__init__.py,sha256=igy7BjoQzM3McmJPD2tmeiW2ljSXfB2HBdc4YiDzYEg,1778
@@ -213,11 +213,11 @@ monai/losses/hausdorff_loss.py,sha256=XhOGtYxs-BYRN0NDXX3J3_79so5jEzh9wB8EBm5NoL
213
213
  monai/losses/image_dissimilarity.py,sha256=fIIY1zyxfxl-hKi797xpyDDknUGkdLWGJDBwK3IvJ18,15460
214
214
  monai/losses/multi_scale.py,sha256=7hL4clBLa3f0tz9-74brq5XOFChrpyd_h9cHQKPnseQ,3636
215
215
  monai/losses/nacl_loss.py,sha256=IP4Y2qKcPNn60rgA3zUSvjqnvCiIsbvmwm25ao9appg,5052
216
- monai/losses/perceptual.py,sha256=_UQs6dUIsfff-sXx_Kvg3GcY6YN_2rhpSpt5b8idP58,19468
216
+ monai/losses/perceptual.py,sha256=rPylPBQHmwan87JUawKSRwWn10cIb24xvx5qjXZkUIo,19487
217
217
  monai/losses/spatial_mask.py,sha256=rPyW8fJPSdqHUS7YB7m30Sq4G-YYpobO_fvKsFSAFQ0,2955
218
218
  monai/losses/spectral_loss.py,sha256=PqmZdmJOAzaarW0bzBu8SeL9sOy3XQhul7pnLY4Ih-I,3368
219
219
  monai/losses/ssim_loss.py,sha256=v8LaVXtBzpTey80CBtsWTs5qWw7fiJwYAXqXcCgo5kA,5058
220
- monai/losses/sure_loss.py,sha256=PDDNNeZm8SLPRCDUPbc8o4--ribHnY4nbo8y55nRo0w,8179
220
+ monai/losses/sure_loss.py,sha256=QrXCmy7YwASZNufroDTjiZo8w5FahVd07asDeTd6r3s,8195
221
221
  monai/losses/tversky.py,sha256=uLuqCvsac8OabTJzKQEzAfAvlwrflYCh0s76rgbcVJ0,6955
222
222
  monai/losses/unified_focal_loss.py,sha256=rCj8IpueYH_UMrOUXU0tjbXIN4Uix3bGnRZQtRvl7Sg,10224
223
223
  monai/losses/utils.py,sha256=wrpKcEO0XhbFOHz_jJRqeAeIgpMiMxmepnRf31_DNRU,2786
@@ -245,7 +245,7 @@ monai/metrics/utils.py,sha256=eQ9QGGvuNmYFrgtVFNiA44pBhaHLCkmpyeK2FcK_2Pc,46941
245
245
  monai/metrics/wrapper.py,sha256=c1zg-xcypQyZ840TEuhhLgr4sClYMWTxlv1OieJTtvE,11781
246
246
  monai/networks/__init__.py,sha256=ZzU2Qo8gDXNiRBF0JapIo3xlecZHjXsJuarF0IKVKKY,1086
247
247
  monai/networks/trt_compiler.py,sha256=IFfsM1qFZvmCUBbEvbHnZe6_zmMcXghkpkzmP43dZbk,27535
248
- monai/networks/utils.py,sha256=clziHCw8idcUvey0UmNrzCD8_luImyGvZb8TDkLq4ZQ,56302
248
+ monai/networks/utils.py,sha256=8kxdwqV_nxGgwjF7lt_9tsJhesCjnE1eSCvQWzqr5RQ,56372
249
249
  monai/networks/blocks/__init__.py,sha256=xf-4SLQjL3bU7T_vCnAIbeBzz0Ys2rrtlegJM5bej-Q,2355
250
250
  monai/networks/blocks/acti_norm.py,sha256=bVGXbTZ_ssRvmED5R7LOQ7jj4V6WbVFl8JMO-4iZ2Dk,4275
251
251
  monai/networks/blocks/activation.py,sha256=S5k3zcP2PsHBkeIxgWgNg8ppW80tTResVP2j9ZsvTFw,5839
@@ -254,14 +254,14 @@ monai/networks/blocks/attention_utils.py,sha256=UAlttLpn8vJCIiYyWXEUF-NzVTQBOK-a
254
254
  monai/networks/blocks/backbone_fpn_utils.py,sha256=mdXFwtnRgwuaisTlY-c7OkY1ZZBY3I82dAjpXFAZFbg,7488
255
255
  monai/networks/blocks/convolutions.py,sha256=gRmbYfy3IR4taiXuxeH5KGOFjP55FoVWfP4e1L6ai0s,11686
256
256
  monai/networks/blocks/crf.py,sha256=gHyRgBWD9DmmbCJnXwsMa6WN7N9fDLuT_SwH8MnHhXE,5009
257
- monai/networks/blocks/crossattention.py,sha256=U6_rp9FRod5_1sAj5GBN4MMovTXQcfjlosW1vMV3UWA,8639
257
+ monai/networks/blocks/crossattention.py,sha256=8rb1n41NRGjMHDegWXm9jlBHTaXFxEqgNLN8xsxXQzI,8348
258
258
  monai/networks/blocks/denseblock.py,sha256=hs1rcBp95euZT5ULjgefPApZH75-hqSaVKKNtHdGt10,4747
259
259
  monai/networks/blocks/dints_block.py,sha256=-JWz4-nnAjrOxU2oJ86-qN8Krb8FayKS8Zpbp1wLXzc,9255
260
260
  monai/networks/blocks/downsample.py,sha256=18cwYXL5H3DC5Yq12cdqTIijDJfMCE2YNHlPetFB6UY,2413
261
261
  monai/networks/blocks/dynunet_block.py,sha256=kg8NNTL4nBqsy6gBcxmS5ZCPxlhWM_iB0ByyTQ4AfPs,11063
262
262
  monai/networks/blocks/encoder.py,sha256=NwH5VSQLwamJqrSbZSdQqMwZCk80CPbSpMGEE0r0Cwo,3669
263
263
  monai/networks/blocks/fcn.py,sha256=mnCMrxhUdj2yZ0DPIj0Xf9OKVdv-qhG1BpnAg5j7q6c,9024
264
- monai/networks/blocks/feature_pyramid_network.py,sha256=_DeAy_lNnPqjNiJLcopjqe_PHVThACctrgbXmSSB3Jw,10554
264
+ monai/networks/blocks/feature_pyramid_network.py,sha256=zHMXB_hl92kmuJIe0rTvQlzQn1W77WTQZ7XaoivktEw,10631
265
265
  monai/networks/blocks/fft_utils_t.py,sha256=8bOvhLgP5nDLz8QwzD4XnRaxE9-tGba2-b_QDK8IWSs,8263
266
266
  monai/networks/blocks/localnet_block.py,sha256=b2-ZZvkMPphHJZYTbwEZDhqA-mMBSFM5WQOoohk_6W4,11456
267
267
  monai/networks/blocks/mednext_block.py,sha256=GKaFkRvmho79yxwfYyeSaJtHFtk185dY0tA4_rPnsQA,10487
@@ -271,14 +271,14 @@ monai/networks/blocks/pos_embed_utils.py,sha256=alvCh5x_OF2lv8fO6vvhAwkQJHV7TJT6
271
271
