monai-weekly 1.5.dev2444__py3-none-any.whl → 1.5.dev2446__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- monai/__init__.py +1 -1
- monai/_version.py +3 -3
- monai/bundle/scripts.py +2 -0
- monai/networks/blocks/__init__.py +1 -0
- monai/networks/blocks/mednext_block.py +309 -0
- monai/networks/nets/__init__.py +19 -0
- monai/networks/nets/mednext.py +354 -0
- monai/networks/nets/vista3d.py +0 -1
- monai/networks/trt_compiler.py +161 -55
- monai/networks/utils.py +11 -5
- monai/transforms/utility/array.py +2 -2
- monai/utils/__init__.py +1 -0
- monai/utils/module.py +41 -0
- {monai_weekly-1.5.dev2444.dist-info → monai_weekly-1.5.dev2446.dist-info}/METADATA +1 -1
- {monai_weekly-1.5.dev2444.dist-info → monai_weekly-1.5.dev2446.dist-info}/RECORD +18 -16
- {monai_weekly-1.5.dev2444.dist-info → monai_weekly-1.5.dev2446.dist-info}/WHEEL +1 -1
- {monai_weekly-1.5.dev2444.dist-info → monai_weekly-1.5.dev2446.dist-info}/LICENSE +0 -0
- {monai_weekly-1.5.dev2444.dist-info → monai_weekly-1.5.dev2446.dist-info}/top_level.txt +0 -0
monai/__init__.py
CHANGED
monai/_version.py
CHANGED
@@ -8,11 +8,11 @@ import json
|
|
8
8
|
|
9
9
|
version_json = '''
|
10
10
|
{
|
11
|
-
"date": "2024-11-
|
11
|
+
"date": "2024-11-17T02:30:32+0000",
|
12
12
|
"dirty": false,
|
13
13
|
"error": null,
|
14
|
-
"full-revisionid": "
|
15
|
-
"version": "1.5.
|
14
|
+
"full-revisionid": "218216250ce297265400abe56ee915898d75a2ec",
|
15
|
+
"version": "1.5.dev2446"
|
16
16
|
}
|
17
17
|
''' # END VERSION_JSON
|
18
18
|
|
monai/bundle/scripts.py
CHANGED
@@ -1589,6 +1589,8 @@ def trt_export(
|
|
1589
1589
|
"""
|
1590
1590
|
Export the model checkpoint to the given filepath as a TensorRT engine-based TorchScript.
|
1591
1591
|
Currently, this API only supports converting models whose inputs are all tensors.
|
1592
|
+
Note: NVIDIA Volta support (GPUs with compute capability 7.0) has been removed starting with TensorRT 10.5.
|
1593
|
+
Review the TensorRT Support Matrix for which GPUs are supported.
|
1592
1594
|
|
1593
1595
|
There are two ways to export a model:
|
1594
1596
|
1, Torch-TensorRT way: PyTorch module ---> TorchScript module ---> TensorRT engine-based TorchScript.
|
@@ -26,6 +26,7 @@ from .encoder import BaseEncoder
|
|
26
26
|
from .fcn import FCN, GCN, MCFCN, Refine
|
27
27
|
from .feature_pyramid_network import ExtraFPNBlock, FeaturePyramidNetwork, LastLevelMaxPool, LastLevelP6P7
|
28
28
|
from .localnet_block import LocalNetDownSampleBlock, LocalNetFeatureExtractorBlock, LocalNetUpSampleBlock
|
29
|
+
from .mednext_block import MedNeXtBlock, MedNeXtDownBlock, MedNeXtOutBlock, MedNeXtUpBlock
|
29
30
|
from .mlp import MLPBlock
|
30
31
|
from .patchembedding import PatchEmbed, PatchEmbeddingBlock
|
31
32
|
from .regunet_block import RegistrationDownSampleBlock, RegistrationExtractionBlock, RegistrationResidualConvBlock
