monai-weekly 1.4.dev2437__py3-none-any.whl → 1.4.dev2439__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (57) hide show
  1. monai/__init__.py +2 -1
  2. monai/_version.py +3 -3
  3. monai/bundle/scripts.py +2 -1
  4. monai/bundle/workflows.py +3 -4
  5. monai/config/__init__.py +0 -1
  6. monai/config/deviceconfig.py +0 -10
  7. monai/data/image_reader.py +1 -1
  8. monai/engines/evaluator.py +2 -2
  9. monai/engines/trainer.py +1 -2
  10. monai/engines/utils.py +1 -2
  11. monai/engines/workflow.py +1 -2
  12. monai/handlers/__init__.py +1 -1
  13. monai/handlers/checkpoint_loader.py +1 -2
  14. monai/handlers/checkpoint_saver.py +1 -2
  15. monai/handlers/classification_saver.py +1 -1
  16. monai/handlers/decollate_batch.py +2 -2
  17. monai/handlers/earlystop_handler.py +1 -2
  18. monai/handlers/garbage_collector.py +1 -2
  19. monai/handlers/ignite_metric.py +1 -24
  20. monai/handlers/logfile_handler.py +1 -2
  21. monai/handlers/lr_schedule_handler.py +1 -2
  22. monai/handlers/metric_logger.py +1 -2
  23. monai/handlers/metrics_saver.py +1 -1
  24. monai/handlers/mlflow_handler.py +1 -2
  25. monai/handlers/nvtx_handlers.py +1 -2
  26. monai/handlers/parameter_scheduler.py +1 -2
  27. monai/handlers/postprocessing.py +1 -2
  28. monai/handlers/probability_maps.py +2 -2
  29. monai/handlers/smartcache_handler.py +1 -2
  30. monai/handlers/stats_handler.py +1 -2
  31. monai/handlers/tensorboard_handlers.py +1 -2
  32. monai/handlers/trt_handler.py +1 -2
  33. monai/handlers/utils.py +2 -2
  34. monai/handlers/validation_handler.py +1 -2
  35. monai/losses/dice.py +1 -16
  36. monai/networks/blocks/patchembedding.py +1 -7
  37. monai/networks/nets/hovernet.py +1 -2
  38. monai/networks/nets/unet.py +0 -3
  39. monai/networks/nets/unetr.py +1 -8
  40. monai/networks/nets/vit.py +0 -8
  41. monai/networks/nets/vitautoenc.py +1 -8
  42. monai/networks/nets/voxelmorph.py +0 -5
  43. monai/transforms/adaptors.py +0 -5
  44. monai/transforms/intensity/array.py +1 -1
  45. monai/transforms/utils.py +2 -1
  46. monai/utils/__init__.py +3 -3
  47. monai/utils/dist.py +1 -1
  48. monai/utils/enums.py +30 -34
  49. monai/utils/jupyter_utils.py +1 -1
  50. monai/utils/misc.py +1 -1
  51. monai/utils/module.py +0 -24
  52. {monai_weekly-1.4.dev2437.dist-info → monai_weekly-1.4.dev2439.dist-info}/METADATA +1 -1
  53. {monai_weekly-1.4.dev2437.dist-info → monai_weekly-1.4.dev2439.dist-info}/RECORD +56 -57
  54. {monai_weekly-1.4.dev2437.dist-info → monai_weekly-1.4.dev2439.dist-info}/WHEEL +1 -1
  55. monai/utils/aliases.py +0 -103
  56. {monai_weekly-1.4.dev2437.dist-info → monai_weekly-1.4.dev2439.dist-info}/LICENSE +0 -0
  57. {monai_weekly-1.4.dev2437.dist-info → monai_weekly-1.4.dev2439.dist-info}/top_level.txt +0 -0
@@ -18,7 +18,7 @@ import torch.nn as nn
18
18
  from monai.networks.blocks.dynunet_block import UnetOutBlock
19
19
  from monai.networks.blocks.unetr_block import UnetrBasicBlock, UnetrPrUpBlock, UnetrUpBlock
20
20
  from monai.networks.nets.vit import ViT
21
- from monai.utils import deprecated_arg, ensure_tuple_rep
21
+ from monai.utils import ensure_tuple_rep
22
22
 
23
23
 
24
24
  class UNETR(nn.Module):
@@ -27,9 +27,6 @@ class UNETR(nn.Module):
27
27
  UNETR: Transformers for 3D Medical Image Segmentation <https://arxiv.org/abs/2103.10504>"
28
28
  """
29
29
 
30
- @deprecated_arg(
31
- name="pos_embed", since="1.2", removed="1.4", new_name="proj_type", msg_suffix="please use `proj_type` instead."
32
- )
33
30
  def __init__(
34
31
  self,
35
32
  in_channels: int,
@@ -39,7 +36,6 @@ class UNETR(nn.Module):
39
36
  hidden_size: int = 768,
40
37
  mlp_dim: int = 3072,
41
38
  num_heads: int = 12,
42
- pos_embed: str = "conv",
43
39
  proj_type: str = "conv",
44
40
  norm_name: tuple | str = "instance",
45
41
  conv_block: bool = True,
@@ -67,9 +63,6 @@ class UNETR(nn.Module):
67
63
  qkv_bias: apply the bias term for the qkv linear layer in self attention block. Defaults to False.
68
64
  save_attn: to make accessible the attention in self attention block. Defaults to False.
69
65
 
70
- .. deprecated:: 1.4
71
- ``pos_embed`` is deprecated in favor of ``proj_type``.
72
-
73
66
  Examples::
74
67
 
75
68
  # for single channel input 4-channel output with image size of (96,96,96), feature size of 32 and batch norm
@@ -18,7 +18,6 @@ import torch.nn as nn
18
18
 
19
19
  from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
20
20
  from monai.networks.blocks.transformerblock import TransformerBlock
21
- from monai.utils import deprecated_arg
22
21
 
23
22
  __all__ = ["ViT"]
24
23
 
@@ -31,9 +30,6 @@ class ViT(nn.Module):
31
30
  ViT supports Torchscript but only works for Pytorch after 1.8.
32
31
  """
33
32
 
34
- @deprecated_arg(
35
- name="pos_embed", since="1.2", removed="1.4", new_name="proj_type", msg_suffix="please use `proj_type` instead."
36
- )
37
33
  def __init__(
38
34
  self,
39
35
  in_channels: int,
@@ -43,7 +39,6 @@ class ViT(nn.Module):
43
39
  mlp_dim: int = 3072,
44
40
  num_layers: int = 12,
45
41
  num_heads: int = 12,
46
- pos_embed: str = "conv",
47
42
  proj_type: str = "conv",
48
43
  pos_embed_type: str = "learnable",
49
44
  classification: bool = False,
@@ -75,9 +70,6 @@ class ViT(nn.Module):
75
70
  qkv_bias (bool, optional): apply bias to the qkv linear layer in self attention block. Defaults to False.
76
71
  save_attn (bool, optional): to make accessible the attention in self attention block. Defaults to False.
77
72
 
78
- .. deprecated:: 1.4
79
- ``pos_embed`` is deprecated in favor of ``proj_type``.
80
-
81
73
  Examples::
82
74
 