  monai/networks/blocks/regunet_block.py,sha256=1FLIwVBtk66II6xQ7Q4LMY8DP0rMmeftN7HuaEgnf3A,8825
272
272
  monai/networks/blocks/rel_pos_embedding.py,sha256=wuTJsk_NHSDX-3V0X9ctF99WIh2-SHLDbQxzrG7tz_4,2208
273
273
  monai/networks/blocks/segresnet_block.py,sha256=dREFa0CWuSWlSOm53fT7vZz6UC2J_7JAEaeHB9rYjAk,3339
274
- monai/networks/blocks/selfattention.py,sha256=fZGtQwtSvU5aoQ4DWnUbR4DWUA-oEa6L6x3BkHkCUVI,9844
274
+ monai/networks/blocks/selfattention.py,sha256=oH4rOT_OpalGeZOTIanBWWJ88RjriQ9W629tZ6-W-iE,9553
275
275
  monai/networks/blocks/spade_norm.py,sha256=Kq2ImmCQBaFURMnOTj08aphgGkF3ghDm19kXpPRq91c,3654
276
276
  monai/networks/blocks/spatialattention.py,sha256=HhoOnp0YfygOZne8jZjxQezRXIwQg1kfs-Cdo0ruxhw,3442
277
277
  monai/networks/blocks/squeeze_and_excitation.py,sha256=y2kXgoSFxywu-KCGYbI_d-NCCAEbuKAIY5gSqO_T7TI,12752
278
278
  monai/networks/blocks/text_embedding.py,sha256=HIlCTQCSyOEXnqo1l9TOC05duCoeWd9Kb4Oc0gvLZKw,3814
279
279
  monai/networks/blocks/transformerblock.py,sha256=dGqVoLoQuRjIO1mi5FpTNUZ0nrgvOVqksfQK6oZdhZc,3957
280
280
  monai/networks/blocks/unetr_block.py,sha256=d_rqE76OFfd3QRcHuor5Zei2pOrupoleBWu3eYUup0c,9049
281
- monai/networks/blocks/upsample.py,sha256=CeqqKx31gNw1CT3xz6UpU0fOjgW-7ZWxCRAOH4qAcxs,14024
281
+ monai/networks/blocks/upsample.py,sha256=WZXqstlYSYQ3BlA-QXS94z7olM1wEXoCZh12cDOm8_U,13523
282
282
  monai/networks/blocks/warp.py,sha256=XVFZKZR0kBhEtU5-xQsaqL06a-pAI7JJVupQCD2X4e8,7255
283
283
  monai/networks/layers/__init__.py,sha256=eSiNtHu0EZ1A8fw_lPTi_4szdRMsgZlZhtL6TR7fUnc,1689
284
284
  monai/networks/layers/conjugate_gradient.py,sha256=kCAwjtX_j5wrgR8x52WdGl4yCwZmcnUFONnM00G1sWU,3717
@@ -290,7 +290,7 @@ monai/networks/layers/gmm.py,sha256=Aq-YCHgUalgOZQ0x5mwYKJe1G7aiCiJybdkPTiiT120,
290
290
  monai/networks/layers/simplelayers.py,sha256=bX7JnDJJRqTla9siNuJ2YAKV2VcH0gCJNRE5hmrQn24,27967
291
291
  monai/networks/layers/spatial_transforms.py,sha256=fz2t7-ibijNLqTYpAn4ZgdXtzBSIyWlaF35mQtqWRY4,25581
292
292
  monai/networks/layers/utils.py,sha256=k_2xVO8BTEMMVJtemUyKBWw4_5xtqd6OOTOG8qld8To,4916
293
- monai/networks/layers/vector_quantizer.py,sha256=0PCcaH5_uaxFORHgEetQKazq74jgOVmvQJ3h4Ywat6Y,10058
293
+ monai/networks/layers/vector_quantizer.py,sha256=N1WrUjlGsYc3GYF-aJyvf9XIF7xfnSGYYoD3fyAji9c,10056
294
294
  monai/networks/layers/weight_init.py,sha256=ehwI5F7jm_lmDkK4qVL7ocIzCEPx5UPgLaURcsfMNwk,2253
295
295
  monai/networks/nets/__init__.py,sha256=QS_r_mjmymo3YX6DnWftREug1zVRUV56b2xjj5rvWDU,4209
296
296
  monai/networks/nets/ahnet.py,sha256=RT-loCa5Z_3I2DWB8lmRkhxGXSsnMVBCEDpwo68-YB4,21570
@@ -312,7 +312,7 @@ monai/networks/nets/flexible_unet.py,sha256=VN3cJQPMmY--TpZkuDwEWonPgJc4R3JKBwJC
312
312
  monai/networks/nets/fullyconnectednet.py,sha256=j5uo68qnYSxgH_sEMRh7s3QGNKFaJAIxmx8OixEv2Ig,7212
313
313
  monai/networks/nets/generator.py,sha256=q20EAl9N7Q56t78JiZaUEkPhYWyD02oqO0yekJCd9x0,6581
314
314
  monai/networks/nets/highresnet.py,sha256=1Mx8lR5K4sRXGWjspDAHaKq0WrX9Q7qz8CcBCKZxIXk,8883
315
- monai/networks/nets/hovernet.py,sha256=gQDeDGqCwjJACTPmQLAx9nPRBO_D65F-scx15w3Ho_Q,28645
315
+ monai/networks/nets/hovernet.py,sha256=CeksvFWFsIcV70q-JS1QneuMf7vKR8aH1LBz7yaSswA,28734
316
316
  monai/networks/nets/masked_autoencoder_vit.py,sha256=U2DmyKOP-GqFfzbpyMwCoGfcBvMHYeua5G2ZpwqzKpw,9610
317
317
  monai/networks/nets/mednext.py,sha256=svsIk0dH7MdNI8Fr7eP2YM8j1IBJ2paF7m_2VWpLOZ4,13258
318
318
  monai/networks/nets/milmodel.py,sha256=aUDgYJG0kS3p4nBW_dF7b4cWwuC31w3KIzmUzXA08HE,9813
@@ -321,21 +321,21 @@ monai/networks/nets/patchgan_discriminator.py,sha256=yTT0on0lzlDwSu4B9McMqdxqu5x
321
321
  monai/networks/nets/quicknat.py,sha256=ko1BO9l4i4BVYG5V4ohkwUEyoRrPPPzmqNqnFhLTZ0k,20463
322
322
  monai/networks/nets/regressor.py,sha256=6Nz5yJuQDJJOr5R0rhot_mHu7_MDCA4ybV48wS1HS1M,6482
323
323
  monai/networks/nets/regunet.py,sha256=-A6ygR7lVyAflFyqWkVVOsY94uMXWol1f2xr_HmsU1c,18664
324
- monai/networks/nets/resnet.py,sha256=oo1MCA9hccBVwDcMrZNpVmbDSRn3dOEkrn3DbKW2WZk,28141
324
+ monai/networks/nets/resnet.py,sha256=owsWu9lK26ijhRHDCLEBLf03t681TyehVCflcPqGIec,28179
325
325
  monai/networks/nets/segresnet.py,sha256=xNkSIvdk7kAyc3eVn-U_gGj8MoGVc5nklFKc_fkgOUs,13994
326
326
