monai-weekly 1.4.dev2437__py3-none-any.whl → 1.4.dev2439__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- monai/__init__.py +2 -1
- monai/_version.py +3 -3
- monai/bundle/scripts.py +2 -1
- monai/bundle/workflows.py +3 -4
- monai/config/__init__.py +0 -1
- monai/config/deviceconfig.py +0 -10
- monai/data/image_reader.py +1 -1
- monai/engines/evaluator.py +2 -2
- monai/engines/trainer.py +1 -2
- monai/engines/utils.py +1 -2
- monai/engines/workflow.py +1 -2
- monai/handlers/__init__.py +1 -1
- monai/handlers/checkpoint_loader.py +1 -2
- monai/handlers/checkpoint_saver.py +1 -2
- monai/handlers/classification_saver.py +1 -1
- monai/handlers/decollate_batch.py +2 -2
- monai/handlers/earlystop_handler.py +1 -2
- monai/handlers/garbage_collector.py +1 -2
- monai/handlers/ignite_metric.py +1 -24
- monai/handlers/logfile_handler.py +1 -2
- monai/handlers/lr_schedule_handler.py +1 -2
- monai/handlers/metric_logger.py +1 -2
- monai/handlers/metrics_saver.py +1 -1
- monai/handlers/mlflow_handler.py +1 -2
- monai/handlers/nvtx_handlers.py +1 -2
- monai/handlers/parameter_scheduler.py +1 -2
- monai/handlers/postprocessing.py +1 -2
- monai/handlers/probability_maps.py +2 -2
- monai/handlers/smartcache_handler.py +1 -2
- monai/handlers/stats_handler.py +1 -2
- monai/handlers/tensorboard_handlers.py +1 -2
- monai/handlers/trt_handler.py +1 -2
- monai/handlers/utils.py +2 -2
- monai/handlers/validation_handler.py +1 -2
- monai/losses/dice.py +1 -16
- monai/networks/blocks/patchembedding.py +1 -7
- monai/networks/nets/hovernet.py +1 -2
- monai/networks/nets/unet.py +0 -3
- monai/networks/nets/unetr.py +1 -8
- monai/networks/nets/vit.py +0 -8
- monai/networks/nets/vitautoenc.py +1 -8
- monai/networks/nets/voxelmorph.py +0 -5
- monai/transforms/adaptors.py +0 -5
- monai/transforms/intensity/array.py +1 -1
- monai/transforms/utils.py +2 -1
- monai/utils/__init__.py +3 -3
- monai/utils/dist.py +1 -1
- monai/utils/enums.py +30 -34
- monai/utils/jupyter_utils.py +1 -1
- monai/utils/misc.py +1 -1
- monai/utils/module.py +0 -24
- {monai_weekly-1.4.dev2437.dist-info → monai_weekly-1.4.dev2439.dist-info}/METADATA +1 -1
- {monai_weekly-1.4.dev2437.dist-info → monai_weekly-1.4.dev2439.dist-info}/RECORD +56 -57
- {monai_weekly-1.4.dev2437.dist-info → monai_weekly-1.4.dev2439.dist-info}/WHEEL +1 -1
- monai/utils/aliases.py +0 -103
- {monai_weekly-1.4.dev2437.dist-info → monai_weekly-1.4.dev2439.dist-info}/LICENSE +0 -0
- {monai_weekly-1.4.dev2437.dist-info → monai_weekly-1.4.dev2439.dist-info}/top_level.txt +0 -0
monai/networks/nets/unetr.py
CHANGED
@@ -18,7 +18,7 @@ import torch.nn as nn
|
|
18
18
|
from monai.networks.blocks.dynunet_block import UnetOutBlock
|
19
19
|
from monai.networks.blocks.unetr_block import UnetrBasicBlock, UnetrPrUpBlock, UnetrUpBlock
|
20
20
|
from monai.networks.nets.vit import ViT
|
21
|
-
from monai.utils import
|
21
|
+
from monai.utils import ensure_tuple_rep
|
22
22
|
|
23
23
|
|
24
24
|
class UNETR(nn.Module):
|
@@ -27,9 +27,6 @@ class UNETR(nn.Module):
|
|
27
27
|
UNETR: Transformers for 3D Medical Image Segmentation <https://arxiv.org/abs/2103.10504>"
|
28
28
|
"""
|
29
29
|
|
30
|
-
@deprecated_arg(
|
31
|
-
name="pos_embed", since="1.2", removed="1.4", new_name="proj_type", msg_suffix="please use `proj_type` instead."
|
32
|
-
)
|
33
30
|
def __init__(
|
34
31
|
self,
|
35
32
|
in_channels: int,
|
@@ -39,7 +36,6 @@ class UNETR(nn.Module):
|
|
39
36
|
hidden_size: int = 768,
|
40
37
|
mlp_dim: int = 3072,
|
41
38
|
num_heads: int = 12,
|
42
|
-
pos_embed: str = "conv",
|
43
39
|
proj_type: str = "conv",
|
44
40
|
norm_name: tuple | str = "instance",
|
45
41
|
conv_block: bool = True,
|
@@ -67,9 +63,6 @@ class UNETR(nn.Module):
|
|
67
63
|
qkv_bias: apply the bias term for the qkv linear layer in self attention block. Defaults to False.
|
68
64
|
save_attn: to make accessible the attention in self attention block. Defaults to False.
|
69
65
|
|
70
|
-
.. deprecated:: 1.4
|
71
|
-
``pos_embed`` is deprecated in favor of ``proj_type``.
|
72
|
-
|
73
66
|
Examples::
|
74
67
|
|
75
68
|
# for single channel input 4-channel output with image size of (96,96,96), feature size of 32 and batch norm
|
monai/networks/nets/vit.py
CHANGED
@@ -18,7 +18,6 @@ import torch.nn as nn
|
|
18
18
|
|
19
19
|
from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
|
20
20
|
from monai.networks.blocks.transformerblock import TransformerBlock
|
21
|
-
from monai.utils import deprecated_arg
|
22
21
|
|
23
22
|
__all__ = ["ViT"]
|
24
23
|
|
@@ -31,9 +30,6 @@ class ViT(nn.Module):
|
|
31
30
|
ViT supports Torchscript but only works for Pytorch after 1.8.
|
32
31
|
"""
|
33
32
|
|
34
|
-
@deprecated_arg(
|
35
|
-
name="pos_embed", since="1.2", removed="1.4", new_name="proj_type", msg_suffix="please use `proj_type` instead."
|
36
|
-
)
|
37
33
|
def __init__(
|
38
34
|
self,
|
39
35
|
in_channels: int,
|
@@ -43,7 +39,6 @@ class ViT(nn.Module):
|
|
43
39
|
mlp_dim: int = 3072,
|
44
40
|
num_layers: int = 12,
|
45
41
|
num_heads: int = 12,
|
46
|
-
pos_embed: str = "conv",
|
47
42
|
proj_type: str = "conv",
|
48
43
|
pos_embed_type: str = "learnable",
|
49
44
|
classification: bool = False,
|
@@ -75,9 +70,6 @@ class ViT(nn.Module):
|
|
75
70
|
qkv_bias (bool, optional): apply bias to the qkv linear layer in self attention block. Defaults to False.