|
@@ -0,0 +1,309 @@
|
|
1
|
+
# Copyright (c) MONAI Consortium
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
+
# you may not use this file except in compliance with the License.
|
4
|
+
# You may obtain a copy of the License at
|
5
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6
|
+
# Unless required by applicable law or agreed to in writing, software
|
7
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
8
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
9
|
+
# See the License for the specific language governing permissions and
|
10
|
+
# limitations under the License.
|
11
|
+
|
12
|
+
# Portions of this code are derived from the original repository at:
|
13
|
+
# https://github.com/MIC-DKFZ/MedNeXt
|
14
|
+
# and are used under the terms of the Apache License, Version 2.0.
|
15
|
+
|
16
|
+
from __future__ import annotations
|
17
|
+
|
18
|
+
import torch
|
19
|
+
import torch.nn as nn
|
20
|
+
|
21
|
+
all = ["MedNeXtBlock", "MedNeXtDownBlock", "MedNeXtUpBlock", "MedNeXtOutBlock"]
|
22
|
+
|
23
|
+
|
24
|
+
def get_conv_layer(spatial_dim: int = 3, transpose: bool = False):
|
25
|
+
if spatial_dim == 2:
|
26
|
+
return nn.ConvTranspose2d if transpose else nn.Conv2d
|
27
|
+
else: # spatial_dim == 3
|
28
|
+
return nn.ConvTranspose3d if transpose else nn.Conv3d
|
29
|
+
|
30
|
+
|
31
|
+
class MedNeXtBlock(nn.Module):
|
32
|
+
"""
|
33
|
+
MedNeXtBlock class for the MedNeXt model.
|
34
|
+
|
35
|
+
Args:
|
36
|
+
in_channels (int): Number of input channels.
|
37
|
+
out_channels (int): Number of output channels.
|
38
|
+
expansion_ratio (int): Expansion ratio for the block. Defaults to 4.
|
39
|
+
kernel_size (int): Kernel size for convolutions. Defaults to 7.
|
40
|
+
use_residual_connection (int): Whether to use residual connection. Defaults to True.
|
41
|
+
norm_type (str): Type of normalization to use. Defaults to "group".
|
42
|
+
dim (str): Dimension of the input. Can be "2d" or "3d". Defaults to "3d".
|
43
|
+
global_resp_norm (bool): Whether to use global response normalization. Defaults to False.
|
44
|
+
"""
|
45
|
+
|
46
|
+
def __init__(
|
47
|
+
self,
|
48
|
+
in_channels: int,
|
49
|
+
out_channels: int,
|
50
|
+
expansion_ratio: int = 4,
|
51
|
+
kernel_size: int = 7,
|
52
|
+
use_residual_connection: int = True,
|
53
|
+
norm_type: str = "group",
|
54
|
+
dim="3d",
|
55
|
+
global_resp_norm=False,
|
56
|
+
):
|
57
|
+
|
58
|
+
super().__init__()
|
59
|
+
|
60
|
+
self.do_res = use_residual_connection
|
61
|
+
|
62
|
+
self.dim = dim
|
63
|
+
conv = get_conv_layer(spatial_dim=2 if dim == "2d" else 3)
|
64
|
+
global_resp_norm_param_shape = (1,) * (2 if dim == "2d" else 3)
|
65
|
+
# First convolution layer with DepthWise Convolutions
|
66
|
+
self.conv1 = conv(
|
67
|
+
in_channels=in_channels,
|
68
|
+
out_channels=in_channels,
|
69
|
+
kernel_size=kernel_size,
|
70
|
+
stride=1,
|
71
|
+
padding=kernel_size // 2,
|
72
|
+
groups=in_channels,
|
73
|
+
)