  monai/networks/nets/segresnet_ds.py,sha256=XFF7HKMt9Wbfc9fZSgfjVdfYQcP0d19ygp3VT7OHzJg,20644
327
- monai/networks/nets/senet.py,sha256=gulqPMYmSABbMbN39NElGzSU1TKGviJas7EPTBaZ60A,19289
327
+ monai/networks/nets/senet.py,sha256=yLhP9gDPoa-h9UwJZJm5qxPdPvF9calY95lButXJESs,19308
328
328
  monai/networks/nets/spade_autoencoderkl.py,sha256=-b2Sbl4jPpwo3ukTgsTcON26cSTB35K9sy1S9DKlZz0,19566
329
329
  monai/networks/nets/spade_diffusion_model_unet.py,sha256=zYsXhkHNpHWWyal5ljAMxOICJ1loYQQMAOuzWzdLBCM,39007
330
330
  monai/networks/nets/spade_network.py,sha256=GguYucjIRyT_rZa9DrvUmv00FtqXHZtY1VfJM9Rygns,16479
331
- monai/networks/nets/swin_unetr.py,sha256=aY1GBvV8iPTvcwVDoDvvElbfDNlR_q9uk9_hjFr-0kM,45541
331
+ monai/networks/nets/swin_unetr.py,sha256=cPbA_M_BmPa4ziA6lHZrLW1zOBI4HH7eLxKaOCbCbgM,45677
332
332
  monai/networks/nets/torchvision_fc.py,sha256=3g5PD7C1MSkQ8xndhnVd0b3aN8zfshT8uiFS0OHyQaY,6309
333
- monai/networks/nets/transchex.py,sha256=uA_RfTDfPhwA1ecAPZ9EDnMyJKn2tUMLEWdyB_rU2v0,15726
333
+ monai/networks/nets/transchex.py,sha256=5b8luTeajjbl3P560Y5xpwblT3j1-0ghuhmQbkIat0U,15822
334
334
  monai/networks/nets/transformer.py,sha256=-nzl20Z5xdtn7xChOd_cRbbPVoPIFGVfTQw3fIEGMuE,6395
335
335
  monai/networks/nets/unet.py,sha256=t2an-NZ8QRpWal6uh1WpxG1tbekKRDgQtpT7YeXWFvY,13543
336
336
  monai/networks/nets/unetr.py,sha256=G67kjiBMz13MzP4eV8XK-GydSogMwgXaBMFDShF5sB8,8252
337
337
  monai/networks/nets/varautoencoder.py,sha256=Pd9BdXW1iVjmAVCZIc2ElGtSDAWRBaLwEKxLDicyxZI,6282
338
- monai/networks/nets/vista3d.py,sha256=jsQfEl_EzEmj0LCo8rs9wK9oOqN8Udisn5xZXAu6mRg,43314
338
+ monai/networks/nets/vista3d.py,sha256=sm8h9qlmz7D08PWo1zd7Wu8pXqGV9WR1OEBb1O6-qUc,43496
339
339
  monai/networks/nets/vit.py,sha256=yEzFFQln5ieknnF8A1_ecB_c0SuOBBnrXPesm_kzVts,5934
340
340
  monai/networks/nets/vitautoenc.py,sha256=vfQBWjTb0k7EY4uC76rmuOCIUUgeBvf_EIXBofCzVHQ,5740
341
341
  monai/networks/nets/vnet.py,sha256=zaJi5kSiTLAuFHThSZfhJvHP6zKh3oBWsTWG-328O_g,10820
@@ -369,7 +369,7 @@ monai/transforms/croppad/batch.py,sha256=5ukcYk3VCDpk62AL5Q_jTqpXmSNTlw0UCUhDeAB
369
369
  monai/transforms/croppad/dictionary.py,sha256=WOzj_PjmoB3zLEmtQlafb9-PWgXd-s5K7Z5Doc8Adns,60746
370
370
  monai/transforms/croppad/functional.py,sha256=iroD0XBaMG1Mox6-EotIh2nAUxJPrpIyUrHopc83Sug,12640
371
371
  monai/transforms/intensity/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
372
- monai/transforms/intensity/array.py,sha256=CF3lVbcI4D-YmhifxGj1Mf32TwW4alK1WYBzFiejWbo,121791
372
+ monai/transforms/intensity/array.py,sha256=jVHHMvmUTYrqIp6i_MhvLt_-fup_Bl770RRV7cald3g,121808
373
373
  monai/transforms/intensity/dictionary.py,sha256=MEeMKQckn6X-cEk51Z2YTGjt89RohBzFfO_jU3D06wk,85086
374
374
  monai/transforms/io/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
375
375
  monai/transforms/io/array.py,sha256=370Cxm6XBfJ8V0yMB3qZrG9dp3jrU_A5_IcvVjrekWo,27480
@@ -394,7 +394,7 @@ monai/transforms/smooth_field/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6F
394
394
  monai/transforms/smooth_field/array.py,sha256=Pz4ErmcfVTRZpBe4_IAXTWHlGSmRfExegNKYyrSVwsE,17856
395
395
  monai/transforms/smooth_field/dictionary.py,sha256=iU4V2VjSy2H1K03KgumMUr3cyZVWEJS0W-tgc6SZtP4,11194
396
396
  monai/transforms/spatial/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
397
- monai/transforms/spatial/array.py,sha256=5EKivdPYCP4i4qYUlkK1RpYQFzaU_baYyzgubid3jtM,184936
397
+ monai/transforms/spatial/array.py,sha256=fEmwe1O1f0eTh_32OhkPfQQfafK2v-MwFA4G9dSdAxo,185104
398
398
  monai/transforms/spatial/dictionary.py,sha256=t0SvEDSVNFUEw2fK66OVF20sqSzCNxil17HmvsMFBt8,133752
399
399
  monai/transforms/spatial/functional.py,sha256=IwS0witCqbGkyuxzu_R4Ztp90S0pg9hY1irG7feXqig,33886
400
400
  monai/transforms/utility/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
@@ -407,12 +407,12 @@ monai/utils/deprecate_utils.py,sha256=gKeEV4MsI51qeQ5gci2me_C-0e-tDwa3VZzd3XPQqL
407
407
  monai/utils/dist.py,sha256=7brB42CvdS8Jvr8Y7hfqov1uk6NNnYea9dYfgMYy0BY,8578
408
408
  monai/utils/enums.py,sha256=jXtLaNDxG3BRBgLG2t13_S_G4iVWYHZO_GztykAtmXg,19594
409
409
  monai/utils/jupyter_utils.py,sha256=BYtj80LWQAYg5RWPj5g4j2AMCzLECvAcnZdXns0Ruw8,15651
410
- monai/utils/misc.py,sha256=R-sCS5u7SA8hX6e7x6WSc8FgLcNpqKFRRDMWxUd2wCo,31759