|
76
71
|
save_attn (bool, optional): to make accessible the attention in self attention block. Defaults to False.
|
77
72
|
|
78
|
-
.. deprecated:: 1.4
|
79
|
-
``pos_embed`` is deprecated in favor of ``proj_type``.
|
80
|
-
|
81
73
|
Examples::
|
82
74
|
|
83
75
|
# for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone
|
@@ -20,7 +20,7 @@ import torch.nn as nn
|
|
20
20
|
from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
|
21
21
|
from monai.networks.blocks.transformerblock import TransformerBlock
|
22
22
|
from monai.networks.layers import Conv
|
23
|
-
from monai.utils import
|
23
|
+
from monai.utils import ensure_tuple_rep, is_sqrt
|
24
24
|
|
25
25
|
__all__ = ["ViTAutoEnc"]
|
26
26
|
|
@@ -33,9 +33,6 @@ class ViTAutoEnc(nn.Module):
|
|
33
33
|
Modified to also give same dimension outputs as the input size of the image
|
34
34
|
"""
|
35
35
|
|
36
|
-
@deprecated_arg(
|
37
|
-
name="pos_embed", since="1.2", removed="1.4", new_name="proj_type", msg_suffix="please use `proj_type` instead."
|
38
|
-
)
|
39
36
|
def __init__(
|
40
37
|
self,
|
41
38
|
in_channels: int,
|
@@ -47,7 +44,6 @@ class ViTAutoEnc(nn.Module):
|
|
47
44
|
mlp_dim: int = 3072,
|
48
45
|
num_layers: int = 12,
|
49
46
|
num_heads: int = 12,
|
50
|
-
pos_embed: str = "conv",
|
51
47
|
proj_type: str = "conv",
|
52
48
|
dropout_rate: float = 0.0,
|
53
49
|
spatial_dims: int = 3,
|
@@ -71,9 +67,6 @@ class ViTAutoEnc(nn.Module):
|
|
71
67
|
qkv_bias: apply bias to the qkv linear layer in self attention block. Defaults to False.
|
72
68
|
save_attn: to make accessible the attention in self attention block. Defaults to False. Defaults to False.
|
73
69
|
|
74
|
-
.. deprecated:: 1.4
|
75
|
-
``pos_embed`` is deprecated in favor of ``proj_type``.
|
76
|
-
|
77
70
|
Examples::
|
78
71
|
|
79
72
|
# for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone
|
@@ -21,13 +21,10 @@ from monai.networks.blocks.convolutions import Convolution
|
|
21
21
|
from monai.networks.blocks.upsample import UpSample
|
22
22
|
from monai.networks.blocks.warp import DVF2DDF, Warp
|
23
23
|
from monai.networks.layers.simplelayers import SkipConnection
|
24
|
-
from monai.utils import alias, export
|
25
24
|
|
26
25
|
__all__ = ["VoxelMorphUNet", "voxelmorphunet", "VoxelMorph", "voxelmorph"]
|
27
26
|
|
28
27
|
|
29
|
-
@export("monai.networks.nets")
|
30
|
-
@alias("voxelmorphunet")
|
31
28
|
class VoxelMorphUNet(nn.Module):
|
32
29
|
"""
|
33
30
|
The backbone network used in VoxelMorph. See :py:class:`monai.networks.nets.VoxelMorph` for more details.
|
@@ -340,8 +337,6 @@ class VoxelMorphUNet(nn.Module):
|
|
340
337
|
voxelmorphunet = VoxelMorphUNet
|
341
338
|
|
342
339
|
|
343
|
-
@export("monai.networks.nets")
|
344
|
-
@alias("voxelmorph")
|
345
340
|
class VoxelMorph(nn.Module):
|
346
341
|
"""
|
347
342
|
A re-implementation of VoxelMorph framework for medical image registration as described in
|
monai/transforms/adaptors.py
CHANGED
@@ -125,12 +125,9 @@ from __future__ import annotations
|
|
125
125
|
|
126
126
|
from typing import Callable
|
127
127
|
|
128
|
-
from monai.utils import export as _monai_export
|
129
|
-
|
130
128
|
__all__ = ["adaptor", "apply_alias", "to_kwargs", "FunctionSignature"]
|
131
129
|
|
132
130
|
|
133
|
-
@_monai_export("monai.transforms")
|
134
131
|
def adaptor(function, outputs, inputs=None):
|
135
132
|
|
136
133
|
def must_be_types_or_none(variable_name, variable, types):
|
@@ -215,7 +212,6 @@ def adaptor(function, outputs, inputs=None):
|
|
215
212
|
return _inner
|
216
213
|
|
217
214
|
|
218
|
-
@_monai_export("monai.transforms")
|
219
215
|
def apply_alias(fn, name_map):
|
220
216
|
|
221
217
|
def _inner(data):
|
@@ -236,7 +232,6 @@ def apply_alias(fn, name_map):
|
|
236
232
|
return _inner
|
237
233
|
|
238
234
|
|
239
|
-
@_monai_export("monai.transforms")
|
240
235
|
def to_kwargs(fn):
|
241
236
|
|
242
237
|
def _inner(data):
|
@@ -1411,7 +1411,7 @@ class ScaleIntensityRangePercentiles(Transform):
|
|
1411
1411
|
else:
|
1412
1412
|
img_t = self._normalize(img=img_t)
|
1413
1413
|
|
1414
|
-
return convert_to_dst_type(img_t, dst=img)[0]
|
1414
|
+
return convert_to_dst_type(img_t, dst=img, dtype=self.dtype)[0]
|
1415
1415
|
|
1416
1416
|
|
1417
1417
|
class MaskIntensity(Transform):
|
monai/transforms/utils.py
CHANGED
@@ -582,7 +582,8 @@ def weighted_patch_samples(
|
|
582
582
|
if not v[-1] or not isfinite(v[-1]) or v[-1] < 0: # uniform sampling
|
583
583
|
idx = r_state.randint(0, len(v), size=n_samples)
|
584
584
|
else:
|
585
|
-
|
585
|
+
r_samples = r_state.random(n_samples)
|
586
|
+
r, *_ = convert_to_dst_type(r_samples, v, dtype=r_samples.dtype)
|
586
587
|
idx = searchsorted(v, r * v[-1], right=True) # type: ignore
|
587
588
|
idx, *_ = convert_to_dst_type(idx, v, dtype=torch.int) # type: ignore
|
588
589
|
# compensate 'valid' mode
|
monai/utils/__init__.py
CHANGED
@@ -11,8 +11,6 @@
|
|
11
11
|
|
12
12
|
from __future__ import annotations
|
13
13
|
|
14
|
-
# have to explicitly bring these in here to resolve circular import issues
|
15
|
-
from .aliases import alias, resolve_name
|
16
14
|
from .component_store import ComponentStore
|
17
15
|
from .decorators import MethodReplacer, RestartGenerator
|
18
16
|
from .deprecate_utils import DeprecatedError, deprecated, deprecated_arg, deprecated_arg_default
|
@@ -40,6 +38,7 @@ from .enums import (
|
|
40
38
|
GridSamplePadMode,
|
41
39
|
HoVerNetBranch,
|
42
40
|
HoVerNetMode,
|
41
|
+
IgniteInfo,
|
43
42
|
InterpolateMode,
|
44
43
|
JITMetadataKeys,
|
45
44
|
LazyAttr,
|
@@ -109,7 +108,6 @@ from .module import (
|
|
109
108
|
allow_missing_reference,
|
110
109
|
damerau_levenshtein_distance,
|
111
110
|
exact_version,
|
112
|
-
export,
|
113
111
|
get_full_type_name,
|
114
112
|
get_package_version,
|
115
113
|
get_torch_version_tuple,
|
@@ -153,3 +151,5 @@ from .type_conversion import (
|
|
153
151
|
get_numpy_dtype_from_string,
|
154
152
|
get_torch_dtype_from_string,
|
155
153
|
)
|
154
|
+
|
155
|
+
# have to explicitly bring these in here to resolve circular import issues
|
monai/utils/dist.py
CHANGED
@@ -24,7 +24,7 @@ from typing import overload
|
|
24
24
|
import torch
|
25
25
|
import torch.distributed as dist
|
26
26
|
|
27
|
-
from monai.