83
75
  # for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone
@@ -20,7 +20,7 @@ import torch.nn as nn
20
20
  from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
21
21
  from monai.networks.blocks.transformerblock import TransformerBlock
22
22
  from monai.networks.layers import Conv
23
- from monai.utils import deprecated_arg, ensure_tuple_rep, is_sqrt
23
+ from monai.utils import ensure_tuple_rep, is_sqrt
24
24
 
25
25
  __all__ = ["ViTAutoEnc"]
26
26
 
@@ -33,9 +33,6 @@ class ViTAutoEnc(nn.Module):
33
33
  Modified to also give same dimension outputs as the input size of the image
34
34
  """
35
35
 
36
- @deprecated_arg(
37
- name="pos_embed", since="1.2", removed="1.4", new_name="proj_type", msg_suffix="please use `proj_type` instead."
38
- )
39
36
  def __init__(
40
37
  self,
41
38
  in_channels: int,
@@ -47,7 +44,6 @@ class ViTAutoEnc(nn.Module):
47
44
  mlp_dim: int = 3072,
48
45
  num_layers: int = 12,
49
46
  num_heads: int = 12,
50
- pos_embed: str = "conv",
51
47
  proj_type: str = "conv",
52
48
  dropout_rate: float = 0.0,
53
49
  spatial_dims: int = 3,
@@ -71,9 +67,6 @@ class ViTAutoEnc(nn.Module):
71
67
  qkv_bias: apply bias to the qkv linear layer in self attention block. Defaults to False.
72
68
  save_attn: to make accessible the attention in self attention block. Defaults to False. Defaults to False.
73
69
 
74
- .. deprecated:: 1.4
75
- ``pos_embed`` is deprecated in favor of ``proj_type``.
76
-
77
70
  Examples::
78
71
 
79
72
  # for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone
@@ -21,13 +21,10 @@ from monai.networks.blocks.convolutions import Convolution
21
21
  from monai.networks.blocks.upsample import UpSample
22
22
  from monai.networks.blocks.warp import DVF2DDF, Warp
23
23
  from monai.networks.layers.simplelayers import SkipConnection
24
- from monai.utils import alias, export
25
24
 
26
25
  __all__ = ["VoxelMorphUNet", "voxelmorphunet", "VoxelMorph", "voxelmorph"]
27
26
 
28
27
 
29
- @export("monai.networks.nets")
30
- @alias("voxelmorphunet")
31
28
  class VoxelMorphUNet(nn.Module):
32
29
  """
33
30
  The backbone network used in VoxelMorph. See :py:class:`monai.networks.nets.VoxelMorph` for more details.
@@ -340,8 +337,6 @@ class VoxelMorphUNet(nn.Module):
340
337
  voxelmorphunet = VoxelMorphUNet
341
338
 
342
339
 
343
- @export("monai.networks.nets")
344
- @alias("voxelmorph")
345
340
  class VoxelMorph(nn.Module):
346
341
  """
347
342
  A re-implementation of VoxelMorph framework for medical image registration as described in
@@ -125,12 +125,9 @@ from __future__ import annotations
125
125
 
126
126
  from typing import Callable
127
127
 
128
- from monai.utils import export as _monai_export
129
-
130
128
  __all__ = ["adaptor", "apply_alias", "to_kwargs", "FunctionSignature"]
131
129
 
132
130
 
133
- @_monai_export("monai.transforms")
134
131
  def adaptor(function, outputs, inputs=None):
135
132
 
136
133
  def must_be_types_or_none(variable_name, variable, types):
@@ -215,7 +212,6 @@ def adaptor(function, outputs, inputs=None):
215
212
  return _inner
216
213
 
217
214
 
218
- @_monai_export("monai.transforms")
219
215
  def apply_alias(fn, name_map):
220
216
 
221
217
  def _inner(data):
@@ -236,7 +232,6 @@ def apply_alias(fn, name_map):
236
232
  return _inner
237
233
 
238
234
 
239
- @_monai_export("monai.transforms")
240
235
  def to_kwargs(fn):
241
236
 
242
237
  def _inner(data):
@@ -1411,7 +1411,7 @@ class ScaleIntensityRangePercentiles(Transform):
1411
1411
  else:
1412
1412
  img_t = self._normalize(img=img_t)
1413
1413
 
1414
- return convert_to_dst_type(img_t, dst=img)[0]
1414
+ return convert_to_dst_type(img_t, dst=img, dtype=self.dtype)[0]
1415
1415
 
1416
1416
 
1417
1417
  class MaskIntensity(Transform):
monai/transforms/utils.py CHANGED
@@ -582,7 +582,8 @@ def weighted_patch_samples(
582
582
  if not v[-1] or not isfinite(v[-1]) or v[-1] < 0: # uniform sampling
583
583
  idx = r_state.randint(0, len(v), size=n_samples)
584
584
  else:
585
- r, *_ = convert_to_dst_type(r_state.random(n_samples), v)
585
+ r_samples = r_state.random(n_samples)
586
+ r, *_ = convert_to_dst_type(r_samples, v, dtype=r_samples.dtype)
586
587
  idx = searchsorted(v, r * v[-1], right=True) # type: ignore
587
588
  idx, *_ = convert_to_dst_type(idx, v, dtype=torch.int) # type: ignore
588
589
  # compensate 'valid' mode
monai/utils/__init__.py CHANGED
@@ -11,8 +11,6 @@
11
11
 
12
12
  from __future__ import annotations
13
13
 
14
- # have to explicitly bring these in here to resolve circular import issues
15
- from .aliases import alias, resolve_name
16
14
  from .component_store import ComponentStore
17
15
  from .decorators import MethodReplacer, RestartGenerator
18
16
  from .deprecate_utils import DeprecatedError, deprecated, deprecated_arg, deprecated_arg_default
@@ -40,6 +38,7 @@ from .enums import (
40
38
  GridSamplePadMode,
41
39
  HoVerNetBranch,
42
40
  HoVerNetMode,
41
+ IgniteInfo,
43
42
  InterpolateMode,
44
43
  JITMetadataKeys,
45
44
  LazyAttr,
@@ -109,7 +108,6 @@ from .module import (
109
108
  allow_missing_reference,
110
109
  damerau_levenshtein_distance,
111
110
  exact_version,
112
- export,
113
111
  get_full_type_name,
114
112
  get_package_version,
115
113
  get_torch_version_tuple,
@@ -153,3 +151,5 @@ from .type_conversion import (
153
151
  get_numpy_dtype_from_string,
154
152
  get_torch_dtype_from_string,
155
153
  )
154
+
155
+ # have to explicitly bring these in here to resolve circular import issues
monai/utils/dist.py CHANGED
@@ -24,7 +24,7 @@ from typing import overload
24
24
  import torch
25
25
  import torch.distributed as dist
26
26
 
27
- from monai.config import IgniteInfo
27
+ from monai.utils.enums import IgniteInfo
28
28
  from monai.utils.module import min_version, optional_import
29
29
 
30
30
  idist, has_ignite = optional_import("ignite", IgniteInfo.OPT_IMPORT_VERSION, min_version, "distributed")
monai/utils/enums.py CHANGED
@@ -15,8 +15,6 @@ import random
15
15
  from enum import Enum
16
16
  from typing import TYPE_CHECKING
17
17
 