410
+ monai/utils/misc.py,sha256=j1w0AcuAAW_4MGuxiohi1pYsHfZpsZq5wLAz_kQKzD4,31759
411
411
  monai/utils/module.py,sha256=R37PpCNCcHQvjjZFbNjNyzWb3FURaKLxQucjhzQk0eU,26087
412
412
  monai/utils/nvtx.py,sha256=i9JBxR1uhW1ZCgLPLlTx8b907QlXkFzJyTBLMlFjhtU,6876
413
413
  monai/utils/ordering.py,sha256=0nlA5b5QpVCHbtiCbTC-YsqjTmjm0bub0IeJhGFBOes,8270
414
414
  monai/utils/profiling.py,sha256=V2_cSHgrcmVF48_G3nUi2-O6fnXsS89nSlb8jj58YLo,15937
415
- monai/utils/state_cacher.py,sha256=SCs0TWud_lR8fvDhZ0POaXLGLo1J3NALWkg0ODOwT7k,5982
415
+ monai/utils/state_cacher.py,sha256=M4fxe4aqOS6GTYt2nCiZIx1HRYmEtlWpXWbGcriwvuU,6002
416
416
  monai/utils/tf32.py,sha256=FA_Upq2evvWGl2UYdrEsd7GoIsIEsLyPfP9oD_su9Go,2643
417
417
  monai/utils/type_conversion.py,sha256=fj1mUWf-5WBv9m-fpe8gjcGljGBGSA8-RppBpKD_wv0,21754
418
418
  monai/visualize/__init__.py,sha256=p7dv9-hRa9vAhlpHyk86yap9HgeDeJRO3pXmFhDx8Mc,1038
@@ -503,7 +503,7 @@ tests/apps/vista3d/test_vista3d_sampler.py,sha256=-luQCe3Hhle2PC9AkFCUgK8gozOD0O
503
503
  tests/apps/vista3d/test_vista3d_transforms.py,sha256=nAPiDBNWeXLoW7ax3HHL63t5jqzQ3HFa-6wTvdyqVJk,3280
504
504
  tests/bundle/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
505
505
  tests/bundle/test_bundle_ckpt_export.py,sha256=VnpigCoBAAc2lo0rWOpVMg0IYGB6vbHXL8xLtB1Pkio,4622
506
- tests/bundle/test_bundle_download.py,sha256=4wpnCXNYTwTHWNjuSZqnXpVzadxNRabmFaFM3LZ_TJU,20072
506
+ tests/bundle/test_bundle_download.py,sha256=sM6bIaCjIdDbHWpMigYx4T7qFLXSeexnRpGubUKbx9U,20404
507
507
  tests/bundle/test_bundle_get_data.py,sha256=lQh321mev_7fsLXRg0Tq5uEjuQILethDHRKzB6VV0o4,3667
508
508
  tests/bundle/test_bundle_push_to_hf_hub.py,sha256=Zjl6xDwRKgkS6jvO5dzMBaTLEd4EXyMXp0_wzDNSY3g,1740
509
509
  tests/bundle/test_bundle_trt_export.py,sha256=png-2SGjBSt46LXSz-PLprOXwJ0WkC_3YLR3Ibk_WBc,6344
@@ -516,7 +516,7 @@ tests/bundle/test_config_item.py,sha256=tM6gNRE7q_jywig7OcHu2R4qrQySYRhx9PAqhoI7
516
516
  tests/bundle/test_config_parser.py,sha256=tP45BGOkt1uAkgMTCjnEP9tXyJVJjwI57DM-QM8iGg4,16131
517
517
  tests/bundle/test_reference_resolver.py,sha256=3skwzGtooAHi81KRrso9Bwv4fx4ddAPoSDA2MTWBsOg,4284
518
518
  tests/config/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
519
- tests/config/test_cv2_dist.py,sha256=mJKLdvfAS5DoanEaapDr3PIkAtuX4dLGzsMfvWSFQdU,1989
519
+ tests/config/test_cv2_dist.py,sha256=e8DCBCWHhLIhZQneEchwYPSavxsOEjTsoUxt9uT5Kps,1953
520
520
  tests/engines/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
521
521
  tests/engines/test_ensemble_evaluator.py,sha256=28hQGMswONlZSFT9dKN7kDnoBnRWiotDIJCNPp0irIc,3147
522
522
  tests/engines/test_prepare_batch_default.py,sha256=W0S-BXwoDbI_Tzjj7N0yEWX34TZfkI0f3MTnEfRLmqE,2814
@@ -570,7 +570,7 @@ tests/handlers/test_trt_compile.py,sha256=p8Gr2CJmBo6gG8w7bGlAO--nDHtQvy9Ld3jtua
570
570
  tests/handlers/test_write_metrics_reports.py,sha256=oKGYR1plj1hSAu-ntbxkw_TD4O5hKPwVH_BS3MdHIbs,3027
571
571
  tests/inferers/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
572
572
  tests/inferers/test_avg_merger.py,sha256=lMR2PcNGFD6sfF6CjJTkahrAiMA5m5LUs5A11P6h8n0,5952
573
- tests/inferers/test_controlnet_inferers.py,sha256=SGluRyDlgwUJ8nm3BEWgXN3eb81fUGOaRXbLglC_ejc,49676
573
+ tests/inferers/test_controlnet_inferers.py,sha256=sWs5vkZHa-D0V3tWJ6149Z-RNq0for_XngDYxZRl_Ao,50285
574
574
  tests/inferers/test_diffusion_inferer.py,sha256=1O2V_bEmifOZ4RvpbZgYUCooiJ97T73avaBuMJPpBs0,9992
575
575
  tests/inferers/test_latent_diffusion_inferer.py,sha256=atJjmfVznUq8z9EjohFIMyA0Q1XT1Ly0Zepf_1xPz5I,32274
576
576
  tests/inferers/test_patch_inferer.py,sha256=LkYXWVn71vWinP-OJsIvq3FPH3jr36T7nKRIH5PzaqY,9878
@@ -587,14 +587,14 @@ tests/integration/test_deepedit_interaction.py,sha256=tmryp1cP_QlI_tgguZybRZc7-F
587
587
  tests/integration/test_downsample_block.py,sha256=qvqSeTwFQHwiJ0y8uwWE8U_9ffhltJ_4U5Zg5rBnQ6M,1794
588
588
  tests/integration/test_hovernet_nuclear_type_post_processingd.py,sha256=yTRmYdQBXEMMmXJjPDBPMxPSkLWj2U3bdRhaAfDXrpE,2661
589
589
  tests/integration/test_integration_autorunner.py,sha256=tDK1XkMZp4hehfuzMr2LQIgavP36L_vkFcOcI1Z68Lk,7571
590
- tests/integration/test_integration_bundle_run.py,sha256=nl7R3kesgBIYkiI5ZqvUrz08Tdv_HBOT4-hEywZWRp0,10770