|
27
|
+
from monai.utils.enums import IgniteInfo
|
28
28
|
from monai.utils.module import min_version, optional_import
|
29
29
|
|
30
30
|
idist, has_ignite = optional_import("ignite", IgniteInfo.OPT_IMPORT_VERSION, min_version, "distributed")
|
monai/utils/enums.py
CHANGED
@@ -15,8 +15,6 @@ import random
|
|
15
15
|
from enum import Enum
|
16
16
|
from typing import TYPE_CHECKING
|
17
17
|
|
18
|
-
from monai.config import IgniteInfo
|
19
|
-
from monai.utils import deprecated
|
20
18
|
from monai.utils.module import min_version, optional_import
|
21
19
|
|
22
20
|
__all__ = [
|
@@ -56,13 +54,13 @@ __all__ = [
|
|
56
54
|
"DataStatsKeys",
|
57
55
|
"ImageStatsKeys",
|
58
56
|
"LabelStatsKeys",
|
59
|
-
"AlgoEnsembleKeys",
|
60
57
|
"HoVerNetMode",
|
61
58
|
"HoVerNetBranch",
|
62
59
|
"LazyAttr",
|
63
60
|
"BundleProperty",
|
64
61
|
"BundlePropertyConfig",
|
65
62
|
"AlgoKeys",
|
63
|
+
"IgniteInfo",
|
66
64
|
]
|
67
65
|
|
68
66
|
|
@@ -91,14 +89,6 @@ class StrEnum(str, Enum):
|
|
91
89
|
return self.value
|
92
90
|
|
93
91
|
|
94
|
-
if TYPE_CHECKING:
|
95
|
-
from ignite.engine import EventEnum
|
96
|
-
else:
|
97
|
-
EventEnum, _ = optional_import(
|
98
|
-
"ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "EventEnum", as_type="base"
|
99
|
-
)
|
100
|
-
|
101
|
-
|
102
92
|
class NumpyPadMode(StrEnum):
|
103
93
|
"""
|
104
94
|
See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html
|
@@ -615,17 +605,6 @@ class LabelStatsKeys(StrEnum):
|
|
615
605
|
LABEL_NCOMP = "ncomponents"
|
616
606
|
|
617
607
|
|
618
|
-
@deprecated(since="1.2", removed="1.4", msg_suffix="please use `AlgoKeys` instead.")
|
619
|
-
class AlgoEnsembleKeys(StrEnum):
|
620
|
-
"""
|
621
|
-
Default keys for Mixed Ensemble
|
622
|
-
"""
|
623
|
-
|
624
|
-
ID = "identifier"
|
625
|
-
ALGO = "infer_algo"
|
626
|
-
SCORE = "best_metric"
|
627
|
-
|
628
|
-
|
629
608
|
class HoVerNetMode(StrEnum):
|
630
609
|
"""
|
631
610
|
Modes for HoVerNet model:
|
@@ -730,6 +709,35 @@ class AdversarialKeys(StrEnum):
|
|
730
709
|
DISCRIMINATOR_LOSS = "discriminator_loss"
|
731
710
|
|
732
711
|
|
712
|
+
class OrderingType(StrEnum):
|
713
|
+
RASTER_SCAN = "raster_scan"
|
714
|
+
S_CURVE = "s_curve"
|
715
|
+
RANDOM = "random"
|
716
|
+
|
717
|
+
|
718
|
+
class OrderingTransformations(StrEnum):
|
719
|
+
ROTATE_90 = "rotate_90"
|
720
|
+
TRANSPOSE = "transpose"
|
721
|
+
REFLECT = "reflect"
|
722
|
+
|
723
|
+
|
724
|
+
class IgniteInfo(StrEnum):
|
725
|
+
"""
|
726
|
+
Config information of the PyTorch ignite package.
|
727
|
+
|
728
|
+
"""
|
729
|
+
|
730
|
+
OPT_IMPORT_VERSION = "0.4.4"
|
731
|
+
|
732
|
+
|
733
|
+
if TYPE_CHECKING:
|
734
|
+
from ignite.engine import EventEnum
|
735
|
+
else:
|
736
|
+
EventEnum, _ = optional_import(
|
737
|
+
"ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "EventEnum", as_type="base"
|
738
|
+
)
|
739
|
+
|
740
|
+
|
733
741
|
class AdversarialIterationEvents(EventEnum):
|
734
742
|
"""
|
735
743
|
Keys used to define events as used in the AdversarialTrainer.