18
- from monai.config import IgniteInfo
19
- from monai.utils import deprecated
20
18
  from monai.utils.module import min_version, optional_import
21
19
 
22
20
  __all__ = [
@@ -56,13 +54,13 @@ __all__ = [
56
54
  "DataStatsKeys",
57
55
  "ImageStatsKeys",
58
56
  "LabelStatsKeys",
59
- "AlgoEnsembleKeys",
60
57
  "HoVerNetMode",
61
58
  "HoVerNetBranch",
62
59
  "LazyAttr",
63
60
  "BundleProperty",
64
61
  "BundlePropertyConfig",
65
62
  "AlgoKeys",
63
+ "IgniteInfo",
66
64
  ]
67
65
 
68
66
 
@@ -91,14 +89,6 @@ class StrEnum(str, Enum):
91
89
  return self.value
92
90
 
93
91
 
94
- if TYPE_CHECKING:
95
- from ignite.engine import EventEnum
96
- else:
97
- EventEnum, _ = optional_import(
98
- "ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "EventEnum", as_type="base"
99
- )
100
-
101
-
102
92
  class NumpyPadMode(StrEnum):
103
93
  """
104
94
  See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html
@@ -615,17 +605,6 @@ class LabelStatsKeys(StrEnum):
615
605
  LABEL_NCOMP = "ncomponents"
616
606
 
617
607
 
618
- @deprecated(since="1.2", removed="1.4", msg_suffix="please use `AlgoKeys` instead.")
619
- class AlgoEnsembleKeys(StrEnum):
620
- """
621
- Default keys for Mixed Ensemble
622
- """
623
-
624
- ID = "identifier"
625
- ALGO = "infer_algo"
626
- SCORE = "best_metric"
627
-
628
-
629
608
  class HoVerNetMode(StrEnum):
630
609
  """
631
610
  Modes for HoVerNet model:
@@ -730,6 +709,35 @@ class AdversarialKeys(StrEnum):
730
709
  DISCRIMINATOR_LOSS = "discriminator_loss"
731
710
 
732
711
 
712
+ class OrderingType(StrEnum):
713
+ RASTER_SCAN = "raster_scan"
714
+ S_CURVE = "s_curve"
715
+ RANDOM = "random"
716
+
717
+
718
+ class OrderingTransformations(StrEnum):
719
+ ROTATE_90 = "rotate_90"
720
+ TRANSPOSE = "transpose"
721
+ REFLECT = "reflect"
722
+
723
+
724
+ class IgniteInfo(StrEnum):
725
+ """
726
+ Config information of the PyTorch ignite package.
727
+
728
+ """
729
+
730
+ OPT_IMPORT_VERSION = "0.4.4"
731
+
732
+
733
+ if TYPE_CHECKING:
734
+ from ignite.engine import EventEnum
735
+ else:
736
+ EventEnum, _ = optional_import(
737
+ "ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "EventEnum", as_type="base"
738
+ )
739
+
740
+
733
741
  class AdversarialIterationEvents(EventEnum):
734
742
  """
735
743
  Keys used to define events as used in the AdversarialTrainer.
@@ -746,15 +754,3 @@ class AdversarialIterationEvents(EventEnum):
746
754
  DISCRIMINATOR_LOSS_COMPLETED = "discriminator_loss_completed"
747
755
  DISCRIMINATOR_BACKWARD_COMPLETED = "discriminator_backward_completed"
748
756
  DISCRIMINATOR_MODEL_COMPLETED = "discriminator_model_completed"
749
-
750
-
751
- class OrderingType(StrEnum):
752
- RASTER_SCAN = "raster_scan"
753
- S_CURVE = "s_curve"
754
- RANDOM = "random"
755
-
756
-
757
- class OrderingTransformations(StrEnum):
758
- ROTATE_90 = "rotate_90"
759
- TRANSPOSE = "transpose"
760
- REFLECT = "reflect"
@@ -24,7 +24,7 @@ from typing import TYPE_CHECKING, Any
24
24
  import numpy as np
25
25
  import torch
26
26
 
27
- from monai.config import IgniteInfo
27
+ from monai.utils import IgniteInfo
28
28
  from monai.utils.module import min_version, optional_import
29
29
 
30
30
  try:
monai/utils/misc.py CHANGED
@@ -887,7 +887,7 @@ def run_cmd(cmd_list: list[str], **kwargs: Any) -> subprocess.CompletedProcess:
887
887
  if kwargs.pop("run_cmd_verbose", False):
888
888
  import monai
889
889
 
890
- monai.apps.utils.get_logger("run_cmd").info(f"{cmd_list}")
890
+ monai.apps.utils.get_logger("run_cmd").info(f"{cmd_list}") # type: ignore[attr-defined]
891
891
  try:
892
892
  return subprocess.run(cmd_list, **kwargs)
893
893
  except subprocess.CalledProcessError as e:
monai/utils/module.py CHANGED
@@ -43,13 +43,11 @@ __all__ = [
43
43
  "InvalidPyTorchVersionError",
44
44
  "OptionalImportError",
45
45
  "exact_version",
46
- "export",
47
46
  "damerau_levenshtein_distance",
48
47
  "look_up_option",
49
48
  "min_version",
50
49
  "optional_import",
51
50
  "require_pkg",
52
- "load_submodules",
53
51
  "instantiate",
54
52
  "get_full_type_name",
55
53
  "get_package_version",
@@ -172,28 +170,6 @@ def damerau_levenshtein_distance(s1: str, s2: str) -> int:
172
170
  return d[string_1_length - 1, string_2_length - 1]
173
171
 