591
- tests/integration/test_integration_classification_2d.py,sha256=kiOI3LCOBVNg5JNaKrTl7f1kGyMZVq-J_--LafmSrSY,11354
590
+ tests/integration/test_integration_bundle_run.py,sha256=uO87WnnG3EYnAxhudpfHy7fyxHNNzifFTw2rrMm_6XU,10734
591
+ tests/integration/test_integration_classification_2d.py,sha256=psUvLWNtndkPkgc14YCKqvVQJ9oS1EBdxpg3dOqoF7E,11373
592
592
  tests/integration/test_integration_determinism.py,sha256=AiSBXHcPwDtKRbt_lejI-IDDkYtDWccMkNVoHuyrtU0,3172
593
- tests/integration/test_integration_fast_train.py,sha256=Q351H8MFHc3HJscfowIoY5CGnhNKNzzRVFvxnag1wYg,9742
593
+ tests/integration/test_integration_fast_train.py,sha256=WxEIJV52F0Cf2wmGlIQDiVs1m2QZrvxmta_UAsa0OCI,9736
594
594
  tests/integration/test_integration_gpu_customization.py,sha256=z-w6iBaY72LEi8TBVxZuzvsEBgBecZAP2YPwl6KFUhA,5547
595
595
  tests/integration/test_integration_lazy_samples.py,sha256=d_4GNy_ixiizvehIYJBht4dQropRsqQy7rJOpW7OkZ8,9198
596
596
  tests/integration/test_integration_nnunetv2_runner.py,sha256=KgyAI0Irl93KDLZyo8fGZjEL8dS5UXPKQz_osRfhtSU,4332
597
- tests/integration/test_integration_segmentation_3d.py,sha256=pl5FLQQ-vGtsd2ulfg2OCNz2KvoJ8inH_KqTcFBgBtM,13210
597
+ tests/integration/test_integration_segmentation_3d.py,sha256=TSV8tdiloK4_E03DgM1SqJxMo4fcH-Ta1NutG-3cPFc,13229
598
598
  tests/integration/test_integration_sliding_window.py,sha256=N0CYquebXk8N3KiPcGWbD9KAf5UHuXx2pqAZY5PQVSE,3769
599
599
  tests/integration/test_integration_stn.py,sha256=1bwzCn8X-1xjV-SGalOtlpRPLFnYpDGO_kxoWSe-itY,4946
600
600
  tests/integration/test_integration_unet_2d.py,sha256=rMOCG7eYt3jrCjG5HXCfTdF-XnCvyO1X631H7l-F1w4,2376
@@ -657,7 +657,7 @@ tests/metrics/test_compute_generalized_dice.py,sha256=m5468hRvCYdfEF4B459e2LW3gD
657
657
  tests/metrics/test_compute_meandice.py,sha256=kC7JEqHUe54GrPxypoEjlmUZtxVZxjbhfRWEsZPP7CY,11381
658
658
  tests/metrics/test_compute_meaniou.py,sha256=hphLbY6S-DA3CQiKOug-DblzqwPK0F7aF3Pujz6H0vk,8020
659
659
  tests/metrics/test_compute_mmd_metric.py,sha256=9rwvmZaj4wQKLY3xfuF85gFvZrnyWSXXDd6m7zy63sg,2025
660
- tests/metrics/test_compute_multiscalessim_metric.py,sha256=5Eqj84tm_pRoP_kpYE8sEOc_rz-fntV01t-3OXbOoNA,3086
660
+ tests/metrics/test_compute_multiscalessim_metric.py,sha256=bLL6eNE_bhL4tL4EJO5XcaGurbE5utemc4b6PmJ766k,3080
661
661
  tests/metrics/test_compute_panoptic_quality.py,sha256=DvHzBiaWmDEze3QONzJqxXhTgDv9Q-3_mKqaApaGMvk,5087
662
662
  tests/metrics/test_compute_regression_metrics.py,sha256=zEDCcnV-E4VXwyqAFfsbdYIYbtCXADEv0ipvp9ky81A,8135
663
663
  tests/metrics/test_compute_roc_auc.py,sha256=9pupbW1aLvCtpRZ0qhfPpBYZPqu3pT2Xiucou5j9GOA,4579
@@ -670,14 +670,14 @@ tests/metrics/test_label_quality_score.py,sha256=AT7A8cfr0wsrAZ-li2cAWNiO2SS0BIr
670
670
  tests/metrics/test_loss_metric.py,sha256=S0ZEGdKRg4df5vcXqxNj0XVelml_ogdNCaS8E82Okl8,2106
671
671
  tests/metrics/test_metrics_reloaded.py,sha256=U8KRl3B369npmcFgzcSxXi4bDotVDR9o9ubOM5iJ598,4654
672
672
  tests/metrics/test_ssim_metric.py,sha256=DHPWky52kWVdCHXmoEFkKMlyWMm4XOqXQLNzv0sg4Lc,2896
673
- tests/metrics/test_surface_dice.py,sha256=CGCQt-ydMzaT2q1fFnzpKb6E-TPydym4vE_kdpeWYyE,21769
673
+ tests/metrics/test_surface_dice.py,sha256=tsHUP91hn2jw_KGZp8QePFQ8os-9ixypgJ-1fbdi43o,21760
674
674
  tests/metrics/test_surface_distance.py,sha256=gkW0dai3vHjXubLNBilqFnV5Up-abSMgQ53v0iCTVeE,6237
675
675
  tests/networks/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
676
676
  tests/networks/test_bundle_onnx_export.py,sha256=_lEnAJhq7D2IOuVEdgBVsA8vySgs34FkfMrvNsCLfUg,2853
677
677
  tests/networks/test_convert_to_onnx.py,sha256=h1Sjb0SZmiwwbx0_PrzeFDOE3-JRSp18qDS6G_PdD6g,3673
678
678
  tests/networks/test_convert_to_torchscript.py,sha256=NhrJMCfQtC0sftrhDjL28omS7VKzg_niRK0KtY5Mr_A,1636
679
679
  tests/networks/test_convert_to_trt.py,sha256=5TkuUvCPgW5mAvYUysRRrSjtSbDoDDAoJb2kJtuXOVk,2656
680
- tests/networks/test_save_state.py,sha256=_glX4irpJVqk2jnOJaVqYxsOQNX3oCauxlEXe2ly8Cg,2354
680
+ tests/networks/test_save_state.py,sha256=OnUJEX6vqWoIAIEvVXHbAL4Yrv1GeY0YHw2DposmS3k,2373
681
681
  tests/networks/test_to_onehot.py,sha256=QlT6RkkG7CJeh0gppSohl4kb0bmhISdx_19IybYES0Q,2224