|
74
|
+
|
75
|
+
# Normalization Layer. GroupNorm is used by default.
|
76
|
+
if norm_type == "group":
|
77
|
+
self.norm = nn.GroupNorm(num_groups=in_channels, num_channels=in_channels) # type: ignore
|
78
|
+
elif norm_type == "layer":
|
79
|
+
self.norm = nn.LayerNorm(
|
80
|
+
normalized_shape=[in_channels] + [kernel_size] * (2 if dim == "2d" else 3) # type: ignore
|
81
|
+
)
|
82
|
+
# Second convolution (Expansion) layer with Conv3D 1x1x1
|
83
|
+
self.conv2 = conv(
|
84
|
+
in_channels=in_channels, out_channels=expansion_ratio * in_channels, kernel_size=1, stride=1, padding=0
|
85
|
+
)
|
86
|
+
|
87
|
+
# GeLU activations
|
88
|
+
self.act = nn.GELU()
|
89
|
+
|
90
|
+
# Third convolution (Compression) layer with Conv3D 1x1x1
|
91
|
+
self.conv3 = conv(
|
92
|
+
in_channels=expansion_ratio * in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0
|
93
|
+
)
|
94
|
+
|
95
|
+
self.global_resp_norm = global_resp_norm
|
96
|
+
if self.global_resp_norm:
|
97
|
+
global_resp_norm_param_shape = (1, expansion_ratio * in_channels) + global_resp_norm_param_shape
|
98
|
+
self.global_resp_beta = nn.Parameter(torch.zeros(global_resp_norm_param_shape), requires_grad=True)
|
99
|
+
self.global_resp_gamma = nn.Parameter(torch.zeros(global_resp_norm_param_shape), requires_grad=True)
|
100
|
+
|
101
|
+
def forward(self, x):
|
102
|
+
"""
|
103
|
+
Forward pass of the MedNeXtBlock.
|
104
|
+
|
105
|
+
Args:
|
106
|
+
x (torch.Tensor): Input tensor.
|
107
|
+
|
108
|
+
Returns:
|
109
|
+
torch.Tensor: Output tensor.
|
110
|
+
"""
|
111
|
+
x1 = x
|
112
|
+
x1 = self.conv1(x1)
|
113
|
+
x1 = self.act(self.conv2(self.norm(x1)))
|
114
|
+
|
115
|
+
if self.global_resp_norm:
|
116
|
+
# gamma, beta: learnable affine transform parameters
|
117
|
+
# X: input of shape (N,C,H,W,D)
|
118
|
+
if self.dim == "2d":
|
119
|
+
gx = torch.norm(x1, p=2, dim=(-2, -1), keepdim=True)
|
120
|
+
else:
|
121
|
+
gx = torch.norm(x1, p=2, dim=(-3, -2, -1), keepdim=True)
|
122
|
+
nx = gx / (gx.mean(dim=1, keepdim=True) + 1e-6)
|
123
|
+
x1 = self.global_resp_gamma * (x1 * nx) + self.global_resp_beta + x1
|
124
|
+
x1 = self.conv3(x1)
|
125
|
+
if self.do_res:
|
126
|
+
x1 = x + x1
|
127
|
+
return x1
|
128
|
+
|
129
|
+
|
130
|
+
class MedNeXtDownBlock(MedNeXtBlock):
|
131
|
+
"""
|
132
|
+
MedNeXtDownBlock class for downsampling in the MedNeXt model.
|
133
|
+
|
134
|
+
Args:
|
135
|
+
in_channels (int): Number of input channels.
|
136
|
+
out_channels (int): Number of output channels.
|
137
|
+
expansion_ratio (int): Expansion ratio for the block. Defaults to 4.
|
138
|
+
kernel_size (int): Kernel size for convolutions. Defaults to 7.
|
139
|
+
use_residual_connection (bool): Whether to use residual connection. Defaults to False.
|
140
|
+
norm_type (str): Type of normalization to use. Defaults to "group".
|
141
|
+
dim (str): Dimension of the input. Can be "2d" or "3d". Defaults to "3d".
|
142
|
+
global_resp_norm (bool): Whether to use global response normalization. Defaults to False.
|
143
|
+
"""
|
144
|
+
|
145
|
+
def __init__(
|
146
|
+
self,
|
147
|
+
in_channels: int,
|
148
|
+
out_channels: int,
|
149
|
+
expansion_ratio: int = 4,
|
150
|
+
kernel_size: int = 7,
|
151
|
+
use_residual_connection: bool = False,
|
152
|
+
norm_type: str = "group",
|
153
|
+
dim: str = "3d",
|
154
|
+
global_resp_norm: bool = False,
|
155
|
+
):
|
156
|
+
|
157
|
+
super().__init__(
|
158
|
+
in_channels,
|
159
|
+
out_channels,
|
160
|
+
expansion_ratio,
|
161
|
+
kernel_size,
|
162
|
+
use_residual_connection=False,
|
163
|
+
norm_type=norm_type,
|
164
|
+
dim=dim,
|
165
|
+
global_resp_norm=global_resp_norm,
|
166
|
+
)
|
167
|
+
|
168
|
+
conv = get_conv_layer(spatial_dim=2 if dim == "2d" else 3)
|
169
|
+
self.resample_do_res = use_residual_connection
|
170
|
+
if use_residual_connection:
|
171
|
+
self.res_conv = conv(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=2)
|
172
|
+
|
173
|
+
self.conv1 = conv(
|
174
|
+
in_channels=in_channels,
|
175
|
+
out_channels=in_channels,
|
176
|
+
kernel_size=kernel_size,
|
177
|
+
stride=2,
|
178
|
+
padding=kernel_size // 2,
|
179
|
+
groups=in_channels,
|
180
|
+
)
|
181
|
+
|
182
|
+
def forward(self, x):
|
183
|
+
"""
|
184
|
+
Forward pass of the MedNeXtDownBlock.
|
185
|
+
|
186
|
+
Args:
|
187
|
+
x (torch.Tensor): Input tensor.
|
188
|
+
|
189
|
+
Returns:
|
190
|
+
torch.Tensor: Output tensor.
|
191
|
+
"""
|
192
|
+
x1 = super().forward(x)
|
193
|
+
|
194
|
+
if self.resample_do_res:
|
195
|
+
res = self.res_conv(x)
|
196
|
+
x1 = x1 + res
|
197
|
+
|
198
|
+
return x1
|
199
|
+
|
200
|
+
|
201
|
+
class MedNeXtUpBlock(MedNeXtBlock):
|
202
|
+
"""
|
203
|
+
MedNeXtUpBlock class for upsampling in the MedNeXt model.
|
204
|
+
|
205
|
+
Args:
|
206
|
+
in_channels (int): Number of input channels.
|
207
|
+
out_channels (int): Number of output channels.
|
208
|
+
expansion_ratio (int): Expansion ratio for the block. Defaults to 4.
|
209
|
+
kernel_size (int): Kernel size for convolutions. Defaults to 7.
|
210
|
+
use_residual_connection (bool): Whether to use residual connection. Defaults to False.
|
211
|
+
norm_type (str): Type of normalization to use. Defaults to "group".
|
212
|
+
dim (str): Dimension of the input. Can be "2d" or "3d". Defaults to "3d".
|
213
|
+
global_resp_norm (bool): Whether to use global response normalization. Defaults to False.
|
214
|
+
"""
|
215
|
+
|
216
|
+
def __init__(
|
217
|
+
self,
|
218
|
+
in_channels: int,
|
219
|
+
out_channels: int,
|
220
|
+
expansion_ratio: int = 4,
|
221
|
+
kernel_size: int = 7,
|
222
|
+
use_residual_connection: bool = False,
|
223
|
+
norm_type: str = "group",
|
224
|
+
dim: str = "3d",
|
225
|
+
global_resp_norm: bool = False,
|
226
|
+
):
|
227
|
+
super().__init__(
|
228
|
+
in_channels,
|
229
|
+
out_channels,
|
230
|
+
expansion_ratio,
|
231
|
+
kernel_size,
|
232
|
+
use_residual_connection=False,
|
233
|
+
norm_type=norm_type,
|
234
|
+
dim=dim,
|
235
|
+
global_resp_norm=global_resp_norm,
|
236
|
+
)
|
237
|
+
|
238
|
+
self.resample_do_res = use_residual_connection
|
239
|
+
|
240
|
+
self.dim = dim
|
241
|
+
conv = get_conv_layer(spatial_dim=2 if dim == "2d" else 3, transpose=True)
|
242
|
+
if use_residual_connection:
|
243
|
+
self.res_conv = conv(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=2)
|
244
|
+
|
245
|
+
self.conv1 = conv(
|
246
|
+
in_channels=in_channels,
|
247
|
+
out_channels=in_channels,
|
248
|
+
kernel_size=kernel_size,
|
249
|
+
stride=2,
|
250
|
+
padding=kernel_size // 2,
|
251
|
+
groups=in_channels,
|
252
|
+
)
|
253
|
+
|
254
|
+
def forward(self, x):
|
255
|
+
"""
|
256
|
+
Forward pass of the MedNeXtUpBlock.
|
257
|
+
|
258
|
+
Args:
|
259
|
+
x (torch.Tensor): Input tensor.
|
260
|
+
|
261
|
+
Returns:
|
262
|
+
torch.Tensor: Output tensor.
|
263
|
+
"""
|
264
|
+
x1 = super().forward(x)
|
265
|
+
# Asymmetry but necessary to match shape
|
266
|
+
|
267
|
+
if self.dim == "2d":
|
268
|
+
x1 = torch.nn.functional.pad(x1, (1, 0, 1, 0))
|
269
|
+
else:
|
270
|
+
x1 = torch.nn.functional.pad(x1, (1, 0, 1, 0, 1, 0))
|
271
|
+
|
272
|
+
if self.resample_do_res:
|
273
|
+
res = self.res_conv(x)
|
274
|
+
if self.dim == "2d":
|
275
|
+
res = torch.nn.functional.pad(res, (1, 0, 1, 0))
|
276
|
+
else:
|
277
|
+
res = torch.nn.functional.pad(res, (1, 0, 1, 0, 1, 0))
|
278
|
+
x1 = x1 + res
|
279
|
+
|
280
|
+
return x1
|
281
|
+
|
282
|
+
|
283
|
+
class MedNeXtOutBlock(nn.Module):
|
284
|
+
"""
|
285
|
+
MedNeXtOutBlock class for the output block in the MedNeXt model.
|
286
|
+
|
287
|
+
Args:
|
288
|
+
in_channels (int): Number of input channels.
|
289
|
+
n_classes (int): Number of output classes.
|
290
|
+
dim (str): Dimension of the input. Can be "2d" or "3d".
|
291
|
+
"""
|
292
|
+
|
293
|
+
def __init__(self, in_channels, n_classes, dim):
|
294
|
+
super().__init__()
|
295
|
+
|
296
|
+
conv = get_conv_layer(spatial_dim=2 if dim == "2d" else 3, transpose=True)
|
297
|
+
self.conv_out = conv(in_channels, n_classes, kernel_size=1)
|
298
|
+
|
299
|
+
def forward(self, x):
|
300
|
+
"""
|
301
|
+
Forward pass of the MedNeXtOutBlock.
|
302
|
+
|
303
|
+
Args:
|
304
|
+
x (torch.Tensor): Input tensor.
|
305
|
+
|
306
|
+
Returns:
|
307
|
+
torch.Tensor: Output tensor.
|
308
|
+
"""
|
309
|
+
return self.conv_out(x)
|
monai/networks/nets/__init__.py
CHANGED
@@ -53,6 +53,25 @@ from .fullyconnectednet import FullyConnectedNet, VarFullyConnectedNet
|
|
53
53
|
from .generator import Generator
|
54
54
|
from .highresnet import HighResBlock, HighResNet
|
55
55
|
from .hovernet import Hovernet, HoVernet, HoVerNet, HoverNet
|
56
|
+
from .mednext import (
|
57
|
+
MedNeXt,
|
58
|
+
MedNext,
|
59
|
+
MedNextB,
|
60
|
+
MedNeXtB,
|
61
|
+
MedNextBase,
|
62
|
+
MedNextL,
|
63
|
+
MedNeXtL,
|
64
|
+
MedNeXtLarge,
|
65
|
+
MedNextLarge,
|
66
|
+
MedNextM,
|
67
|
+
MedNeXtM,
|
68
|
+
MedNeXtMedium,
|
69
|
+
MedNextMedium,
|
70
|
+
MedNextS,
|
71
|
+
MedNeXtS,
|
72
|
+
MedNeXtSmall,
|
73
|
+
MedNextSmall,
|
74
|
+
)
|
56
75
|
from .milmodel import MILModel
|
57
76
|
from .netadapter import NetAdapter
|
58
77
|
from .patchgan_discriminator import MultiScalePatchDiscriminator, PatchDiscriminator
|