174
172
 
175
- def export(modname):
176
- """
177
- Make the decorated object a member of the named module. This will also add the object under its aliases if it has
178
- a `__aliases__` member, thus this decorator should be before the `alias` decorator to pick up those names. Alias
179
- names which conflict with package names or existing members will be ignored.
180
- """
181
-
182
- def _inner(obj):
183
- mod = import_module(modname)
184
- if not hasattr(mod, obj.__name__):
185
- setattr(mod, obj.__name__, obj)
186
-
187
- # add the aliases for `obj` to the target module
188
- for alias in getattr(obj, "__aliases__", ()):
189
- if not hasattr(mod, alias):
190
- setattr(mod, alias, obj)
191
-
192
- return obj
193
-
194
- return _inner
195
-
196
-
197
173
  def load_submodules(
198
174
  basemod: ModuleType, load_all: bool = True, exclude_pattern: str = "(.*[tT]est.*)|(_.*)"
199
175
  ) -> tuple[list[ModuleType], list[str]]:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: monai-weekly
3
- Version: 1.4.dev2437
3
+ Version: 1.4.dev2439
4
4
  Summary: AI Toolkit for Healthcare Imaging
5
5
  Home-page: https://monai.io/
6
6
  Author: MONAI Consortium
@@ -1,5 +1,5 @@
1
- monai/__init__.py,sha256=ybAA90_dwrruvsd8OCJFen2t9_jJcojSRt1i7gauQrM,4094
2
- monai/_version.py,sha256=BwqSNIsNCtbzDntVuSj-HLo8AH_S4RPdX7rKN4KVN2s,503
1
+ monai/__init__.py,sha256=CmkgY5g-rxGpBMHr6uWjyQrAbg8kqEIBMmfRy0M5nRA,4095
2
+ monai/_version.py,sha256=NNobIKI9e8RMOS96iH0hSWqMTzcTLl2Vv0qCGKdkDlk,503
3
3
  monai/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  monai/_extensions/__init__.py,sha256=NEBPreRhQ8H9gVvgrLr_y52_TmqB96u_u4VQmeNT93I,642
5
5
  monai/_extensions/loader.py,sha256=7SiKw36q-nOzH8CRbBurFrz7GM40GCu7rc93Tm8XpnI,3643
@@ -114,11 +114,11 @@ monai/bundle/config_item.py,sha256=rMjXSGkjJZdi04BwSHwCcIwzIb_TflmC3xDhC3SVJRs,1
114
114
  monai/bundle/config_parser.py,sha256=cGyEn-cqNk0rEEZ1Qiv6UydmIDvtWZcMVljyfVm5i50,23025
115
115
  monai/bundle/properties.py,sha256=iN3K4FVmN9ny1Hw9p5j7_ULcCdSD8PmrR7qXxbNz49k,11582
116
116
  monai/bundle/reference_resolver.py,sha256=aBw3ML7B_YsiFUNl_mcRYPry1UbrEIK0R39A0zFw8kI,16463
117
- monai/bundle/scripts.py,sha256=-_mYM017PEkSG0UjSwcSMi6nTAo2YzLvEn5FK5p37pU,89132
117
+ monai/bundle/scripts.py,sha256=ziTH32hd2A00c1wzXzAe2cttCEQtZoDqDx1bCDI1TR0,89136
118
118
  monai/bundle/utils.py,sha256=t-22uFvLn7Yy-dr1v1U33peNOxgAmU4TJiGAbsBrUKs,10108
119
- monai/bundle/workflows.py,sha256=VMuBTkk6DGsnGRLFzNfVUzgy8UqUReluUlIPUaxODPQ,24765
120
- monai/config/__init__.py,sha256=CN28CfTdsp301gv8YXfVvkbztCfbAqrLKrJi_C8oP9s,1048
121
- monai/config/deviceconfig.py,sha256=3EU1Zi6yD_bxEAeHfzjbslEjq6vOvxNG6o9dxKUiEvc,10315
119
+ monai/bundle/workflows.py,sha256=KADIppCZY6jCDvyCH2PmJm0Q-6xwCnB7x7KjFfRP8LY,24655
120
+ monai/config/__init__.py,sha256=x7Had67mmng8xKkLDKrrJwqFW3ohlhrJ7iJ_rdvewX8,1032
121
+ monai/config/deviceconfig.py,sha256=T-slMfnvHmXYZqcQJcqXxTz1DYFGD3mKnnAUZSVa6C0,10172
122
122
  monai/config/type_definitions.py,sha256=0fAuI-_uX2Ac_33bgDVXKmBSl-fJNFcsOqBqYV16fhk,3485
123
123
  monai/data/__init__.py,sha256=loDwAMF14hb4HS04SwukoIchIfU6iGY-xPrJVGyVwBo,5167
124
124
  monai/data/box_utils.py,sha256=YbG6lOoYwUGmwcNmoKzq2xnNTbYA4LMkHmfsqteopCg,50102
@@ -131,7 +131,7 @@ monai/data/fft_utils.py,sha256=in9Zu8hC4oSVzuA-Zl236X6EkvgFka0RXdOxgvdGkv0,4448
131
131
  monai/data/folder_layout.py,sha256=IsHW1-Bkupn_T8r6MgFTIJQh5HwCg0xQwOKmgBtl0gE,6344
132
132
  monai/data/grid_dataset.py,sha256=O0gHf3BgrisH1erOMZNSpoIut92mydnNpzGYWnBKg4U,19483
133
133
  monai/data/image_dataset.py,sha256=OhNJ3awauWtqsDhefIGDw3UYGF3RoleeNUPdJOKg3kI,7008
134
- monai/data/image_reader.py,sha256=KZCnJU1_192hMaZtlrIZKMHI-Ua7DlzSApMQOLvixXA,61774
134
+ monai/data/image_reader.py,sha256=XDkYVWQN_eHoMI1iFFWN8ICI0x9AxKSc8bGSavHskfs,61776
135
135
  monai/data/image_writer.py,sha256=rH6vboPFkX4ziN3lnrmK6AzAOQYI9tEiOJb7Al2tj-8,39856
136
136
  monai/data/iterable_dataset.py,sha256=A0L5jaxwnfgProBj96tlT160esI21yutnTf3a4c29Ms,13100
137
137
  monai/data/itk_torch_bridge.py,sha256=3th-B3tJuJE22JFfOUgGeTMOPh1czJEiSccFyn_Ob0w,14461
@@ -148,10 +148,10 @@ monai/data/video_dataset.py,sha256=mMTZCkgAx_BBoF4HHWcmEuT9zoNoUVPFtPeYYt76t-A,9
148
148
  monai/data/wsi_datasets.py,sha256=Mih4G_rzTQC0Ts8TobnNNXoyCxOAhy0rFqpREDAENWc,18659
149
149
  monai/data/wsi_reader.py,sha256=yVbgl44bS9xF0wsr_ZeLwaljMlTOrtjVTpYKykydEMU,49508
150
150
  monai/engines/__init__.py,sha256=oV0zH5n8qPdCCNZCqLqN4Z7iqADouDtZmtswWQoZWOk,1094