|
@@ -746,15 +754,3 @@ class AdversarialIterationEvents(EventEnum):
|
|
746
754
|
DISCRIMINATOR_LOSS_COMPLETED = "discriminator_loss_completed"
|
747
755
|
DISCRIMINATOR_BACKWARD_COMPLETED = "discriminator_backward_completed"
|
748
756
|
DISCRIMINATOR_MODEL_COMPLETED = "discriminator_model_completed"
|
749
|
-
|
750
|
-
|
751
|
-
class OrderingType(StrEnum):
|
752
|
-
RASTER_SCAN = "raster_scan"
|
753
|
-
S_CURVE = "s_curve"
|
754
|
-
RANDOM = "random"
|
755
|
-
|
756
|
-
|
757
|
-
class OrderingTransformations(StrEnum):
|
758
|
-
ROTATE_90 = "rotate_90"
|
759
|
-
TRANSPOSE = "transpose"
|
760
|
-
REFLECT = "reflect"
|
monai/utils/jupyter_utils.py
CHANGED
monai/utils/misc.py
CHANGED
@@ -887,7 +887,7 @@ def run_cmd(cmd_list: list[str], **kwargs: Any) -> subprocess.CompletedProcess:
|
|
887
887
|
if kwargs.pop("run_cmd_verbose", False):
|
888
888
|
import monai
|
889
889
|
|
890
|
-
monai.apps.utils.get_logger("run_cmd").info(f"{cmd_list}")
|
890
|
+
monai.apps.utils.get_logger("run_cmd").info(f"{cmd_list}") # type: ignore[attr-defined]
|
891
891
|
try:
|
892
892
|
return subprocess.run(cmd_list, **kwargs)
|
893
893
|
except subprocess.CalledProcessError as e:
|
monai/utils/module.py
CHANGED
@@ -43,13 +43,11 @@ __all__ = [
|
|
43
43
|
"InvalidPyTorchVersionError",
|
44
44
|
"OptionalImportError",
|
45
45
|
"exact_version",
|
46
|
-
"export",
|
47
46
|
"damerau_levenshtein_distance",
|
48
47
|
"look_up_option",
|
49
48
|
"min_version",
|
50
49
|
"optional_import",
|
51
50
|
"require_pkg",
|
52
|
-
"load_submodules",
|
53
51
|
"instantiate",
|
54
52
|
"get_full_type_name",
|
55
53
|
"get_package_version",
|
@@ -172,28 +170,6 @@ def damerau_levenshtein_distance(s1: str, s2: str) -> int:
|
|
172
170
|
return d[string_1_length - 1, string_2_length - 1]
|
173
171
|
|
174
172
|
|
175
|
-
def export(modname):
|
176
|
-
"""
|
177
|
-
Make the decorated object a member of the named module. This will also add the object under its aliases if it has
|
178
|
-
a `__aliases__` member, thus this decorator should be before the `alias` decorator to pick up those names. Alias
|
179
|
-
names which conflict with package names or existing members will be ignored.
|
180
|
-
"""
|
181
|
-
|
182
|
-
def _inner(obj):
|
183
|
-
mod = import_module(modname)
|
184
|
-
if not hasattr(mod, obj.__name__):
|
185
|
-
setattr(mod, obj.__name__, obj)
|
186
|
-
|
187
|
-
# add the aliases for `obj` to the target module
|
188
|
-
for alias in getattr(obj, "__aliases__", ()):
|
189
|
-
if not hasattr(mod, alias):
|
190
|
-
setattr(mod, alias, obj)
|
191
|
-
|
192
|
-
return obj
|
193
|
-
|
194
|
-
return _inner
|
195
|
-
|
196
|
-
|
197
173
|
def load_submodules(
|
198
174
|
basemod: ModuleType, load_all: bool = True, exclude_pattern: str = "(.*[tT]est.*)|(_.*)"
|
199
175
|
) -> tuple[list[ModuleType], list[str]]:
|
@@ -1,5 +1,5 @@
|
|
1
|
-
monai/__init__.py,sha256=
|
2
|
-
monai/_version.py,sha256=
|
1
|
+
monai/__init__.py,sha256=CmkgY5g-rxGpBMHr6uWjyQrAbg8kqEIBMmfRy0M5nRA,4095
|
2
|
+
monai/_version.py,sha256=NNobIKI9e8RMOS96iH0hSWqMTzcTLl2Vv0qCGKdkDlk,503
|
3
3
|
monai/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
4
4
|
monai/_extensions/__init__.py,sha256=NEBPreRhQ8H9gVvgrLr_y52_TmqB96u_u4VQmeNT93I,642
|
5
5
|
monai/_extensions/loader.py,sha256=7SiKw36q-nOzH8CRbBurFrz7GM40GCu7rc93Tm8XpnI,3643
|
@@ -114,11 +114,11 @@ monai/bundle/config_item.py,sha256=rMjXSGkjJZdi04BwSHwCcIwzIb_TflmC3xDhC3SVJRs,1
|
|
114
114
|
monai/bundle/config_parser.py,sha256=cGyEn-cqNk0rEEZ1Qiv6UydmIDvtWZcMVljyfVm5i50,23025
|
115
115
|
monai/bundle/properties.py,sha256=iN3K4FVmN9ny1Hw9p5j7_ULcCdSD8PmrR7qXxbNz49k,11582
|
116
116
|
monai/bundle/reference_resolver.py,sha256=aBw3ML7B_YsiFUNl_mcRYPry1UbrEIK0R39A0zFw8kI,16463
|
117
|
-
monai/bundle/scripts.py,sha256
|
117
|
+
monai/bundle/scripts.py,sha256=ziTH32hd2A00c1wzXzAe2cttCEQtZoDqDx1bCDI1TR0,89136
|
118
118
|
monai/bundle/utils.py,sha256=t-22uFvLn7Yy-dr1v1U33peNOxgAmU4TJiGAbsBrUKs,10108
|
119
|
-
monai/bundle/workflows.py,sha256=
|
120
|
-
monai/config/__init__.py,sha256=
|
121
|
-
monai/config/deviceconfig.py,sha256=
|
119
|
+
monai/bundle/workflows.py,sha256=KADIppCZY6jCDvyCH2PmJm0Q-6xwCnB7x7KjFfRP8LY,24655
|
120
|
+
monai/config/__init__.py,sha256=x7Had67mmng8xKkLDKrrJwqFW3ohlhrJ7iJ_rdvewX8,1032
|
121
|
+