682
682
  tests/networks/test_varnet.py,sha256=-9Ew5epHVvRLc34VCFwKNpsKKoAdudpBRlqDAShpIio,2800
683
683
  tests/networks/blocks/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
@@ -745,15 +745,15 @@ tests/networks/nets/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZL
745
745
  tests/networks/nets/test_ahnet.py,sha256=1pLU9g1dAYByA14r46CgcEj4Bs_nGkuCESojA4b3ghQ,8348
746
746
  tests/networks/nets/test_attentionunet.py,sha256=AUdp94j6un9sg35Q0GPNINo4HhXizUT8QBJDKTqK1pA,3376
747
747
  tests/networks/nets/test_autoencoder.py,sha256=LrYSDtlFUyNe23JT6sULuAr-3cDukqTPEJ7KbNU_2Q4,2964
748
- tests/networks/nets/test_autoencoderkl.py,sha256=c6kGqB9f8AL-PjnumisDSg0gEGauRu9ceO4SzWV4rY0,12152
748
+ tests/networks/nets/test_autoencoderkl.py,sha256=cohtIQshgBPaUwjVozxbSFRi60N2wK_cCkVJJcd4YTU,12171
749
749
  tests/networks/nets/test_basic_unet.py,sha256=3261vqW_CjwDKi4lEGQ-KoMfcszWzo_01EDvYh0bKz8,3337
750
750
  tests/networks/nets/test_basic_unetplusplus.py,sha256=2skwJyzZ34N_iCCmU-waKUZFojfS1GsY08NT8PJrvcU,3712
751
751
  tests/networks/nets/test_bundle_init_bundle.py,sha256=hQGXchLGk6wvT1rUirRS7ToPDSBAvK7FvsnaNNe8NHw,1934
752
752
  tests/networks/nets/test_cell_sam_wrapper.py,sha256=4tW0tcxtpdWgPQ_boVW_68-SMatcJ8-OA6vy4ebXIR0,2215
753
- tests/networks/nets/test_controlnet.py,sha256=JZvfEV9akiPcmFklWBi9GHKlc3EkCVS1cZy0KGuojI8,7354
753
+ tests/networks/nets/test_controlnet.py,sha256=opJhley8-CAFko3uOQGI0IFETwsjt17wXalGJS9O5oU,7373
754
754
  tests/networks/nets/test_daf3d.py,sha256=Ko58wtl8im1makMEHPDIMWyJV5aOoRaGDPMUlL0vM9s,2331
755
755
  tests/networks/nets/test_densenet.py,sha256=t5QsIN_hiirm9p3zEEGvgN928N0WN14bjbWD4B9M6pU,4439
756
- tests/networks/nets/test_diffusion_model_unet.py,sha256=H0qWcxgCNOcmjUWWlwwZFuYsmwSm_dz339EjTMMfogI,18912
756
+ tests/networks/nets/test_diffusion_model_unet.py,sha256=mCgCdT-j42pnnoTb-Tyy9yCEiwYaV5K0nygxXwgWf-0,18931
757
757
  tests/networks/nets/test_dints_network.py,sha256=pdoK8663ga8UgafbavWy14XdCwzaYrbU90eerleAHT8,5785
758
758
  tests/networks/nets/test_discriminator.py,sha256=gsw3qCTCHzjPoX_ylhYbhQ-tNY5emg2xUJLeweZV-2I,1916
759
759
  tests/networks/nets/test_dynunet.py,sha256=bdpTk0O-4ionxgFZgfjhvP-R6XEGGYQDihst6H79pHw,7406
@@ -767,7 +767,7 @@ tests/networks/nets/test_hovernet.py,sha256=Ad6z1k5Ef-Xms14TFeF14LnyTv4_lxOJWZtH
767
767
  tests/networks/nets/test_mednext.py,sha256=RxcZeKErrp7yrtU2rYU8yo0_jlbqa-_ZXDx0xqDfBLI,4715
768
768
  tests/networks/nets/test_milmodel.py,sha256=3n1vZs7YXGuSxH_x3vtk3HwElzz85pBrAUQjhQ_K06E,3233
769
769
  tests/networks/nets/test_net_adapter.py,sha256=r-VQTK18Tx1km8_mVNENaVKmLbbZ_Zax07ZNUo1GZAA,2641
770
- tests/networks/nets/test_network_consistency.py,sha256=2QRjf5n6_OdGD8pgUqrDB-Bk_d8RsOQSc_VsMJzTCrs,2867
770
+ tests/networks/nets/test_network_consistency.py,sha256=OuEsjkCzQEIxQ9CNJxNXqI8KrW4XNALQRvKeNDOAPvU,2886
771
771
  tests/networks/nets/test_patch_gan_dicriminator.py,sha256=5qhzL55pid_9ShuALPzvW21eZtdlpKupw8hdu1N4sVE,5266
772
772
  tests/networks/nets/test_quicknat.py,sha256=iuJRChBt6OoOvBGUe2bZ5wvcx0AfId4gZJ7K12SP7w8,2601
773
773
  tests/networks/nets/test_resnet.py,sha256=nIx9ZrHWN36iiGP9KffiEdJ5kLctySh5_zdAddl9gTc,10475
@@ -777,10 +777,10 @@ tests/networks/nets/test_senet.py,sha256=V9HyDyYMR2r2F6FzZUl6INDipH5mk-IrExkkeZw
777
777
  tests/networks/nets/test_spade_autoencoderkl.py,sha256=vU9j-flnprLJT-VctKuiLK1KyKw1UrAO87mpddE0sNs,9289
778
778
  tests/networks/nets/test_spade_diffusion_model_unet.py,sha256=LEN1PAGid0DMdP2NySi94RrlE8FgomJ9ZV3YRe0ubaE,18347
779
779
  tests/networks/nets/test_spade_vaegan.py,sha256=ur1SPoXEmpr_8KwVS6-E_1tIPMBKpNqsvHJ7z5-obzA,5632
780
- tests/networks/nets/test_swin_unetr.py,sha256=HpRTEoeErZrzMAPSH8_RLfXfQvn25SflOXQGhuC7Vpg,5671
780
+ tests/networks/nets/test_swin_unetr.py,sha256=gj1Jqg8xTBYdCZWCR4Y9_ZlGNNYVTkCPmB2sdF2xIDM,5690
781
781
  tests/networks/nets/test_torchvision_fc_model.py,sha256=oNb-PaOhIAjOrpnsXApC2hKSUK6lMutIEinMrCOKQoA,6397
782
782
  tests/networks/nets/test_transchex.py,sha256=vUUsCd_CJrW_q0jcaGQegBoanJQVoufrs_EP3MC46Xo,3220
783
- tests/networks/nets/test_transformer.py,sha256=_Aw-bQXIO-t_myfHwt6FmPeHMKUi99CgkJePVcUcvZ8,4199
783