151
- monai/engines/evaluator.py,sha256=me4ay5X_17TGXrFBb9td2i38Vam7n7RofJNyqo_aB7E,26934
152
- monai/engines/trainer.py,sha256=Dnv_jI7uzgMvZzKzvWUS4WJ7brotD2TnI3GF2vhrcfo,38445
153
- monai/engines/utils.py,sha256=1OoDZbsIL6R_j5cz4c3ZCQ90Z1QUh8XMgh8guzf5CmQ,15656
154
- monai/engines/workflow.py,sha256=EAWMehQz28o-fX8MKSVBjhI1YAM7-Gt-w1HfzcMl4gI,15250
151
+ monai/engines/evaluator.py,sha256=gCWZ7QB1DjTeHV9_btHbwR2pew33rxFYOAJ5nPVJfIQ,26934
152
+ monai/engines/trainer.py,sha256=45aOJ6rhYGgh1awfaNq-ATbaD7ZH8o_yXykyqBcj7q8,38421
153
+ monai/engines/utils.py,sha256=apQxzU4GxaeHgbNN5Qa6POBuOD2XIMCVzy8DlMcqB1o,15632
154
+ monai/engines/workflow.py,sha256=S4DCLBSndcaM6LDb6xS-gTL8xCs8fiVejb-8O-pLKeQ,15226
155
155
  monai/fl/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
156
156
  monai/fl/client/__init__.py,sha256=Wnkcf-Guhi-d29eAH0p51jz1Tn9WSVM4UUGbbb9SAqQ,725
157
157
  monai/fl/client/client_algo.py,sha256=vetQbSNmuvJRBEcu0AKM96gKYbkSXlu4HSriqK7wiiU,5098
@@ -160,39 +160,39 @@ monai/fl/utils/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,57
160
160
  monai/fl/utils/constants.py,sha256=OjMAE17niYqQh7nz45SC6CXvkMa4-XZsIuoHUHqP7W0,1784
161
161
  monai/fl/utils/exchange_object.py,sha256=q41trOwBdog_g3k_Eh2EFnLufHJ1mj7nGyQ-ShuW5Mo,3527
162
162
  monai/fl/utils/filters.py,sha256=InXplYes52JJqtsNbePAPPAYS8am_uRO7UkBHyYyJCo,1633
163
- monai/handlers/__init__.py,sha256=DDEga7fRfhZTn7T7ZDjK1XI6zcDsziTJLpM50wqwacY,2408
164
- monai/handlers/checkpoint_loader.py,sha256=d01Ab5RIMuP372M1rwarKpdhcIG01Vv7Z630iwb4PlY,7456
165
- monai/handlers/checkpoint_saver.py,sha256=NJljfsP_RbmeQvbI9g0B0hsPcV14vW37cljGRzLlXCY,16071
166
- monai/handlers/classification_saver.py,sha256=ujCzHyEN5lH-ZY_M5cN-J6s_JxByLkujxcTz2ZVxHow,7606
163
+ monai/handlers/__init__.py,sha256=laEkiuP-ew7UzuG89135uJvC73ocVbT0nQ_3xMLEhKc,2394
164
+ monai/handlers/checkpoint_loader.py,sha256=Y0qNBq5b-GJ-XOJNjuslegCpIGPZYOdNs3PxzNYCCm8,7432
165
+ monai/handlers/checkpoint_saver.py,sha256=z_w5HtNSeRM3QwHQIgQKqVodSYNy8dhL8KTBUzHuF0g,16047
166
+ monai/handlers/classification_saver.py,sha256=CNzdU9GrKj8KEC42jaBy2rEgpd3mqgz-YZg4dr61Jyg,7605
167
167
  monai/handlers/clearml_handlers.py,sha256=ce3ftDZ9B2dPrP_2xw0D5kFxDNJODKDuTvDMYm5uyoI,7518
168
168
  monai/handlers/confusion_matrix.py,sha256=KpdTV0ViWDRnvVUb58Lc4UBhGwyU_Pf5wTpSaSyVH3o,4006
169
- monai/handlers/decollate_batch.py,sha256=96TBuau203bHRT1fuunRIxExd6vBIfVeM_1UbzcHaus,4425
170
- monai/handlers/earlystop_handler.py,sha256=_Up0WwJ-WoKBpWeNVbLfm5sjPydQ64-zzE7ChVAAE4Y,5334
171
- monai/handlers/garbage_collector.py,sha256=6mG5eLi6Nm5PnuWyO7ka-t92Nw5RTSH0omSEqrmupVk,3645
169
+ monai/handlers/decollate_batch.py,sha256=-4hFPT4ZCiApbnUVplm8c6uQ326bKgPtkiYopjQRcTA,4425
170
+ monai/handlers/earlystop_handler.py,sha256=bwCswTyCzFpU23-ONFeg4X10BI3Vdtkzn5-a72M09H0,5310
171
+ monai/handlers/garbage_collector.py,sha256=JbyBjru1wB-G1CNMopQlegC81FH3W2GpuWngfUPut44,3621
172
172
  monai/handlers/hausdorff_distance.py,sha256=i-I2EWZrCpkojPR5EmqWCOiDCszujoe5RCZ4xUDajcc,3594
173
- monai/handlers/ignite_metric.py,sha256=nuXkHBEaR0ABkBMRcl0_3xcDNbCabTQXr7_GB5ZkKwE,7461
174
- monai/handlers/logfile_handler.py,sha256=9iUroCpfaP_YJu5mGHJ6CW53DoiYZ7F_XjhZwXw4a84,3931
175
- monai/handlers/lr_schedule_handler.py,sha256=jj-ukoR3p-m0LVs-AzPqn2On8GIj70PSIPNp9t-iiQY,3575
173
+ monai/handlers/ignite_metric.py,sha256=PSgjSPaJ7nOhaXDewTJucXDhkYVJhSz_qQ36qA-G7PM,6691
174
+ monai/handlers/logfile_handler.py,sha256=y-If8rStdD5lh_NZX68aTpSDbYGchGIf6f0VaWFPkBI,3907
175
+ monai/handlers/lr_schedule_handler.py,sha256=jEv1QnPkhwpQO1azFvzhL-us4ywP9kVmQb5man88evA,3551
176
176
  monai/handlers/mean_dice.py,sha256=aJmL9IEEJtWs65Et3HCe7S0JIe7J6z-Nc0BEQESy9sY,3785
177
177
  monai/handlers/mean_iou.py,sha256=-4vDqYx-Zd77PcR2-Wg6X-M35n13sMV5VysGiDCvjbQ,2841
178
- monai/handlers/metric_logger.py,sha256=IEXGngnGh75Mxt1w6Nd4Tau8qHQjyZFLGzoePteH1jM,5477
178
+ monai/handlers/metric_logger.py,sha256=Zk55yO5PlwM7WhHPelHPfv3WLuJycxLrtQMwjEJ_7FQ,5453
179
179
  monai/handlers/metrics_reloaded_handler.py,sha256=9JtfWeDvjrdKNMKpRJQBu0k6XGxg8hfOm6224sB4A6E,6195
180
- monai/handlers/metrics_saver.py,sha256=GPTaIeXi0noRyW2BQYQtazFfGyezmqSBAYWeAF-C5t0,8560
181
- monai/handlers/mlflow_handler.py,sha256=8feCVc7oyhV24jPftHpBs5BMt_E-22efcmZ0C-QC-LA,23233
182
- monai/handlers/nvtx_handlers.py,sha256=dBITb2hboynktwZNkRrlqM7STu7n3qXrdoC1-IogWc4,6819
180