monai/config/deviceconfig.py,sha256=T-slMfnvHmXYZqcQJcqXxTz1DYFGD3mKnnAUZSVa6C0,10172
|
122
122
|
monai/config/type_definitions.py,sha256=0fAuI-_uX2Ac_33bgDVXKmBSl-fJNFcsOqBqYV16fhk,3485
|
123
123
|
monai/data/__init__.py,sha256=loDwAMF14hb4HS04SwukoIchIfU6iGY-xPrJVGyVwBo,5167
|
124
124
|
monai/data/box_utils.py,sha256=YbG6lOoYwUGmwcNmoKzq2xnNTbYA4LMkHmfsqteopCg,50102
|
@@ -131,7 +131,7 @@ monai/data/fft_utils.py,sha256=in9Zu8hC4oSVzuA-Zl236X6EkvgFka0RXdOxgvdGkv0,4448
|
|
131
131
|
monai/data/folder_layout.py,sha256=IsHW1-Bkupn_T8r6MgFTIJQh5HwCg0xQwOKmgBtl0gE,6344
|
132
132
|
monai/data/grid_dataset.py,sha256=O0gHf3BgrisH1erOMZNSpoIut92mydnNpzGYWnBKg4U,19483
|
133
133
|
monai/data/image_dataset.py,sha256=OhNJ3awauWtqsDhefIGDw3UYGF3RoleeNUPdJOKg3kI,7008
|
134
|
-
monai/data/image_reader.py,sha256=
|
134
|
+
monai/data/image_reader.py,sha256=XDkYVWQN_eHoMI1iFFWN8ICI0x9AxKSc8bGSavHskfs,61776
|
135
135
|
monai/data/image_writer.py,sha256=rH6vboPFkX4ziN3lnrmK6AzAOQYI9tEiOJb7Al2tj-8,39856
|
136
136
|
monai/data/iterable_dataset.py,sha256=A0L5jaxwnfgProBj96tlT160esI21yutnTf3a4c29Ms,13100
|
137
137
|
monai/data/itk_torch_bridge.py,sha256=3th-B3tJuJE22JFfOUgGeTMOPh1czJEiSccFyn_Ob0w,14461
|
@@ -148,10 +148,10 @@ monai/data/video_dataset.py,sha256=mMTZCkgAx_BBoF4HHWcmEuT9zoNoUVPFtPeYYt76t-A,9
|
|
148
148
|
monai/data/wsi_datasets.py,sha256=Mih4G_rzTQC0Ts8TobnNNXoyCxOAhy0rFqpREDAENWc,18659
|
149
149
|
monai/data/wsi_reader.py,sha256=yVbgl44bS9xF0wsr_ZeLwaljMlTOrtjVTpYKykydEMU,49508
|
150
150
|
monai/engines/__init__.py,sha256=oV0zH5n8qPdCCNZCqLqN4Z7iqADouDtZmtswWQoZWOk,1094
|
151
|
-
monai/engines/evaluator.py,sha256=
|
152
|
-
monai/engines/trainer.py,sha256=
|
153
|
-
monai/engines/utils.py,sha256=
|
154
|
-
monai/engines/workflow.py,sha256=
|
151
|
+
monai/engines/evaluator.py,sha256=gCWZ7QB1DjTeHV9_btHbwR2pew33rxFYOAJ5nPVJfIQ,26934
|
152
|
+
monai/engines/trainer.py,sha256=45aOJ6rhYGgh1awfaNq-ATbaD7ZH8o_yXykyqBcj7q8,38421
|
153
|
+
monai/engines/utils.py,sha256=apQxzU4GxaeHgbNN5Qa6POBuOD2XIMCVzy8DlMcqB1o,15632
|
154
|
+
monai/engines/workflow.py,sha256=S4DCLBSndcaM6LDb6xS-gTL8xCs8fiVejb-8O-pLKeQ,15226
|
155
155
|
monai/fl/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
156
156
|
monai/fl/client/__init__.py,sha256=Wnkcf-Guhi-d29eAH0p51jz1Tn9WSVM4UUGbbb9SAqQ,725
|
157
157
|
monai/fl/client/client_algo.py,sha256=vetQbSNmuvJRBEcu0AKM96gKYbkSXlu4HSriqK7wiiU,5098
|
@@ -160,39 +160,39 @@ monai/fl/utils/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,57
|
|
160
160
|
monai/fl/utils/constants.py,sha256=OjMAE17niYqQh7nz45SC6CXvkMa4-XZsIuoHUHqP7W0,1784
|
161
161
|
monai/fl/utils/exchange_object.py,sha256=q41trOwBdog_g3k_Eh2EFnLufHJ1mj7nGyQ-ShuW5Mo,3527
|
162
162
|
monai/fl/utils/filters.py,sha256=InXplYes52JJqtsNbePAPPAYS8am_uRO7UkBHyYyJCo,1633
|
163
|
-
monai/handlers/__init__.py,sha256=
|
164
|
-
monai/handlers/checkpoint_loader.py,sha256=
|
165
|
-
monai/handlers/checkpoint_saver.py,sha256=
|
166
|
-
monai/handlers/classification_saver.py,sha256=
|
163
|
+
monai/handlers/__init__.py,sha256=laEkiuP-ew7UzuG89135uJvC73ocVbT0nQ_3xMLEhKc,2394
|
164
|
+
monai/handlers/checkpoint_loader.py,sha256=Y0qNBq5b-GJ-XOJNjuslegCpIGPZYOdNs3PxzNYCCm8,7432
|
165
|
+
monai/handlers/checkpoint_saver.py,sha256=z_w5HtNSeRM3QwHQIgQKqVodSYNy8dhL8KTBUzHuF0g,16047
|
166
|
+
monai/handlers/classification_saver.py,sha256=CNzdU9GrKj8KEC42jaBy2rEgpd3mqgz-YZg4dr61Jyg,7605
|
167
167
|
monai/handlers/clearml_handlers.py,sha256=ce3ftDZ9B2dPrP_2xw0D5kFxDNJODKDuTvDMYm5uyoI,7518
|
168
168
|
monai/handlers/confusion_matrix.py,sha256=KpdTV0ViWDRnvVUb58Lc4UBhGwyU_Pf5wTpSaSyVH3o,4006
|
169
|
-
monai/handlers/decollate_batch.py,sha256
|
170
|
-
monai/handlers/earlystop_handler.py,sha256=
|
171
|
-
monai/handlers/garbage_collector.py,sha256=
|
169
|
+
monai/handlers/decollate_batch.py,sha256=-4hFPT4ZCiApbnUVplm8c6uQ326bKgPtkiYopjQRcTA,4425
|
170
|
+
monai/handlers/earlystop_handler.py,sha256=bwCswTyCzFpU23-ONFeg4X10BI3Vdtkzn5-a72M09H0,5310
|
171
|
+
monai/handlers/garbage_collector.py,sha256=JbyBjru1wB-G1CNMopQlegC81FH3W2GpuWngfUPut44,3621
|
172
172
|
monai/handlers/hausdorff_distance.py,sha256=i-I2EWZrCpkojPR5EmqWCOiDCszujoe5RCZ4xUDajcc,3594
|
173
|
-
monai/handlers/ignite_metric.py,sha256=
|
174
|
-
monai/handlers/logfile_handler.py,sha256=
|
175
|
-
monai/handlers/lr_schedule_handler.py,sha256=