+ tests/networks/nets/test_transformer.py,sha256=rsGjemv0JV9SMTTWiZ8Sz_w5t5Rkz15b2rjJit4R2XA,4218
784
784
  tests/networks/nets/test_unet.py,sha256=wXwaXkufYDjFXzQ-AygbePAwigZLLaY58sGygizF3Q4,5801
785
785
  tests/networks/nets/test_unetr.py,sha256=3_V4VWfsQVB22-T8XTSRra3Her2XrLx5gzIRHis2zPs,5325
786
786
  tests/networks/nets/test_varautoencoder.py,sha256=wk9ra-X0ri03ZZ_YyoyhPb90z6WpiOcTi1SztLl3ytg,3547
@@ -1178,8 +1178,8 @@ tests/visualize/test_vis_gradcam.py,sha256=WpA-pvTB75eZs7JoIc5qyvOV9PwgkzWI8-Vow
1178
1178
  tests/visualize/utils/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
1179
1179
  tests/visualize/utils/test_blend_images.py,sha256=RVs2p_8RWQDfhLHDNNtZaMig27v8o0km7XxNa-zWjKE,2274
1180
1180
  tests/visualize/utils/test_matshow3d.py,sha256=wXYj77L5Jvnp0f6DvL1rsi_-YlCxS0HJ9hiPmrbpuP8,5021
1181
- monai_weekly-1.5.dev2508.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
1182
- monai_weekly-1.5.dev2508.dist-info/METADATA,sha256=y-KfkVBP9_LhTnQo37SKpjDYJYsdujQuCCQiZpKdSv8,11909
1183
- monai_weekly-1.5.dev2508.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
1184
- monai_weekly-1.5.dev2508.dist-info/top_level.txt,sha256=hn2Y6P9xBf2R8faMeVMHhPMvrdDKxMsIOwMDYI0yTjs,12
1185
- monai_weekly-1.5.dev2508.dist-info/RECORD,,
1181
+ monai_weekly-1.5.dev2510.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
1182
+ monai_weekly-1.5.dev2510.dist-info/METADATA,sha256=EwQi6m9OMtupNit5BbaClOKoMMq6u_NN4SYRQ3LaHIU,11986
1183
+ monai_weekly-1.5.dev2510.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
1184
+ monai_weekly-1.5.dev2510.dist-info/top_level.txt,sha256=hn2Y6P9xBf2R8faMeVMHhPMvrdDKxMsIOwMDYI0yTjs,12
1185
+ monai_weekly-1.5.dev2510.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.8.0)
2
+ Generator: setuptools (75.8.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -266,6 +266,7 @@ class TestLoad(unittest.TestCase):
266
266
  with skip_if_downloading_fails():
267
267
  # download bundle, and load weights from the downloaded path
268
268
  with tempfile.TemporaryDirectory() as tempdir:
269
+ bundle_root = os.path.join(tempdir, bundle_name)
269
270
  # load weights
270
271
  weights = load(
271
272
  name=bundle_name,
@@ -278,7 +279,7 @@ class TestLoad(unittest.TestCase):
278
279
  return_state_dict=True,
279
280
  )
280
281
  # prepare network
281
- with open(os.path.join(tempdir, bundle_name, bundle_files[2])) as f:
282
+ with open(os.path.join(bundle_root, bundle_files[2])) as f:
282
283
  net_args = json.load(f)["network_def"]
283
284
  model_name = net_args["_target_"]
284
285
  del net_args["_target_"]
@@ -288,9 +289,13 @@ class TestLoad(unittest.TestCase):
288
289
  model.eval()
289
290
 
290
291
  # prepare data and test
291
- input_tensor = torch.load(os.path.join(tempdir, bundle_name, bundle_files[4]), map_location=device)
292
+ input_tensor = torch.load(
293
+ os.path.join(bundle_root, bundle_files[4]), map_location=device, weights_only=True
294
+ )
292
295
  output = model.forward(input_tensor)
293
- expected_output = torch.load(os.path.join(tempdir, bundle_name, bundle_files[3]), map_location=device)
296
+ expected_output = torch.load(
297
+ os.path.join(bundle_root, bundle_files[3]), map_location=device, weights_only=True
298
+ )
294
299
  assert_allclose(output, expected_output, atol=1e-4, rtol=1e-4, type_test=False)
295
300
 
296
301
  # load instantiated model directly and test, since the bundle has been downloaded,
@@ -350,7 +355,7 @@ class TestLoad(unittest.TestCase):
350
355
  config_file=f"{tempdir}/spleen_ct_segmentation/configs/train.json", workflow_type="train"
351
356
  )
352
357
  expected_model = workflow.network_def.to(device)
353
- expected_model.load_state_dict(torch.load(model_path))
358
+ expected_model.load_state_dict(torch.load(model_path, weights_only=True))
354
359
  expected_output = expected_model(input_tensor)
355
360
  assert_allclose(output, expected_output, atol=1e-4, rtol=1e-4, type_test=False)
356
361
 
@@ -378,6 +383,7 @@ class TestLoad(unittest.TestCase):
378
383
  with skip_if_downloading_fails():
379
384
  # load ts module
380
385
  with tempfile.TemporaryDirectory() as tempdir:
386
+ bundle_root = os.path.join(tempdir, bundle_name)
381
387
  # load ts module
382