+ monai/handlers/metrics_saver.py,sha256=ltXaaj3C4Vzv3VEWT4O7wlmuYs7JHi7qCkXXfVBgPb8,8559
181
+ monai/handlers/mlflow_handler.py,sha256=rq8qu3UPb4tMGTek146n2xmZ6b7LhI2SLRYxft8JNeA,23209
182
+ monai/handlers/nvtx_handlers.py,sha256=cD-nYVaJ7fUEUmr5zLU9-s867SqUwP64R3i4Rui5MGU,6795
183
183
  monai/handlers/panoptic_quality.py,sha256=Dr_cMANJne1Cvc_pnI33QAUMAVKbkO4NBfTFjedGZOE,3651
184
- monai/handlers/parameter_scheduler.py,sha256=UE0Lww8ZYyXcHq9N4TXoWmJWSQaYTwpLlLHDeq2p_UY,7119
185
- monai/handlers/postprocessing.py,sha256=kKJ4eaCxEMcVYK-Q8zLGjY0HL07QnhkZZ1rSIa4bzFI,3285
186
- monai/handlers/probability_maps.py,sha256=bASiWiAAKpyOXEL2rZlfLUbKmfK5co6KgxhA-SvS_sU,5336
184
+ monai/handlers/parameter_scheduler.py,sha256=JMVMEWnF0sUejynB_J_2fL9OKJT_s-ZbaYEucTeb1Hk,7095
185
+ monai/handlers/postprocessing.py,sha256=KlMl4kUKn0Z0VdiOFG7N_BxNIo7x9sm6yOc42mXGbR8,3261
186
+ monai/handlers/probability_maps.py,sha256=ggvgebTlx-r5BmcpiYu5MTF00AMtSMghRA8Orw9o7uI,5336
187
187
  monai/handlers/regression_metrics.py,sha256=PaL8AXLhl7Aw5C1_VSPIAt2C8H781ek_sPD_xFZgWPA,8457
188
188
  monai/handlers/roc_auc.py,sha256=0A_Y1bvRpkBY0l5HyTRKopUUupq0cMGubnqgflHXA2g,2744
189
- monai/handlers/smartcache_handler.py,sha256=OA6v4EC2geH419eBKSAGSb-XNxO_qSPmJ2fkh7TOv-s,3051
190
- monai/handlers/stats_handler.py,sha256=SyHXYnKXyQhaXDM08_yUU7gFQEICHrnLYtOl7vcmA3s,14126
189
+ monai/handlers/smartcache_handler.py,sha256=PwWmLYKBWFTkOdcQXlML18AESWtQnPJl9Ici9djvdTE,3027
190
+ monai/handlers/stats_handler.py,sha256=B2XOPadbLqUEknxF82MiZVWa1B2dseLXw6XRuHZMerg,14102
191
191
  monai/handlers/surface_distance.py,sha256=HKQrRGy08uWNr9X-mJ1IhMwV_ndZOijEJS7TYL9KQsg,3327
192
- monai/handlers/tensorboard_handlers.py,sha256=FvuK2Ymc9oBoGJQYUcUxBKVNU6a_I5agUXUUgNfIvYM,22615
193
- monai/handlers/trt_handler.py,sha256=6vrF70jwCrICGjB56RiQ7lg2NNyQl5ZbHx4V7Ygle1Q,2353
194
- monai/handlers/utils.py,sha256=IXdBBGlQ0rwBeTlFKE1br4Mq42zcAvFgSF7RPg-yAiU,10239
195
- monai/handlers/validation_handler.py,sha256=8UicJSkRhJZh7RuK07isiLii_6WpN3AclrbqtV4ny6M,3698
192
+ monai/handlers/tensorboard_handlers.py,sha256=3nju_xEJeOpCtObrIfuWc1u8dSRwjs-26tyh06FP8wg,22591
193
+ monai/handlers/trt_handler.py,sha256=uWFdgC8QKRkcNwWfKIbQMdK6-MX_1ON0mKabeIn1ltI,2329
194
+ monai/handlers/utils.py,sha256=Ib1u-PLrtIkiLqTfREnrCWpN4af1btdNzkyMZuuuYyU,10239
195
+ monai/handlers/validation_handler.py,sha256=NZO21c6zzXbmAgJZHkkdoZQSQIHwuxh94QD3PLUldGU,3674
196
196
  monai/inferers/__init__.py,sha256=K74t_RCeUPdEZvHzIPzVAwZ9DtmouLqhb3qDEmFBWs4,1107
197
197
  monai/inferers/inferer.py,sha256=aZwCmM6WGj49SHi_jIkQeGDstMz45frvM1Lomoeqzm4,92669
198
198
  monai/inferers/merger.py,sha256=Ch-qoGUVTTDWN9z_LXBRxElvyuZxOmuqAcecpg1xxAg,15566
@@ -204,7 +204,7 @@ monai/losses/barlow_twins.py,sha256=prDdaY0vXAXMuVDmc9Tv6svRZzNwKA0LdsmRaUmusiI,
204
204
  monai/losses/cldice.py,sha256=NeUVJuFjowlH90MSLtq8HJzhzLVwal_G7gaOyc1_5OY,6328
205
205
  monai/losses/contrastive.py,sha256=-SCvgQOA1JADQaFl7S4wEoIFtNd4uFkfTPlkMkky_LQ,3261
206
206
  monai/losses/deform.py,sha256=mBOvFgKyW1qw9267AZCd0h_xi10xvy_ybYfhzQzl5rI,9701
207
- monai/losses/dice.py,sha256=U0zSZzy_6Yf8xiuon6usR6M175-pq-ivRBESxIR41Ds,52323
207
+ monai/losses/dice.py,sha256=S4JKPybHN82JY26qIwqJTJovT3YHWbVQOwKB30bLViY,51475
208
208
  monai/losses/ds_loss.py,sha256=ts92Rc_YAkfb5WUUWxRTecpY32lVwC20pu7u-dJCgyY,3854
209
209
  monai/losses/focal_loss.py,sha256=OhAtxzAwZ1CoNGH1S2dQbG7iDyowYUqv64KXi0GgMhk,11772
210
210
  monai/losses/giou_loss.py,sha256=Mogq6fR0tO__Xj0Ul388QMEx03XrSS-Ue96i9ahY-uo,2795
@@ -262,7 +262,7 @@ monai/networks/blocks/feature_pyramid_network.py,sha256=_DeAy_lNnPqjNiJLcopjqe_P
262
262
  monai/networks/blocks/fft_utils_t.py,sha256=8bOvhLgP5nDLz8QwzD4XnRaxE9-tGba2-b_QDK8IWSs,8263
263
263
  monai/networks/blocks/localnet_block.py,sha256=b2-ZZvkMPphHJZYTbwEZDhqA-mMBSFM5WQOoohk_6W4,11456
264
264
  monai/networks/blocks/mlp.py,sha256=qw_jgyrYwoQ5WYBM1rtSSaO4C837ZbctoRKhh_BQQFI,3341
265
- monai/networks/blocks/patchembedding.py,sha256=yjbZg4WIuUpyQSD_r_ZBrZqs60lGZMXVK18oHVhR9Tw,9248
265
+ monai/networks/blocks/patchembedding.py,sha256=tp0coxpi70LcUk03HbnygFeCxcBv5bNHJbw1crIG_Js,8956
266
266
  monai/networks/blocks/pos_embed_utils.py,sha256=vFEQqxZ6UAmjcy_icFDL9EwjRHYXuIbWr1chWUJqO7g,4070
267
267
  monai/networks/blocks/regunet_block.py,sha256=1FLIwVBtk66II6xQ7Q4LMY8DP0rMmeftN7HuaEgnf3A,8825
268
268
  monai/networks/blocks/rel_pos_embedding.py,sha256=wuTJsk_NHSDX-3V0X9ctF99WIh2-SHLDbQxzrG7tz_4,2208
@@ -308,7 +308,7 @@ monai/networks/nets/flexible_unet.py,sha256=VN3cJQPMmY--TpZkuDwEWonPgJc4R3JKBwJC
308
308
  monai/networks/nets/fullyconnectednet.py,sha256=j5uo68qnYSxgH_sEMRh7s3QGNKFaJAIxmx8OixEv2Ig,7212
309
309
  monai/networks/nets/generator.py,sha256=q20EAl9N7Q56t78JiZaUEkPhYWyD02oqO0yekJCd9x0,6581
310
310
  monai/networks/nets/highresnet.py,sha256=1Mx8lR5K4sRXGWjspDAHaKq0WrX9Q7qz8CcBCKZxIXk,8883
311
- monai/networks/nets/hovernet.py,sha256=E831rgNN8SP1lui8-ffV7IUscDWvyTr-YTqXcpof878,28684
311
+ monai/networks/nets/hovernet.py,sha256=gQDeDGqCwjJACTPmQLAx9nPRBO_D65F-scx15w3Ho_Q,28645
312
312
  monai/networks/nets/milmodel.py,sha256=aUDgYJG0kS3p4nBW_dF7b4cWwuC31w3KIzmUzXA08HE,9813
313
313
  monai/networks/nets/netadapter.py,sha256=JtcME9pcg8ud4jHKZKM9fE-8leP2PQXgUIfKBdB0wcA,6102
314
314
  monai/networks/nets/patchgan_discriminator.py,sha256=yTT0on0lzlDwSu4B9McMqdxqu5xD7Ws9wCwEkxvJEu0,8620
@@ -326,14 +326,14 @@ monai/networks/nets/swin_unetr.py,sha256=nU_VgVsgPnXx5V_Wtceq1ZJR1XuB4vPCcFnbY5p
326
326
  monai/networks/nets/torchvision_fc.py,sha256=3g5PD7C1MSkQ8xndhnVd0b3aN8zfshT8uiFS0OHyQaY,6309
327
327
  monai/networks/nets/transchex.py,sha256=uA_RfTDfPhwA1ecAPZ9EDnMyJKn2tUMLEWdyB_rU2v0,15726
328
328
  monai/networks/nets/transformer.py,sha256=-nzl20Z5xdtn7xChOd_cRbbPVoPIFGVfTQw3fIEGMuE,6395
329
- monai/networks/nets/unet.py,sha256=riKWB8iEEgO4CIiVTOo532726HWWBfuBcIHeoLvvN0w,13627
330
- monai/networks/nets/unetr.py,sha256=wQC3mpn_jEcZb0RXef0ueTe4WGjmnZqQVKKdnemFjnc,8545
329
+ monai/networks/nets/unet.py,sha256=t2an-NZ8QRpWal6uh1WpxG1tbekKRDgQtpT7YeXWFvY,13543
330
+ monai/networks/nets/unetr.py,sha256=G67kjiBMz13MzP4eV8XK-GydSogMwgXaBMFDShF5sB8,8252
331
331
  monai/networks/nets/varautoencoder.py,sha256=Pd9BdXW1iVjmAVCZIc2ElGtSDAWRBaLwEKxLDicyxZI,6282
332
332
  monai/networks/nets/vista3d.py,sha256=vFpCG53JDCvgK-fz7VPZvo6-mv8Mp5AgBZu2QVu0ggM,43326
333
- monai/networks/nets/vit.py,sha256=SJ5MCJcVAQ2iTqkc1-AFF7oBgCkE7xcNr_ziGc8n_t8,6250
334
- monai/networks/nets/vitautoenc.py,sha256=tTX-JHNl2H4y9e5Wk9rrtR6i_ebJHq90O61DnbBFhek,6033
333
+ monai/networks/nets/vit.py,sha256=yEzFFQln5ieknnF8A1_ecB_c0SuOBBnrXPesm_kzVts,5934
334
+ monai/networks/nets/vitautoenc.py,sha256=vfQBWjTb0k7EY4uC76rmuOCIUUgeBvf_EIXBofCzVHQ,5740
335
335
  monai/networks/nets/vnet.py,sha256=zaJi5kSiTLAuFHThSZfhJvHP6zKh3oBWsTWG-328O_g,10820
336
- monai/networks/nets/voxelmorph.py,sha256=M6jzGn09wmTd54NeacHLWElug-Iu0ajPS_HtUaLyzDY,20811
336
+ monai/networks/nets/voxelmorph.py,sha256=Q5VQFLLKSFqhsG0Z8_72ZGfK1nA4kdCfFnGbqI6Eofg,20665
337
337
  monai/networks/nets/vqvae.py,sha256=Zf9fTL_rluhuJhH6gTNB6iiKRfwBxfuuyhCdU9TLmAk,18417
338
338
  monai/networks/schedulers/__init__.py,sha256=rPmrNvnt8Bh9D2omPMgDiGVuT1XVJlgtlWIlqA_sjb4,755
339
339
  monai/networks/schedulers/ddim.py,sha256=a01QajgWksTYsPxs4DuBzy59mE_PcyTJedd6VqJv5g0,14376
@@ -346,14 +346,14 @@ monai/optimizers/lr_scheduler.py,sha256=YPY5MWgCTmExuIOBsVJrgfErkCT1ELBekcH0XeRP
346
346
  monai/optimizers/novograd.py,sha256=dgjyM-WGqrEHsSKNdI3Lw1wJ2YNG3oKCYotfPsDBE80,5677
347
347
  monai/optimizers/utils.py,sha256=GVsJsZWO2aAP9IzwhXgca_9gUNHFClup6qG4ZFs42z4,4133
348
348
  monai/transforms/__init__.py,sha256=lyIf64v-I2soIjfK2RxOWS7_CIc-x6bRJHLI6UZ8yDs,16591
349
- monai/transforms/adaptors.py,sha256=jqh7cVvIj4h7-UndP7CNuwxgIUXWY_5kiMzjGC5jFBs,8950
349
+ monai/transforms/adaptors.py,sha256=LpYChldlOur-VFgu_nBIBze0J841-NWgf0UHvvHRNPU,8796
350
350
  monai/transforms/compose.py,sha256=zQa_hf8gIater3Bo_XW1IVYgX7aFa_Co6-BZPwoeaQw,37663
351
351
  monai/transforms/inverse.py,sha256=Wg8UnMJru41G3eHGipUemAWziHGU-qdd-Flfi3eOpeo,18746
352
352
  monai/transforms/inverse_batch_transform.py,sha256=fMbukZq2P99BhqqMuWZFJ9uboZ5dN61MBvvicwf40V0,7055
353
353
  monai/transforms/nvtx.py,sha256=1EKEXZIhTUFKoIrJmd_fevwrHwo731dVFUFJQFiOk3w,3386
354
354
  monai/transforms/traits.py,sha256=F8kmhnekTyaAdo8wIFjO3-uqpVtmFym3mNxbYbyvkFI,3563
355
355
  monai/transforms/transform.py,sha256=DqWyfuI-FDBxjqern33R6Ia1iAfHb3Kh56u-__tp1Kw,21614
356
- monai/transforms/utils.py,sha256=rqGsrUhmBDYDox5J-6UVBeVOxDwQyJ6huv58VYXc9iU,106449
356
+ monai/transforms/utils.py,sha256=SnTiyd-3Q5cNGDzATKTXIJpIeWmCg3LqBxWnyKUxk-8,106502
357
357
  monai/transforms/utils_create_transform_ims.py,sha256=QEJVHsCZX7ZxsBArk6NjgCzSZuuokf8l1uFqiUZBBys,31155
358
358
  monai/transforms/utils_morphological_ops.py,sha256=abaFYSvCfH4k7jk3R_YLtUxgwRYgsz6zj6sOEGM1K5w,6758
359
359