|
173
|
+
monai/handlers/ignite_metric.py,sha256=PSgjSPaJ7nOhaXDewTJucXDhkYVJhSz_qQ36qA-G7PM,6691
|
174
|
+
monai/handlers/logfile_handler.py,sha256=y-If8rStdD5lh_NZX68aTpSDbYGchGIf6f0VaWFPkBI,3907
|
175
|
+
monai/handlers/lr_schedule_handler.py,sha256=jEv1QnPkhwpQO1azFvzhL-us4ywP9kVmQb5man88evA,3551
|
176
176
|
monai/handlers/mean_dice.py,sha256=aJmL9IEEJtWs65Et3HCe7S0JIe7J6z-Nc0BEQESy9sY,3785
|
177
177
|
monai/handlers/mean_iou.py,sha256=-4vDqYx-Zd77PcR2-Wg6X-M35n13sMV5VysGiDCvjbQ,2841
|
178
|
-
monai/handlers/metric_logger.py,sha256=
|
178
|
+
monai/handlers/metric_logger.py,sha256=Zk55yO5PlwM7WhHPelHPfv3WLuJycxLrtQMwjEJ_7FQ,5453
|
179
179
|
monai/handlers/metrics_reloaded_handler.py,sha256=9JtfWeDvjrdKNMKpRJQBu0k6XGxg8hfOm6224sB4A6E,6195
|
180
|
-
monai/handlers/metrics_saver.py,sha256=
|
181
|
-
monai/handlers/mlflow_handler.py,sha256=
|
182
|
-
monai/handlers/nvtx_handlers.py,sha256=
|
180
|
+
monai/handlers/metrics_saver.py,sha256=ltXaaj3C4Vzv3VEWT4O7wlmuYs7JHi7qCkXXfVBgPb8,8559
|
181
|
+
monai/handlers/mlflow_handler.py,sha256=rq8qu3UPb4tMGTek146n2xmZ6b7LhI2SLRYxft8JNeA,23209
|
182
|
+
monai/handlers/nvtx_handlers.py,sha256=cD-nYVaJ7fUEUmr5zLU9-s867SqUwP64R3i4Rui5MGU,6795
|
183
183
|
monai/handlers/panoptic_quality.py,sha256=Dr_cMANJne1Cvc_pnI33QAUMAVKbkO4NBfTFjedGZOE,3651
|
184
|
-
monai/handlers/parameter_scheduler.py,sha256=
|
185
|
-
monai/handlers/postprocessing.py,sha256=
|
186
|
-
monai/handlers/probability_maps.py,sha256=
|
184
|
+
monai/handlers/parameter_scheduler.py,sha256=JMVMEWnF0sUejynB_J_2fL9OKJT_s-ZbaYEucTeb1Hk,7095
|
185
|
+
monai/handlers/postprocessing.py,sha256=KlMl4kUKn0Z0VdiOFG7N_BxNIo7x9sm6yOc42mXGbR8,3261
|
186
|
+
monai/handlers/probability_maps.py,sha256=ggvgebTlx-r5BmcpiYu5MTF00AMtSMghRA8Orw9o7uI,5336
|
187
187
|
monai/handlers/regression_metrics.py,sha256=PaL8AXLhl7Aw5C1_VSPIAt2C8H781ek_sPD_xFZgWPA,8457
|
188
188
|
monai/handlers/roc_auc.py,sha256=0A_Y1bvRpkBY0l5HyTRKopUUupq0cMGubnqgflHXA2g,2744
|
189
|
-
monai/handlers/smartcache_handler.py,sha256=
|
190
|
-
monai/handlers/stats_handler.py,sha256=
|
189
|
+
monai/handlers/smartcache_handler.py,sha256=PwWmLYKBWFTkOdcQXlML18AESWtQnPJl9Ici9djvdTE,3027
|
190
|
+
monai/handlers/stats_handler.py,sha256=B2XOPadbLqUEknxF82MiZVWa1B2dseLXw6XRuHZMerg,14102
|
191
191
|
monai/handlers/surface_distance.py,sha256=HKQrRGy08uWNr9X-mJ1IhMwV_ndZOijEJS7TYL9KQsg,3327
|
192
|
-
monai/handlers/tensorboard_handlers.py,sha256=
|
193
|
-
monai/handlers/trt_handler.py,sha256=
|
194
|
-
monai/handlers/utils.py,sha256=
|
195
|
-
monai/handlers/validation_handler.py,sha256=
|
192
|
+
monai/handlers/tensorboard_handlers.py,sha256=3nju_xEJeOpCtObrIfuWc1u8dSRwjs-26tyh06FP8wg,22591
|
193
|
+
monai/handlers/trt_handler.py,sha256=uWFdgC8QKRkcNwWfKIbQMdK6-MX_1ON0mKabeIn1ltI,2329
|
194
|
+
monai/handlers/utils.py,sha256=Ib1u-PLrtIkiLqTfREnrCWpN4af1btdNzkyMZuuuYyU,10239
|
195
|
+
monai/handlers/validation_handler.py,sha256=NZO21c6zzXbmAgJZHkkdoZQSQIHwuxh94QD3PLUldGU,3674
|
196
196
|
monai/inferers/__init__.py,sha256=K74t_RCeUPdEZvHzIPzVAwZ9DtmouLqhb3qDEmFBWs4,1107
|
197
197
|
monai/inferers/inferer.py,sha256=aZwCmM6WGj49SHi_jIkQeGDstMz45frvM1Lomoeqzm4,92669
|
198
198
|
monai/inferers/merger.py,sha256=Ch-qoGUVTTDWN9z_LXBRxElvyuZxOmuqAcecpg1xxAg,15566
|
@@ -204,7 +204,7 @@ monai/losses/barlow_twins.py,sha256=prDdaY0vXAXMuVDmc9Tv6svRZzNwKA0LdsmRaUmusiI,
|
|
204
204
|
monai/losses/cldice.py,sha256=NeUVJuFjowlH90MSLtq8HJzhzLVwal_G7gaOyc1_5OY,6328
|
205
205
|
monai/losses/contrastive.py,sha256=-SCvgQOA1JADQaFl7S4wEoIFtNd4uFkfTPlkMkky_LQ,3261
|
206
206
|
monai/losses/deform.py,sha256=mBOvFgKyW1qw9267AZCd0h_xi10xvy_ybYfhzQzl5rI,9701
|
207
|
-
monai/losses/dice.py,sha256=
|
207
|
+
monai/losses/dice.py,sha256=S4JKPybHN82JY26qIwqJTJovT3YHWbVQOwKB30bLViY,51475
|
208
208
|
monai/losses/ds_loss.py,sha256=ts92Rc_YAkfb5WUUWxRTecpY32lVwC20pu7u-dJCgyY,3854
|
209
209
|
monai/losses/focal_loss.py,sha256=OhAtxzAwZ1CoNGH1S2dQbG7iDyowYUqv64KXi0GgMhk,11772
|
210
210
|
monai/losses/giou_loss.py,sha256=Mogq6fR0tO__Xj0Ul388QMEx03XrSS-Ue96i9ahY-uo,2795
|
@@ -262,7 +262,7 @@ monai/networks/blocks/feature_pyramid_network.py,sha256=_DeAy_lNnPqjNiJLcopjqe_P
|
|
262
262
|
monai/networks/blocks/fft_utils_t.py,sha256=8bOvhLgP5nDLz8QwzD4XnRaxE9-tGba2-b_QDK8IWSs,8263
|
263
263
|
