monai-weekly 1.4.dev2425__py3-none-any.whl → 1.4.dev2427__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. monai/__init__.py +1 -1
  2. monai/_version.py +3 -3
  3. monai/apps/deepedit/transforms.py +1 -1
  4. monai/apps/deepgrow/transforms.py +1 -1
  5. monai/apps/generation/__init__.py +10 -0
  6. monai/apps/generation/maisi/__init__.py +10 -0
  7. monai/apps/generation/maisi/networks/__init__.py +10 -0
  8. monai/apps/generation/maisi/networks/autoencoderkl_maisi.py +975 -0
  9. monai/apps/generation/maisi/networks/controlnet_maisi.py +178 -0
  10. monai/apps/generation/maisi/networks/diffusion_model_unet_maisi.py +410 -0
  11. monai/apps/generation/maisi/utils/__init__.py +10 -0
  12. monai/apps/generation/maisi/utils/morphological_ops.py +170 -0
  13. monai/apps/nuclick/transforms.py +1 -1
  14. monai/apps/pathology/transforms/post/array.py +1 -1
  15. monai/apps/pathology/utils.py +2 -2
  16. monai/data/torchscript_utils.py +1 -1
  17. monai/data/ultrasound_confidence_map.py +41 -10
  18. monai/losses/dice.py +10 -3
  19. monai/metrics/utils.py +3 -3
  20. monai/optimizers/lr_finder.py +1 -1
  21. monai/transforms/intensity/array.py +25 -2
  22. monai/transforms/signal/array.py +1 -1
  23. monai/utils/misc.py +20 -2
  24. monai/utils/module.py +6 -3
  25. {monai_weekly-1.4.dev2425.dist-info → monai_weekly-1.4.dev2427.dist-info}/METADATA +6 -3
  26. {monai_weekly-1.4.dev2425.dist-info → monai_weekly-1.4.dev2427.dist-info}/RECORD +29 -21
  27. {monai_weekly-1.4.dev2425.dist-info → monai_weekly-1.4.dev2427.dist-info}/WHEEL +1 -1
  28. {monai_weekly-1.4.dev2425.dist-info → monai_weekly-1.4.dev2427.dist-info}/LICENSE +0 -0
  29. {monai_weekly-1.4.dev2425.dist-info → monai_weekly-1.4.dev2427.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,178 @@
1
+ # Copyright (c) MONAI Consortium
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ # http://www.apache.org/licenses/LICENSE-2.0
6
+ # Unless required by applicable law or agreed to in writing, software
7
+ # distributed under the License is distributed on an "AS IS" BASIS,
8
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9
+ # See the License for the specific language governing permissions and
10
+ # limitations under the License.
11
+
12
+ from __future__ import annotations
13
+
14
+ from typing import TYPE_CHECKING, Sequence, cast
15
+
16
+ import torch
17
+
18
+ from monai.utils import optional_import
19
+
20
+ ControlNet, has_controlnet = optional_import("generative.networks.nets.controlnet", name="ControlNet")
21
+ get_timestep_embedding, has_get_timestep_embedding = optional_import(
22
+ "generative.networks.nets.diffusion_model_unet", name="get_timestep_embedding"
23
+ )
24
+
25
+ if TYPE_CHECKING:
26
+ from generative.networks.nets.controlnet import ControlNet as ControlNetType
27
+ else:
28
+ ControlNetType = cast(type, ControlNet)
29
+
30
+
31
+ class ControlNetMaisi(ControlNetType):
32
+ """
33
+ Control network for diffusion models based on Zhang and Agrawala "Adding Conditional Control to Text-to-Image
34
+ Diffusion Models" (https://arxiv.org/abs/2302.05543)
35
+
36
+ Args:
37
+ spatial_dims: number of spatial dimensions.
38
+ in_channels: number of input channels.
39
+ num_res_blocks: number of residual blocks (see ResnetBlock) per level.
40
+ num_channels: tuple of block output channels.
41
+ attention_levels: list of levels to add attention.
42
+ norm_num_groups: number of groups for the normalization.
43
+ norm_eps: epsilon for the normalization.
44
+ resblock_updown: if True use residual blocks for up/downsampling.
45
+ num_head_channels: number of channels in each attention head.
46
+ with_conditioning: if True add spatial transformers to perform conditioning.
47
+ transformer_num_layers: number of layers of Transformer blocks to use.