  monai/transforms/utils_pytorch_numpy_unification.py,sha256=PvNO1QeBLTcpLhvuO25ctGr2nIM4B0sTRvnA5TpxJ4Q,18855
@@ -363,7 +363,7 @@ monai/transforms/croppad/batch.py,sha256=5ukcYk3VCDpk62AL5Q_jTqpXmSNTlw0UCUhDeAB
363
363
  monai/transforms/croppad/dictionary.py,sha256=WOzj_PjmoB3zLEmtQlafb9-PWgXd-s5K7Z5Doc8Adns,60746
364
364
  monai/transforms/croppad/functional.py,sha256=iroD0XBaMG1Mox6-EotIh2nAUxJPrpIyUrHopc83Sug,12640
365
365
  monai/transforms/intensity/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
366
- monai/transforms/intensity/array.py,sha256=bhKIAMgJu-QMQA8df9QdyancMJMShOIOGHjE__4XdXo,121574
366
+ monai/transforms/intensity/array.py,sha256=SpG3u9LPuQxDk77lEvPC4-tH1tiOtacDDfcyQydIhkI,121592
367
367
  monai/transforms/intensity/dictionary.py,sha256=RXZeQG9dPvdvjoiWWlNkYec4NDWBxYXjfct4fywv1Ic,85059
368
368
  monai/transforms/io/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
369
369
  monai/transforms/io/array.py,sha256=z4aOxK44IhztN-LzG2uROYDwg_u1C6gcpx9ZH-ZhoVA,27482
@@ -394,16 +394,15 @@ monai/transforms/spatial/functional.py,sha256=IwS0witCqbGkyuxzu_R4Ztp90S0pg9hY1i
394
394
  monai/transforms/utility/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
395
395
  monai/transforms/utility/array.py,sha256=MCkoccxLStPX2e0bJv6WZzDsGE3Wwf1DaxU1MZwDp08,78086
396
396
  monai/transforms/utility/dictionary.py,sha256=bPO6qJcZwT_phtVpTLT0VvblGL-QnyYG1bYGIpAjOzk,78079
397
- monai/utils/__init__.py,sha256=_ey7G8xkthTk2OdQoFFglYFPlqL9cCxkS3flyb3TYTU,3779
398
- monai/utils/aliases.py,sha256=uBxkLudRfy3Rts9RZo4NDPGoq4e3Ymcaihk6lT92GFo,4096
397
+ monai/utils/__init__.py,sha256=9E59iRxectI0rD5_Loj-fnt24BnaDvPlPplu5jRFcFM,3743
399
398
  monai/utils/component_store.py,sha256=VMF7CtPu5Wi_eX_qFtm9iWo5kvoWFuCUIxdRzk90zZo,4498
400
399
  monai/utils/decorators.py,sha256=YRK5iEMdbc2INrWnBNDSMTaHge_0ezRf2b9yJGL-opg,3129
401
400
  monai/utils/deprecate_utils.py,sha256=gKeEV4MsI51qeQ5gci2me_C-0e-tDwa3VZzd3XPQqLk,14759
402
- monai/utils/dist.py,sha256=mVaKlBTQJdWAG910sh5pGLEbb_KhRAXV5cPz7amH88Y,8639
403
- monai/utils/enums.py,sha256=f__RhrrG4cxxzmICHnmM9riiCvsmUIIk9fYN12Q33lE,19700
404
- monai/utils/jupyter_utils.py,sha256=QqcKhJxzEf6YwM8Ik_HvfVDr7gNfrfzCXdzd2urEH8M,15651
405
- monai/utils/misc.py,sha256=GJIDxr42juFjnzUTvLtYndcpBQ-EDz6EVXIc7anBoNo,31380
406
- monai/utils/module.py,sha256=D9KWFrZ8sS2LrGaLzHnw9MMEbrPI9pHHfHc0XrTLob0,25105
401
+ monai/utils/dist.py,sha256=QUVRusnAdiySK_dnTrDWqxNMl4XU4pwzvlMaGsvVE3Y,8644
402
+ monai/utils/enums.py,sha256=ihvq2X9Z_cjmDKXhgHFLDcTJzWbi1AtLbbYSZC9iezI,19512
403
+ monai/utils/jupyter_utils.py,sha256=kQqfLTLAre3TLzXTt091X_XeWy5K0QKAcTuYlJ8BOag,15650
404
+ monai/utils/misc.py,sha256=4KCY-Kmlzjup3KE2bgJsjIItKdDMxXwA0_rH1ghHONE,31410
405
+ monai/utils/module.py,sha256=ICsVqQMV-069FuVwjCHm3d3hyvIOx9El17IXZ-2sfQk,24319
407
406
  monai/utils/nvtx.py,sha256=i9JBxR1uhW1ZCgLPLlTx8b907QlXkFzJyTBLMlFjhtU,6876
408
407
  monai/utils/ordering.py,sha256=0nlA5b5QpVCHbtiCbTC-YsqjTmjm0bub0IeJhGFBOes,8270
409
408
  monai/utils/profiling.py,sha256=V2_cSHgrcmVF48_G3nUi2-O6fnXsS89nSlb8jj58YLo,15937
@@ -417,8 +416,8 @@ monai/visualize/img2tensorboard.py,sha256=NnMcyfIFqX-jD7TBO3Rn02zt5uug79d_7pIIaV
417
416
  monai/visualize/occlusion_sensitivity.py,sha256=OQHEJLyIhB8zWqQsfKaX-1kvCjWFVYtLfS4dFC0nKFI,18160
418
417
  monai/visualize/utils.py,sha256=B-MhTVs7sQbIqYS3yPnpBwPw2K82rE2PBtGIfpwZtWM,9894
419
418
  monai/visualize/visualizer.py,sha256=qckyaMZCbezYUwE20k5yc-Pb7UozVavMDbrmyQwfYHY,1377
420
- monai_weekly-1.4.dev2437.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
421
- monai_weekly-1.4.dev2437.dist-info/METADATA,sha256=L7Wtqqc-Ha8EEDgmNpo8WygmcjWBMWNziqmd4cfZf1o,11172
422
- monai_weekly-1.4.dev2437.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
423
- monai_weekly-1.4.dev2437.dist-info/top_level.txt,sha256=UaNwRzLGORdus41Ip446s3bBfViLkdkDsXDo34J2P44,6
424
- monai_weekly-1.4.dev2437.dist-info/RECORD,,
419
+ monai_weekly-1.4.dev2439.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
420
+ monai_weekly-1.4.dev2439.dist-info/METADATA,sha256=P2ERflLdl70ZUYCzPV3aJB53ToRiUSYgnLWVeXJAr3k,11172
421
+ monai_weekly-1.4.dev2439.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
422
+ monai_weekly-1.4.dev2439.dist-info/top_level.txt,sha256=UaNwRzLGORdus41Ip446s3bBfViLkdkDsXDo34J2P44,6
423
+ monai_weekly-1.4.dev2439.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (74.1.2)
2
+ Generator: setuptools (75.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5