monai/networks/blocks/localnet_block.py,sha256=b2-ZZvkMPphHJZYTbwEZDhqA-mMBSFM5WQOoohk_6W4,11456
|
264
264
|
monai/networks/blocks/mlp.py,sha256=qw_jgyrYwoQ5WYBM1rtSSaO4C837ZbctoRKhh_BQQFI,3341
|
265
|
-
monai/networks/blocks/patchembedding.py,sha256=
|
265
|
+
monai/networks/blocks/patchembedding.py,sha256=tp0coxpi70LcUk03HbnygFeCxcBv5bNHJbw1crIG_Js,8956
|
266
266
|
monai/networks/blocks/pos_embed_utils.py,sha256=vFEQqxZ6UAmjcy_icFDL9EwjRHYXuIbWr1chWUJqO7g,4070
|
267
267
|
monai/networks/blocks/regunet_block.py,sha256=1FLIwVBtk66II6xQ7Q4LMY8DP0rMmeftN7HuaEgnf3A,8825
|
268
268
|
monai/networks/blocks/rel_pos_embedding.py,sha256=wuTJsk_NHSDX-3V0X9ctF99WIh2-SHLDbQxzrG7tz_4,2208
|
@@ -308,7 +308,7 @@ monai/networks/nets/flexible_unet.py,sha256=VN3cJQPMmY--TpZkuDwEWonPgJc4R3JKBwJC
|
|
308
308
|
monai/networks/nets/fullyconnectednet.py,sha256=j5uo68qnYSxgH_sEMRh7s3QGNKFaJAIxmx8OixEv2Ig,7212
|
309
309
|
monai/networks/nets/generator.py,sha256=q20EAl9N7Q56t78JiZaUEkPhYWyD02oqO0yekJCd9x0,6581
|
310
310
|
monai/networks/nets/highresnet.py,sha256=1Mx8lR5K4sRXGWjspDAHaKq0WrX9Q7qz8CcBCKZxIXk,8883
|
311
|
-
monai/networks/nets/hovernet.py,sha256=
|
311
|
+
monai/networks/nets/hovernet.py,sha256=gQDeDGqCwjJACTPmQLAx9nPRBO_D65F-scx15w3Ho_Q,28645
|
312
312
|
monai/networks/nets/milmodel.py,sha256=aUDgYJG0kS3p4nBW_dF7b4cWwuC31w3KIzmUzXA08HE,9813
|
313
313
|
monai/networks/nets/netadapter.py,sha256=JtcME9pcg8ud4jHKZKM9fE-8leP2PQXgUIfKBdB0wcA,6102
|
314
314
|
monai/networks/nets/patchgan_discriminator.py,sha256=yTT0on0lzlDwSu4B9McMqdxqu5xD7Ws9wCwEkxvJEu0,8620
|
@@ -326,14 +326,14 @@ monai/networks/nets/swin_unetr.py,sha256=nU_VgVsgPnXx5V_Wtceq1ZJR1XuB4vPCcFnbY5p
|
|
326
326
|
monai/networks/nets/torchvision_fc.py,sha256=3g5PD7C1MSkQ8xndhnVd0b3aN8zfshT8uiFS0OHyQaY,6309
|
327
327
|
monai/networks/nets/transchex.py,sha256=uA_RfTDfPhwA1ecAPZ9EDnMyJKn2tUMLEWdyB_rU2v0,15726
|
328
328
|
monai/networks/nets/transformer.py,sha256=-nzl20Z5xdtn7xChOd_cRbbPVoPIFGVfTQw3fIEGMuE,6395
|
329
|
-
monai/networks/nets/unet.py,sha256=
|
330
|
-
monai/networks/nets/unetr.py,sha256=
|
329
|
+
monai/networks/nets/unet.py,sha256=t2an-NZ8QRpWal6uh1WpxG1tbekKRDgQtpT7YeXWFvY,13543
|
330
|
+
monai/networks/nets/unetr.py,sha256=G67kjiBMz13MzP4eV8XK-GydSogMwgXaBMFDShF5sB8,8252
|
331
331
|
monai/networks/nets/varautoencoder.py,sha256=Pd9BdXW1iVjmAVCZIc2ElGtSDAWRBaLwEKxLDicyxZI,6282
|
332
332
|
monai/networks/nets/vista3d.py,sha256=vFpCG53JDCvgK-fz7VPZvo6-mv8Mp5AgBZu2QVu0ggM,43326
|
333
|
-
monai/networks/nets/vit.py,sha256=
|
334
|
-
monai/networks/nets/vitautoenc.py,sha256=
|
333
|
+
monai/networks/nets/vit.py,sha256=yEzFFQln5ieknnF8A1_ecB_c0SuOBBnrXPesm_kzVts,5934
|
334
|
+
monai/networks/nets/vitautoenc.py,sha256=vfQBWjTb0k7EY4uC76rmuOCIUUgeBvf_EIXBofCzVHQ,5740
|
335
335
|
monai/networks/nets/vnet.py,sha256=zaJi5kSiTLAuFHThSZfhJvHP6zKh3oBWsTWG-328O_g,10820
|
336
|
-
monai/networks/nets/voxelmorph.py,sha256=
|
336
|
+
monai/networks/nets/voxelmorph.py,sha256=Q5VQFLLKSFqhsG0Z8_72ZGfK1nA4kdCfFnGbqI6Eofg,20665
|
337
337
|
monai/networks/nets/vqvae.py,sha256=Zf9fTL_rluhuJhH6gTNB6iiKRfwBxfuuyhCdU9TLmAk,18417
|
338
338
|
monai/networks/schedulers/__init__.py,sha256=rPmrNvnt8Bh9D2omPMgDiGVuT1XVJlgtlWIlqA_sjb4,755
|
339
339
|
monai/networks/schedulers/ddim.py,sha256=a01QajgWksTYsPxs4DuBzy59mE_PcyTJedd6VqJv5g0,14376
|
@@ -346,14 +346,14 @@ monai/optimizers/lr_scheduler.py,sha256=YPY5MWgCTmExuIOBsVJrgfErkCT1ELBekcH0XeRP
|
|
346
346
|
monai/optimizers/novograd.py,sha256=dgjyM-WGqrEHsSKNdI3Lw1wJ2YNG3oKCYotfPsDBE80,5677
|
347
347
|
monai/optimizers/utils.py,sha256=GVsJsZWO2aAP9IzwhXgca_9gUNHFClup6qG4ZFs42z4,4133
|
348
348
|
monai/transforms/__init__.py,sha256=lyIf64v-I2soIjfK2RxOWS7_CIc-x6bRJHLI6UZ8yDs,16591
|
349
|
-
monai/transforms/adaptors.py,sha256=
|
349
|
+
monai/transforms/adaptors.py,sha256=LpYChldlOur-VFgu_nBIBze0J841-NWgf0UHvvHRNPU,8796
|
350
350
|
monai/transforms/compose.py,sha256=zQa_hf8gIater3Bo_XW1IVYgX7aFa_Co6-BZPwoeaQw,37663
|
351
351
|
monai/transforms/inverse.py,sha256=Wg8UnMJru41G3eHGipUemAWziHGU-qdd-Flfi3eOpeo,18746
|
352
352
|
monai/transforms/inverse_batch_transform.py,sha256=fMbukZq2P99BhqqMuWZFJ9uboZ5dN61MBvvicwf40V0,7055
|
353
353
|
monai/transforms/nvtx.py,sha256=1EKEXZIhTUFKoIrJmd_fevwrHwo731dVFUFJQFiOk3w,3386
|
354
354
|
monai/transforms/traits.py,sha256=F8kmhnekTyaAdo8wIFjO3-uqpVtmFym3mNxbYbyvkFI,3563
|
355
355
|
monai/transforms/transform.py,sha256=DqWyfuI-FDBxjqern33R6Ia1iAfHb3Kh56u-__tp1Kw,21614
|
356
|
-
monai/transforms/utils.py,sha256=
|
356
|
+
monai/transforms/utils.py,sha256=SnTiyd-3Q5cNGDzATKTXIJpIeWmCg3LqBxWnyKUxk-8,106502
|
357
357
|
monai/transforms/utils_create_transform_ims.py,sha256=QEJVHsCZX7ZxsBArk6NjgCzSZuuokf8l1uFqiUZBBys,31155
|
358
358
|
monai/transforms/utils_morphological_ops.py,sha256=abaFYSvCfH4k7jk3R_YLtUxgwRYgsz6zj6sOEGM1K5w,6758
|
359
359
|
monai/transforms/utils_pytorch_numpy_unification.py,sha256=PvNO1QeBLTcpLhvuO25ctGr2nIM4B0sTRvnA5TpxJ4Q,18855
|
@@ -363,7 +363,7 @@ monai/transforms/croppad/batch.py,sha256=5ukcYk3VCDpk62AL5Q_jTqpXmSNTlw0UCUhDeAB
|
|
363
363
|
monai/transforms/croppad/dictionary.py,sha256=WOzj_PjmoB3zLEmtQlafb9-PWgXd-s5K7Z5Doc8Adns,60746
|
364
364
|
monai/transforms/croppad/functional.py,sha256=iroD0XBaMG1Mox6-EotIh2nAUxJPrpIyUrHopc83Sug,12640
|
365
365
|
monai/transforms/intensity/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
366
|
-
monai/transforms/intensity/array.py,sha256=
|
366
|
+
monai/transforms/intensity/array.py,sha256=SpG3u9LPuQxDk77lEvPC4-tH1tiOtacDDfcyQydIhkI,121592
|
367
367
|
monai/transforms/intensity/dictionary.py,sha256=RXZeQG9dPvdvjoiWWlNkYec4NDWBxYXjfct4fywv1Ic,85059
|
368
368
|
monai/transforms/io/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
369
369
|
monai/transforms/io/array.py,sha256=z4aOxK44IhztN-LzG2uROYDwg_u1C6gcpx9ZH-ZhoVA,27482
|
@@ -394,16 +394,15 @@ monai/transforms/spatial/functional.py,sha256=IwS0witCqbGkyuxzu_R4Ztp90S0pg9hY1i
|
|
394
394
|
monai/transforms/utility/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
395
395
|
monai/transforms/utility/array.py,sha256=MCkoccxLStPX2e0bJv6WZzDsGE3Wwf1DaxU1MZwDp08,78086
|
396
396
|
monai/transforms/utility/dictionary.py,sha256=bPO6qJcZwT_phtVpTLT0VvblGL-QnyYG1bYGIpAjOzk,78079
|
397
|
-
monai/utils/__init__.py,sha256=
|
398
|
-
monai/utils/aliases.py,sha256=uBxkLudRfy3Rts9RZo4NDPGoq4e3Ymcaihk6lT92GFo,4096
|
397
|
+
monai/utils/__init__.py,sha256=9E59iRxectI0rD5_Loj-fnt24BnaDvPlPplu5jRFcFM,3743
|
399
398
|
monai/utils/component_store.py,sha256=VMF7CtPu5Wi_eX_qFtm9iWo5kvoWFuCUIxdRzk90zZo,4498
|
400
399
|
monai/utils/decorators.py,sha256=YRK5iEMdbc2INrWnBNDSMTaHge_0ezRf2b9yJGL-opg,3129
|
401
400
|
monai/utils/deprecate_utils.py,sha256=gKeEV4MsI51qeQ5gci2me_C-0e-tDwa3VZzd3XPQqLk,14759
|
402
|
-
monai/utils/dist.py,sha256=
|
403
|
-
monai/utils/enums.py,sha256=
|
404
|
-
monai/utils/jupyter_utils.py,sha256=
|
405
|
-
monai/utils/misc.py,sha256=
|
406
|
-
monai/utils/module.py,sha256=
|
401
|
+
monai/utils/dist.py,sha256=QUVRusnAdiySK_dnTrDWqxNMl4XU4pwzvlMaGsvVE3Y,8644
|
402
|
+
monai/utils/enums.py,sha256=ihvq2X9Z_cjmDKXhgHFLDcTJzWbi1AtLbbYSZC9iezI,19512
|
403
|
+
monai/utils/jupyter_utils.py,sha256=kQqfLTLAre3TLzXTt091X_XeWy5K0QKAcTuYlJ8BOag,15650
|
404
|
+
monai/utils/misc.py,sha256=4KCY-Kmlzjup3KE2bgJsjIItKdDMxXwA0_rH1ghHONE,31410
|
405
|
+
monai/utils/module.py,sha256=ICsVqQMV-069FuVwjCHm3d3hyvIOx9El17IXZ-2sfQk,24319
|
407
406
|
monai/utils/nvtx.py,sha256=i9JBxR1uhW1ZCgLPLlTx8b907QlXkFzJyTBLMlFjhtU,6876
|
408
407
|
monai/utils/ordering.py,sha256=0nlA5b5QpVCHbtiCbTC-YsqjTmjm0bub0IeJhGFBOes,8270
|
409
408
|
monai/utils/profiling.py,sha256=V2_cSHgrcmVF48_G3nUi2-O6fnXsS89nSlb8jj58YLo,15937
|
@@ -417,8 +416,8 @@ monai/visualize/img2tensorboard.py,sha256=NnMcyfIFqX-jD7TBO3Rn02zt5uug79d_7pIIaV
|
|
417
416
|
monai/visualize/occlusion_sensitivity.py,sha256=OQHEJLyIhB8zWqQsfKaX-1kvCjWFVYtLfS4dFC0nKFI,18160
|
418
417
|
monai/visualize/utils.py,sha256=B-MhTVs7sQbIqYS3yPnpBwPw2K82rE2PBtGIfpwZtWM,9894
|
419
418
|
monai/visualize/visualizer.py,sha256=qckyaMZCbezYUwE20k5yc-Pb7UozVavMDbrmyQwfYHY,1377
|
420
|
-
monai_weekly-1.4.
|
421
|
-
monai_weekly-1.4.
|
422
|
-
monai_weekly-1.4.
|
423
|
-
monai_weekly-1.4.
|
424
|
-
monai_weekly-1.4.
|
419
|
+
monai_weekly-1.4.dev2439.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
420
|
+
monai_weekly-1.4.dev2439.dist-info/METADATA,sha256=P2ERflLdl70ZUYCzPV3aJB53ToRiUSYgnLWVeXJAr3k,11172
|
421
|
+
monai_weekly-1.4.dev2439.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
422
|
+
monai_weekly-1.4.dev2439.dist-info/top_level.txt,sha256=UaNwRzLGORdus41Ip446s3bBfViLkdkDsXDo34J2P44,6
|
423
|
+
monai_weekly-1.4.dev2439.dist-info/RECORD,,
|