48
+ cross_attention_dim: number of context dimensions to use.
49
+ num_class_embeds: if specified (as an int), then this model will be class-conditional with `num_class_embeds`
50
+ classes.
51
+ upcast_attention: if True, upcast attention operations to full precision.
52
+ use_flash_attention: if True, use flash attention for a memory efficient attention mechanism.
53
+ conditioning_embedding_in_channels: number of input channels for the conditioning embedding.
54
+ conditioning_embedding_num_channels: number of channels for the blocks in the conditioning embedding.
55
+ use_checkpointing: if True, use activation checkpointing to save memory.
56
+ """
57
+
58
+ def __init__(
59
+ self,
60
+ spatial_dims: int,
61
+ in_channels: int,
62
+ num_res_blocks: Sequence[int] | int = (2, 2, 2, 2),
63
+ num_channels: Sequence[int] = (32, 64, 64, 64),
64
+ attention_levels: Sequence[bool] = (False, False, True, True),
65
+ norm_num_groups: int = 32,
66
+ norm_eps: float = 1e-6,
67
+ resblock_updown: bool = False,
68
+ num_head_channels: int | Sequence[int] = 8,
69
+ with_conditioning: bool = False,
70
+ transformer_num_layers: int = 1,
71
+ cross_attention_dim: int | None = None,
72
+ num_class_embeds: int | None = None,
73
+ upcast_attention: bool = False,
74
+ use_flash_attention: bool = False,
75
+ conditioning_embedding_in_channels: int = 1,
76
+ conditioning_embedding_num_channels: Sequence[int] | None = (16, 32, 96, 256),
77
+ use_checkpointing: bool = True,
78
+ ) -> None:
79
+ super().__init__(
80
+ spatial_dims,
81
+ in_channels,
82
+ num_res_blocks,
83
+ num_channels,
84
+ attention_levels,
85
+ norm_num_groups,
86
+ norm_eps,
87
+ resblock_updown,
88
+ num_head_channels,
89
+ with_conditioning,
90
+ transformer_num_layers,
91
+ cross_attention_dim,
92
+ num_class_embeds,
93
+ upcast_attention,
94
+ use_flash_attention,
95
+ conditioning_embedding_in_channels,
96
+ conditioning_embedding_num_channels,
97
+ )
98
+ self.use_checkpointing = use_checkpointing
99
+
100
+ def forward(
101
+ self,
102
+ x: torch.Tensor,
103
+ timesteps: torch.Tensor,
104
+ controlnet_cond: torch.Tensor,
105
+ conditioning_scale: float = 1.0,
106
+ context: torch.Tensor | None = None,
107
+ class_labels: torch.Tensor | None = None,
108
+ ) -> tuple[Sequence[torch.Tensor], torch.Tensor]:
109
+ emb = self._prepare_time_and_class_embedding(x, timesteps, class_labels)
110
+ h = self._apply_initial_convolution(x)
111
+ if self.use_checkpointing:
112
+ controlnet_cond = torch.utils.checkpoint.checkpoint(
113
+ self.controlnet_cond_embedding, controlnet_cond, use_reentrant=False
114
+ )
115
+ else:
116
+ controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
117
+ h += controlnet_cond
118
+ down_block_res_samples, h = self._apply_down_blocks(emb, context, h)
119
+ h = self._apply_mid_block(emb, context, h)
120
+ down_block_res_samples, mid_block_res_sample = self._apply_controlnet_blocks(h, down_block_res_samples)
121
+ # scaling
122
+ down_block_res_samples = [h * conditioning_scale for h in down_block_res_samples]
123
+ mid_block_res_sample *= conditioning_scale
124
+
125
+ return down_block_res_samples, mid_block_res_sample
126
+
127
+ def _prepare_time_and_class_embedding(self, x, timesteps, class_labels):
128
+ # 1. time
129
+ t_emb = get_timestep_embedding(timesteps, self.block_out_channels[0])
130
+
131
+ # timesteps does not contain any weights and will always return f32 tensors
132
+ # but time_embedding might actually be running in fp16. so we need to cast here.
133
+ # there might be better ways to encapsulate this.
134
+ t_emb = t_emb.to(dtype=x.dtype)
135
+ emb = self.time_embed(t_emb)
136
+
137
+ # 2. class
138
+ if self.num_class_embeds is not None:
139
+ if class_labels is None:
140
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
141
+ class_emb = self.class_embedding(class_labels)
142
+ class_emb = class_emb.to(dtype=x.dtype)
143
+ emb = emb + class_emb
144
+
145
+ return emb
146
+
147
+ def _apply_initial_convolution(self, x):
148
+ # 3. initial convolution
149
+ h = self.conv_in(x)
150
+ return h
151
+
152
+ def _apply_down_blocks(self, emb, context, h):
153
+ # 4. down
154
+ if context is not None and self.with_conditioning is False:
155
+ raise ValueError("model should have with_conditioning = True if context is provided")
156
+ down_block_res_samples: list[torch.Tensor] = [h]
157
+ for downsample_block in self.down_blocks:
158
+ h, res_samples = downsample_block(hidden_states=h, temb=emb, context=context)
159
+ for residual in res_samples:
160
+ down_block_res_samples.append(residual)
161
+
162
+ return down_block_res_samples, h
163
+
164
+ def _apply_mid_block(self, emb, context, h):
165
+ # 5. mid
166
+ h = self.middle_block(hidden_states=h, temb=emb, context=context)
167
+ return h
168
+
169
+ def _apply_controlnet_blocks(self, h, down_block_res_samples):
170
+ # 6. Control net blocks
171
+ controlnet_down_block_res_samples = []
172
+ for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
173
+ down_block_res_sample = controlnet_block(down_block_res_sample)
174
+ controlnet_down_block_res_samples.append(down_block_res_sample)
175
+
176
+ mid_block_res_sample = self.controlnet_mid_block(h)
177
+
178
+ return controlnet_down_block_res_samples, mid_block_res_sample
@@ -0,0 +1,410 @@
1
+ # Copyright (c) MONAI Consortium
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ # http://www.apache.org/licenses/LICENSE-2.0
6
+ # Unless required by applicable law or agreed to in writing, software
7
+ # distributed under the License is distributed on an "AS IS" BASIS,
8
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9
+ # See the License for the specific language governing permissions and
10
+ # limitations under the License.
11
+ #
12
+ # =========================================================================
13
+ # Adapted from https://github.com/huggingface/diffusers
14
+ # which has the following license:
15
+ # https://github.com/huggingface/diffusers/blob/main/LICENSE
16
+ #
17
+ # Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved.
18
+ #
19
+ # Licensed under the Apache License, Version 2.0 (the "License");
20
+ # you may not use this file except in compliance with the License.
21
+ # You may obtain a copy of the License at
22
+ #
23
+ # http://www.apache.org/licenses/LICENSE-2.0
24
+ #
25
+ # Unless required by applicable law or agreed to in writing, software
26
+ # distributed under the License is distributed on an "AS IS" BASIS,
27
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
28
+ # See the License for the specific language governing permissions and
29
+ # limitations under the License.
30
+ # =========================================================================
31
+
32
+ from __future__ import annotations
33
+
34
+ from collections.abc import Sequence
35
+
36
+ import torch
37
+ from torch import nn
38
+
39
+ from monai.networks.blocks import Convolution
40
+ from monai.utils import ensure_tuple_rep, optional_import
41
+ from monai.utils.type_conversion import convert_to_tensor
42
+
43
+ get_down_block, has_get_down_block = optional_import(
44
+ "generative.networks.nets.diffusion_model_unet", name="get_down_block"
45
+ )
46
+ get_mid_block, has_get_mid_block = optional_import(
47
+ "generative.networks.nets.diffusion_model_unet", name="get_mid_block"
48
+ )
49
+ get_timestep_embedding, has_get_timestep_embedding = optional_import(
50
+ "generative.networks.nets.diffusion_model_unet", name="get_timestep_embedding"
51
+ )
52
+ get_up_block, has_get_up_block = optional_import("generative.networks.nets.diffusion_model_unet", name="get_up_block")
53
+ xformers, has_xformers = optional_import("xformers")
54
+ zero_module, has_zero_module = optional_import("generative.networks.nets.diffusion_model_unet", name="zero_module")
55
+
56
+ __all__ = ["DiffusionModelUNetMaisi"]
57
+
58
+
59
+ class DiffusionModelUNetMaisi(nn.Module):
60
+ """
61
+ U-Net network with timestep embedding and attention mechanisms for conditioning based on
62
+ Rombach et al. "High-Resolution Image Synthesis with Latent Diffusion Models" https://arxiv.org/abs/2112.10752
63
+ and Pinaya et al. "Brain Imaging Generation with Latent Diffusion Models" https://arxiv.org/abs/2209.07162
64
+
65
+ Args:
66
+ spatial_dims: Number of spatial dimensions.
67
+ in_channels: Number of input channels.
68
+ out_channels: Number of output channels.
69
+ num_res_blocks: Number of residual blocks (see ResnetBlock) per level. Can be a single integer or a sequence of integers.
70
+ num_channels: Tuple of block output channels.
71
+ attention_levels: List of levels to add attention.
72
+ norm_num_groups: Number of groups for the normalization.
73
+ norm_eps: Epsilon for the normalization.
74
+ resblock_updown: If True, use residual blocks for up/downsampling.
75
+ num_head_channels: Number of channels in each attention head. Can be a single integer or a sequence of integers.
76
+ with_conditioning: If True, add spatial transformers to perform conditioning.
77
+ transformer_num_layers: Number of layers of Transformer blocks to use.
78
+ cross_attention_dim: Number of context dimensions to use.
79
+ num_class_embeds: If specified (as an int), then this model will be class-conditional with `num_class_embeds` classes.
80
+ upcast_attention: If True, upcast attention operations to full precision.
81
+ use_flash_attention: If True, use flash attention for a memory efficient attention mechanism.
82
+ dropout_cattn: If different from zero, this will be the dropout value for the cross-attention layers.
83
+ include_top_region_index_input: If True, use top region index input.
84
+ include_bottom_region_index_input: If True, use bottom region index input.
85
+ include_spacing_input: If True, use spacing input.
86
+ """
87
+
88
+ def __init__(
89
+ self,
90
+ spatial_dims: int,
91
+ in_channels: int,
92
+ out_channels: int,
93
+ num_res_blocks: Sequence[int] | int = (2, 2, 2, 2),
94
+ num_channels: Sequence[int] = (32, 64, 64, 64),
95
+ attention_levels: Sequence[bool] = (False, False, True, True),
96
+ norm_num_groups: int = 32,
97
+ norm_eps: float = 1e-6,
98
+ resblock_updown: bool = False,
99
+ num_head_channels: int | Sequence[int] = 8,
100
+ with_conditioning: bool = False,
101
+ transformer_num_layers: int = 1,
102
+ cross_attention_dim: int | None = None,
103
+ num_class_embeds: int | None = None,
104
+ upcast_attention: bool = False,
105
+ use_flash_attention: bool = False,
106
+ dropout_cattn: float = 0.0,
107
+ include_top_region_index_input: bool = False,
108
+ include_bottom_region_index_input: bool = False,
109
+ include_spacing_input: bool = False,
110
+ ) -> None:
111
+ super().__init__()
112
+ if with_conditioning is True and cross_attention_dim is None:
113
+ raise ValueError(
114
+ "DiffusionModelUNetMaisi expects dimension of the cross-attention conditioning (cross_attention_dim) "
115
+ "when using with_conditioning."
116
+ )
117
+ if cross_attention_dim is not None and with_conditioning is False:
118
+ raise ValueError(
119
+ "DiffusionModelUNetMaisi expects with_conditioning=True when specifying the cross_attention_dim."
120
+ )
121
+ if dropout_cattn > 1.0 or dropout_cattn < 0.0:
122
+ raise ValueError("Dropout cannot be negative or >1.0!")
123
+
124
+ # All number of channels should be multiple of num_groups
125
+ if any((out_channel % norm_num_groups) != 0 for out_channel in num_channels):
126
+ raise ValueError(
127
+ f"DiffusionModelUNetMaisi expects all num_channels being multiple of norm_num_groups, "
128
+ f"but get num_channels: {num_channels} and norm_num_groups: {norm_num_groups}"
129
+ )
130
+
131
+ if len(num_channels) != len(attention_levels):
132
+ raise ValueError(
133
+ f"DiffusionModelUNetMaisi expects num_channels being same size of attention_levels, "
134
+ f"but get num_channels: {len(num_channels)} and attention_levels: {len(attention_levels)}"
135
+ )
136
+
137
+ if isinstance(num_head_channels, int):
138
+ num_head_channels = ensure_tuple_rep(num_head_channels, len(attention_levels))
139
+
140
+ if len(num_head_channels) != len(attention_levels):
141
+ raise ValueError(
142
+ "num_head_channels should have the same length as attention_levels. For the i levels without attention,"
143
+ " i.e. `attention_level[i]=False`, the num_head_channels[i] will be ignored."
144
+ )
145
+
146
+ if isinstance(num_res_blocks, int):
147
+ num_res_blocks = ensure_tuple_rep(num_res_blocks, len(num_channels))
148
+
149
+ if len(num_res_blocks) != len(num_channels):
150
+ raise ValueError(
151
+ "`num_res_blocks` should be a single integer or a tuple of integers with the same length as "
152
+ "`num_channels`."
153
+ )
154
+
155
+ if use_flash_attention and not has_xformers:
156
+ raise ValueError("use_flash_attention is True but xformers is not installed.")
157
+
158
+ if use_flash_attention is True and not torch.cuda.is_available():
159
+ raise ValueError(
160
+ "torch.cuda.is_available() should be True but is False. Flash attention is only available for GPU."
161
+ )
162
+
163
+ self.in_channels = in_channels
164
+ self.block_out_channels = num_channels
165
+ self.out_channels = out_channels
166
+ self.num_res_blocks = num_res_blocks
167
+ self.attention_levels = attention_levels
168
+ self.num_head_channels = num_head_channels
169
+ self.with_conditioning = with_conditioning
170
+
171
+ # input
172
+ self.conv_in = Convolution(
173
+ spatial_dims=spatial_dims,
174
+ in_channels=in_channels,
175
+ out_channels=num_channels[0],
176
+ strides=1,
177
+ kernel_size=3,
178
+ padding=1,
179
+ conv_only=True,
180
+ )
181
+
182
+ # time
183
+ time_embed_dim = num_channels[0] * 4
184
+ self.time_embed = self._create_embedding_module(num_channels[0], time_embed_dim)
185
+
186
+ # class embedding
187
+ self.num_class_embeds = num_class_embeds
188
+ if num_class_embeds is not None:
189
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
190
+
191
+ self.include_top_region_index_input = include_top_region_index_input
192
+ self.include_bottom_region_index_input = include_bottom_region_index_input
193
+ self.include_spacing_input = include_spacing_input
194
+
195
+ new_time_embed_dim = time_embed_dim
196
+ if self.include_top_region_index_input:
197
+ self.top_region_index_layer = self._create_embedding_module(4, time_embed_dim)
198
+ new_time_embed_dim += time_embed_dim
199
+ if self.include_bottom_region_index_input:
200
+ self.bottom_region_index_layer = self._create_embedding_module(4, time_embed_dim)
201
+ new_time_embed_dim += time_embed_dim
202
+ if self.include_spacing_input:
203
+ self.spacing_layer = self._create_embedding_module(3, time_embed_dim)
204
+ new_time_embed_dim += time_embed_dim
205
+
206
+ # down
207
+ self.down_blocks = nn.ModuleList([])
208
+ output_channel = num_channels[0]
209
+ for i in range(len(num_channels)):
210
+ input_channel = output_channel
211
+ output_channel = num_channels[i]
212
+ is_final_block = i == len(num_channels) - 1
213
+
214
+ down_block = get_down_block(
215
+ spatial_dims=spatial_dims,
216
+ in_channels=input_channel,
217
+ out_channels=output_channel,
218
+ temb_channels=new_time_embed_dim,
219
+ num_res_blocks=num_res_blocks[i],
220
+ norm_num_groups=norm_num_groups,
221
+ norm_eps=norm_eps,
222
+ add_downsample=not is_final_block,
223
+ resblock_updown=resblock_updown,
224
+ with_attn=(attention_levels[i] and not with_conditioning),
225
+ with_cross_attn=(attention_levels[i] and with_conditioning),
226
+ num_head_channels=num_head_channels[i],
227
+ transformer_num_layers=transformer_num_layers,
228
+ cross_attention_dim=cross_attention_dim,
229
+ upcast_attention=upcast_attention,
230
+ use_flash_attention=use_flash_attention,
231
+ dropout_cattn=dropout_cattn,
232
+ )
233
+
234
+ self.down_blocks.append(down_block)
235
+
236
+ # mid
237
+ self.middle_block = get_mid_block(
238
+ spatial_dims=spatial_dims,
239
+ in_channels=num_channels[-1],
240
+ temb_channels=new_time_embed_dim,
241
+ norm_num_groups=norm_num_groups,
242
+ norm_eps=norm_eps,
243
+ with_conditioning=with_conditioning,
244
+ num_head_channels=num_head_channels[-1],
245
+ transformer_num_layers=transformer_num_layers,
246
+ cross_attention_dim=cross_attention_dim,
247
+ upcast_attention=upcast_attention,
248
+ use_flash_attention=use_flash_attention,
249
+ dropout_cattn=dropout_cattn,
250
+ )
251
+
252
+ # up
253
+ self.up_blocks = nn.ModuleList([])
254
+ reversed_block_out_channels = list(reversed(num_channels))
255
+ reversed_num_res_blocks = list(reversed(num_res_blocks))
256
+ reversed_attention_levels = list(reversed(attention_levels))
257
+ reversed_num_head_channels = list(reversed(num_head_channels))
258
+ output_channel = reversed_block_out_channels[0]
259
+ for i in range(len(reversed_block_out_channels)):
260
+ prev_output_channel = output_channel
261
+ output_channel = reversed_block_out_channels[i]
262
+ input_channel = reversed_block_out_channels[min(i + 1, len(num_channels) - 1)]
263
+
264
+ is_final_block = i == len(num_channels) - 1
265
+
266
+ up_block = get_up_block(
267
+ spatial_dims=spatial_dims,
268
+ in_channels=input_channel,
269
+ prev_output_channel=prev_output_channel,
270
+ out_channels=output_channel,
271
+ temb_channels=new_time_embed_dim,
272
+ num_res_blocks=reversed_num_res_blocks[i] + 1,
273
+ norm_num_groups=norm_num_groups,
274
+ norm_eps=norm_eps,
275
+ add_upsample=not is_final_block,
276
+ resblock_updown=resblock_updown,
277
+ with_attn=(reversed_attention_levels[i] and not with_conditioning),
278
+ with_cross_attn=(reversed_attention_levels[i] and with_conditioning),
279
+ num_head_channels=reversed_num_head_channels[i],
280
+ transformer_num_layers=transformer_num_layers,
281
+ cross_attention_dim=cross_attention_dim,
282
+ upcast_attention=upcast_attention,
283
+ use_flash_attention=use_flash_attention,
284
+ dropout_cattn=dropout_cattn,
285
+ )
286
+
287
+ self.up_blocks.append(up_block)
288
+
289
+ # out
290
+ self.out = nn.Sequential(
291
+ nn.GroupNorm(num_groups=norm_num_groups, num_channels=num_channels[0], eps=norm_eps, affine=True),
292
+ nn.SiLU(),
293
+ zero_module(
294
+ Convolution(
295
+ spatial_dims=spatial_dims,
296
+ in_channels=num_channels[0],
297
+ out_channels=out_channels,
298
+ strides=1,
299
+ kernel_size=3,
300
+ padding=1,
301
+ conv_only=True,
302
+ )
303
+ ),
304
+ )
305
+
306
+ def _create_embedding_module(self, input_dim, embed_dim):
307
+ model = nn.Sequential(nn.Linear(input_dim, embed_dim), nn.SiLU(), nn.Linear(embed_dim, embed_dim))
308
+ return model
309
+
310
+ def _get_time_and_class_embedding(self, x, timesteps, class_labels):
311
+ t_emb = get_timestep_embedding(timesteps, self.block_out_channels[0])
312
+
313
+ # timesteps does not contain any weights and will always return f32 tensors
314
+ # but time_embedding might actually be running in fp16. so we need to cast here.
315
+ # there might be better ways to encapsulate this.
316
+ t_emb = t_emb.to(dtype=x.dtype)
317
+ emb = self.time_embed(t_emb)
318
+
319
+ if self.num_class_embeds is not None:
320
+ if class_labels is None:
321
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
322
+ class_emb = self.class_embedding(class_labels)
323
+ class_emb = class_emb.to(dtype=x.dtype)
324
+ emb += class_emb
325
+ return emb
326
+
327
+ def _get_input_embeddings(self, emb, top_index, bottom_index, spacing):
328
+ if self.include_top_region_index_input:
329
+ _emb = self.top_region_index_layer(top_index)
330
+ emb = torch.cat((emb, _emb), dim=1)
331
+ if self.include_bottom_region_index_input:
332
+ _emb = self.bottom_region_index_layer(bottom_index)
333
+ emb = torch.cat((emb, _emb), dim=1)
334
+ if self.include_spacing_input:
335
+ _emb = self.spacing_layer(spacing)
336
+ emb = torch.cat((emb, _emb), dim=1)
337
+ return emb
338
+
339
+ def _apply_down_blocks(self, h, emb, context, down_block_additional_residuals):
340
+ if context is not None and self.with_conditioning is False:
341
+ raise ValueError("model should have with_conditioning = True if context is provided")
342
+ down_block_res_samples: list[torch.Tensor] = [h]
343
+ for downsample_block in self.down_blocks:
344
+ h, res_samples = downsample_block(hidden_states=h, temb=emb, context=context)
345
+ down_block_res_samples.extend(res_samples)
346
+
347
+ # Additional residual conections for Controlnets
348
+ if down_block_additional_residuals is not None:
349
+ new_down_block_res_samples: list[torch.Tensor] = []
350
+ for down_block_res_sample, down_block_additional_residual in zip(
351
+ down_block_res_samples, down_block_additional_residuals
352
+ ):
353
+ down_block_res_sample += down_block_additional_residual
354
+ new_down_block_res_samples.append(down_block_res_sample)
355
+
356
+ down_block_res_samples = new_down_block_res_samples
357
+ return h, down_block_res_samples
358
+
359
+ def _apply_up_blocks(self, h, emb, context, down_block_res_samples):
360
+ for upsample_block in self.up_blocks:
361
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
362
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
363
+ h = upsample_block(hidden_states=h, res_hidden_states_list=res_samples, temb=emb, context=context)
364
+
365
+ return h
366
+
367
+ def forward(
368
+ self,
369
+ x: torch.Tensor,
370
+ timesteps: torch.Tensor,
371
+ context: torch.Tensor | None = None,
372
+ class_labels: torch.Tensor | None = None,
373
+ down_block_additional_residuals: tuple[torch.Tensor] | None = None,
374
+ mid_block_additional_residual: torch.Tensor | None = None,
375
+ top_region_index_tensor: torch.Tensor | None = None,
376
+ bottom_region_index_tensor: torch.Tensor | None = None,
377
+ spacing_tensor: torch.Tensor | None = None,
378
+ ) -> torch.Tensor:
379
+ """
380
+ Forward pass through the UNet model.
381
+
382
+ Args:
383
+ x: Input tensor of shape (N, C, SpatialDims).
384
+ timesteps: Timestep tensor of shape (N,).
385
+ context: Context tensor of shape (N, 1, ContextDim).
386
+ class_labels: Class labels tensor of shape (N,).
387
+ down_block_additional_residuals: Additional residual tensors for down blocks of shape (N, C, FeatureMapsDims).
388
+ mid_block_additional_residual: Additional residual tensor for mid block of shape (N, C, FeatureMapsDims).
389
+ top_region_index_tensor: Tensor representing top region index of shape (N, 4).
390
+ bottom_region_index_tensor: Tensor representing bottom region index of shape (N, 4).
391
+ spacing_tensor: Tensor representing spacing of shape (N, 3).
392
+
393
+ Returns:
394
+ A tensor representing the output of the UNet model.
395
+ """
396
+
397
+ emb = self._get_time_and_class_embedding(x, timesteps, class_labels)
398
+ emb = self._get_input_embeddings(emb, top_region_index_tensor, bottom_region_index_tensor, spacing_tensor)
399
+ h = self.conv_in(x)
400
+ h, _updated_down_block_res_samples = self._apply_down_blocks(h, emb, context, down_block_additional_residuals)
401
+ h = self.middle_block(h, emb, context)
402
+
403
+ # Additional residual conections for Controlnets
404
+ if mid_block_additional_residual is not None:
405
+ h += mid_block_additional_residual
406
+
407
+ h = self._apply_up_blocks(h, emb, context, _updated_down_block_res_samples)
408
+ h = self.out(h)
409
+ h_tensor: torch.Tensor = convert_to_tensor(h)
410
+ return h_tensor
@@ -0,0 +1,10 @@
1
+ # Copyright (c) MONAI Consortium
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ # http://www.apache.org/licenses/LICENSE-2.0
6
+ # Unless required by applicable law or agreed to in writing, software
7
+ # distributed under the License is distributed on an "AS IS" BASIS,
8
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9
+ # See the License for the specific language governing permissions and
10
+ # limitations under the License.