388
  model_ts, metadata, extra_file_dict = load(
383
389
  name=bundle_name,
@@ -393,9 +399,13 @@ class TestLoad(unittest.TestCase):
393
399
  )
394
400
 
395
401
  # prepare and test ts
396
- input_tensor = torch.load(os.path.join(tempdir, bundle_name, bundle_files[1]), map_location=device)
402
+ input_tensor = torch.load(
403
+ os.path.join(bundle_root, bundle_files[1]), map_location=device, weights_only=True
404
+ )
397
405
  output = model_ts.forward(input_tensor)
398
- expected_output = torch.load(os.path.join(tempdir, bundle_name, bundle_files[0]), map_location=device)
406
+ expected_output = torch.load(
407
+ os.path.join(bundle_root, bundle_files[0]), map_location=device, weights_only=True
408
+ )
399
409
  assert_allclose(output, expected_output, atol=1e-4, rtol=1e-4, type_test=False)
400
410
  # test metadata
401
411
  self.assertTrue(metadata["pytorch_version"] == "1.7.1")
@@ -16,7 +16,6 @@ import unittest
16
16
  import numpy as np
17
17
  import torch
18
18
  import torch.distributed as dist
19
- from torch.cuda.amp import autocast
20
19
 
21
20
  # FIXME: test for the workaround of https://github.com/Project-MONAI/MONAI/issues/5291
22
21
  from monai.config.deviceconfig import print_config
@@ -33,7 +32,7 @@ def main_worker(rank, ngpus_per_node, port):
33
32
  model, device_ids=[rank], output_device=rank, find_unused_parameters=False
34
33
  )
35
34
  x = torch.ones(1, 1, 12, 12, 12).to(rank)
36
- with autocast(enabled=True):
35
+ with torch.autocast("cuda"):
37
36
  model(x)
38
37
 
39
38
  if dist.is_initialized():
@@ -550,6 +550,8 @@ class ControlNetTestDiffusionSamplingInferer(unittest.TestCase):
550
550
  def test_sampler_conditioned(self, model_params, controlnet_params, input_shape):
551
551
  model_params["with_conditioning"] = True
552
552
  model_params["cross_attention_dim"] = 3
553
+ controlnet_params["with_conditioning"] = True
554
+ controlnet_params["cross_attention_dim"] = 3
553
555
  model = DiffusionModelUNet(**model_params)
554
556
  controlnet = ControlNet(**controlnet_params)
555
557
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -619,8 +621,11 @@ class ControlNetTestDiffusionSamplingInferer(unittest.TestCase):
619
621
  model_params = model_params.copy()
620
622
  n_concat_channel = 2
621
623
  model_params["in_channels"] = model_params["in_channels"] + n_concat_channel
624
+ controlnet_params["in_channels"] = controlnet_params["in_channels"] + n_concat_channel
622
625
  model_params["cross_attention_dim"] = None
626
+ controlnet_params["cross_attention_dim"] = None
623
627
  model_params["with_conditioning"] = False
628
+ controlnet_params["with_conditioning"] = False
624
629
  model = DiffusionModelUNet(**model_params)
625
630
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
626
631
  model.to(device)
@@ -1023,8 +1028,10 @@ class LatentControlNetTestDiffusionSamplingInferer(unittest.TestCase):
1023
1028
  if ae_model_type == "SPADEAutoencoderKL":
1024
1029
  stage_1 = SPADEAutoencoderKL(**autoencoder_params)
1025
1030
  stage_2_params = stage_2_params.copy()
1031
+ controlnet_params = controlnet_params.copy()
1026
1032
  n_concat_channel = 3
1027
1033
  stage_2_params["in_channels"] = stage_2_params["in_channels"] + n_concat_channel
1034
+ controlnet_params["in_channels"] = controlnet_params["in_channels"] + n_concat_channel
1028
1035
  if dm_model_type == "SPADEDiffusionModelUNet":
1029
1036
  stage_2 = SPADEDiffusionModelUNet(**stage_2_params)
1030
1037
  else:
@@ -1106,8 +1113,10 @@ class LatentControlNetTestDiffusionSamplingInferer(unittest.TestCase):
1106
1113
  if ae_model_type == "SPADEAutoencoderKL":
1107
1114
  stage_1 = SPADEAutoencoderKL(**autoencoder_params)
1108
1115
  stage_2_params = stage_2_params.copy()
1116
+ controlnet_params = controlnet_params.copy()
1109
1117
  n_concat_channel = 3
1110
1118
  stage_2_params["in_channels"] = stage_2_params["in_channels"] + n_concat_channel
1119
+ controlnet_params["in_channels"] = controlnet_params["in_channels"] + n_concat_channel
1111
1120
  if dm_model_type == "SPADEDiffusionModelUNet":
1112
1121
  stage_2 = SPADEDiffusionModelUNet(**stage_2_params)
1113
1122
  else: