monai-weekly 1.4.dev2425__py3-none-any.whl → 1.4.dev2426__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- monai/__init__.py +1 -1
- monai/_version.py +3 -3
- monai/apps/deepedit/transforms.py +1 -1
- monai/apps/deepgrow/transforms.py +1 -1
- monai/apps/nuclick/transforms.py +1 -1
- monai/apps/pathology/transforms/post/array.py +1 -1
- monai/apps/pathology/utils.py +2 -2
- monai/data/ultrasound_confidence_map.py +38 -7
- monai/losses/dice.py +10 -3
- monai/metrics/utils.py +3 -3
- monai/transforms/intensity/array.py +25 -2
- monai/transforms/signal/array.py +1 -1
- monai/utils/module.py +6 -3
- {monai_weekly-1.4.dev2425.dist-info → monai_weekly-1.4.dev2426.dist-info}/METADATA +4 -1
- {monai_weekly-1.4.dev2425.dist-info → monai_weekly-1.4.dev2426.dist-info}/RECORD +18 -18
- {monai_weekly-1.4.dev2425.dist-info → monai_weekly-1.4.dev2426.dist-info}/WHEEL +1 -1
- {monai_weekly-1.4.dev2425.dist-info → monai_weekly-1.4.dev2426.dist-info}/LICENSE +0 -0
- {monai_weekly-1.4.dev2425.dist-info → monai_weekly-1.4.dev2426.dist-info}/top_level.txt +0 -0
monai/__init__.py
CHANGED
monai/_version.py
CHANGED
@@ -8,11 +8,11 @@ import json
|
|
8
8
|
|
9
9
|
version_json = '''
|
10
10
|
{
|
11
|
-
"date": "2024-06-
|
11
|
+
"date": "2024-06-30T02:18:33+0000",
|
12
12
|
"dirty": false,
|
13
13
|
"error": null,
|
14
|
-
"full-revisionid": "
|
15
|
-
"version": "1.4.
|
14
|
+
"full-revisionid": "d622a16f927841fdd7d057b7553805405f0805e4",
|
15
|
+
"version": "1.4.dev2426"
|
16
16
|
}
|
17
17
|
''' # END VERSION_JSON
|
18
18
|
|
@@ -30,7 +30,7 @@ measure, _ = optional_import("skimage.measure", "0.14.2", min_version)
|
|
30
30
|
|
31
31
|
logger = logging.getLogger(__name__)
|
32
32
|
|
33
|
-
distance_transform_cdt, _ = optional_import("scipy.ndimage
|
33
|
+
distance_transform_cdt, _ = optional_import("scipy.ndimage", name="distance_transform_cdt")
|
34
34
|
|
35
35
|
|
36
36
|
class DiscardAddGuidanced(MapTransform):
|
@@ -27,7 +27,7 @@ from monai.utils import InterpolateMode, ensure_tuple, ensure_tuple_rep, min_ver
|
|
27
27
|
from monai.utils.enums import PostFix
|
28
28
|
|
29
29
|
measure, _ = optional_import("skimage.measure", "0.14.2", min_version)
|
30
|
-
distance_transform_cdt, _ = optional_import("scipy.ndimage
|
30
|
+
distance_transform_cdt, _ = optional_import("scipy.ndimage", name="distance_transform_cdt")
|
31
31
|
|
32
32
|
DEFAULT_POST_FIX = PostFix.meta()
|
33
33
|
|
monai/apps/nuclick/transforms.py
CHANGED
@@ -24,7 +24,7 @@ from monai.utils import StrEnum, convert_to_numpy, optional_import
|
|
24
24
|
|
25
25
|
measure, _ = optional_import("skimage.measure")
|
26
26
|
morphology, _ = optional_import("skimage.morphology")
|
27
|
-
distance_transform_cdt, _ = optional_import("scipy.ndimage
|
27
|
+
distance_transform_cdt, _ = optional_import("scipy.ndimage", name="distance_transform_cdt")
|
28
28
|
|
29
29
|
|
30
30
|
class NuclickKeys(StrEnum):
|
@@ -33,7 +33,7 @@ from monai.utils import TransformBackends, convert_to_numpy, optional_import
|
|
33
33
|
from monai.utils.misc import ensure_tuple_rep
|
34
34
|
from monai.utils.type_conversion import convert_to_dst_type, convert_to_tensor
|
35
35
|
|
36
|
-
label, _ = optional_import("scipy.ndimage
|
36
|
+
label, _ = optional_import("scipy.ndimage", name="label")
|
37
37
|
disk, _ = optional_import("skimage.morphology", name="disk")
|
38
38
|
opening, _ = optional_import("skimage.morphology", name="opening")
|
39
39
|
watershed, _ = optional_import("skimage.segmentation", name="watershed")
|
monai/apps/pathology/utils.py
CHANGED
@@ -33,10 +33,10 @@ def compute_multi_instance_mask(mask: np.ndarray, threshold: float) -> Any:
|
|
33
33
|
"""
|
34
34
|
|
35
35
|
neg = 255 - mask * 255
|
36
|
-
distance = ndimage.
|
36
|
+
distance = ndimage.distance_transform_edt(neg)
|
37
37
|
binary = distance < threshold
|
38
38
|
|
39
|
-
filled_image = ndimage.
|
39
|
+
filled_image = ndimage.binary_fill_holes(binary)
|
40
40
|
multi_instance_mask = measure.label(filled_image, connectivity=2)
|
41
41
|
|
42
42
|
return multi_instance_mask
|
@@ -21,7 +21,9 @@ __all__ = ["UltrasoundConfidenceMap"]
|
|
21
21
|
cv2, _ = optional_import("cv2")
|
22
22
|
csc_matrix, _ = optional_import("scipy.sparse", "1.7.1", min_version, "csc_matrix")
|
23
23
|
spsolve, _ = optional_import("scipy.sparse.linalg", "1.7.1", min_version, "spsolve")
|
24
|
+
cg, _ = optional_import("scipy.sparse.linalg", "1.7.1", min_version, "cg")
|
24
25
|
hilbert, _ = optional_import("scipy.signal", "1.7.1", min_version, "hilbert")
|
26
|
+
ruge_stuben_solver, _ = optional_import("pyamg", "5.0.0", min_version, "ruge_stuben_solver")
|
25
27
|
|
26
28
|
|
27
29
|
class UltrasoundConfidenceMap:
|
@@ -30,6 +32,9 @@ class UltrasoundConfidenceMap:
|
|
30
32
|
It generates a confidence map by setting source and sink points in the image and computing the probability
|
31
33
|
for random walks to reach the source for each pixel.
|
32
34
|
|
35
|
+
The official code is available at:
|
36
|
+
https://campar.in.tum.de/Main/AthanasiosKaramalisCode
|
37
|
+
|
33
38
|
Args:
|
34
39
|
alpha (float, optional): Alpha parameter. Defaults to 2.0.
|
35
40
|
beta (float, optional): Beta parameter. Defaults to 90.0.
|
@@ -37,15 +42,33 @@ class UltrasoundConfidenceMap:
|
|
37
42
|
mode (str, optional): 'RF' or 'B' mode data. Defaults to 'B'.
|
38
43
|
sink_mode (str, optional): Sink mode. Defaults to 'all'. If 'mask' is selected, a mask must be when calling
|
39
44
|
the transform. Can be 'all', 'mid', 'min', or 'mask'.
|
45
|
+
use_cg (bool, optional): Use Conjugate Gradient method for solving the linear system. Defaults to False.
|
46
|
+
cg_tol (float, optional): Tolerance for the Conjugate Gradient method. Defaults to 1e-6.
|
47
|
+
Will be used only if `use_cg` is True.
|
48
|
+
cg_maxiter (int, optional): Maximum number of iterations for the Conjugate Gradient method. Defaults to 200.
|
49
|
+
Will be used only if `use_cg` is True.
|
40
50
|
"""
|
41
51
|
|
42
|
-
def __init__(
|
52
|
+
def __init__(
|
53
|
+
self,
|
54
|
+
alpha: float = 2.0,
|
55
|
+
beta: float = 90.0,
|
56
|
+
gamma: float = 0.05,
|
57
|
+
mode="B",
|
58
|
+
sink_mode="all",
|
59
|
+
use_cg=False,
|
60
|
+
cg_tol=1e-6,
|
61
|
+
cg_maxiter=200,
|
62
|
+
):
|
43
63
|
# The hyperparameters for confidence map estimation
|
44
64
|
self.alpha = alpha
|
45
65
|
self.beta = beta
|
46
66
|
self.gamma = gamma
|
47
67
|
self.mode = mode
|
48
68
|
self.sink_mode = sink_mode
|
69
|
+
self.use_cg = use_cg
|
70
|
+
self.cg_tol = cg_tol
|
71
|
+
self.cg_maxiter = cg_maxiter
|
49
72
|
|
50
73
|
# The precision to use for all computations
|
51
74
|
self.eps = np.finfo("float64").eps
|
@@ -228,17 +251,18 @@ class UltrasoundConfidenceMap:
|
|
228
251
|
s = self.normalize(s)
|
229
252
|
|
230
253
|
# Horizontal penalty
|
231
|
-
s[:
|
232
|
-
#
|
233
|
-
#
|
254
|
+
s[vertical_end:] += gamma
|
255
|
+
# Here there is a difference between the official MATLAB code and the paper
|
256
|
+
# on the edge penalty. We directly implement what the official code does.
|
234
257
|
|
235
258
|
# Normalize differences
|
236
259
|
s = self.normalize(s)
|
237
260
|
|
238
261
|
# Gaussian weighting function
|
239
262
|
s = -(
|
240
|
-
(np.exp(-beta * s, dtype="float64")) +
|
241
|
-
) # --> This epsilon changes results drastically default:
|
263
|
+
(np.exp(-beta * s, dtype="float64")) + 1e-5
|
264
|
+
) # --> This epsilon changes results drastically default: 10e-6
|
265
|
+
# Please notice that it is not 1e-6, it is 10e-6 which is actually different.
|
242
266
|
|
243
267
|
# Create Laplacian, diagonal missing
|
244
268
|
lap = csc_matrix((s, (i, j)))
|
@@ -256,7 +280,14 @@ class UltrasoundConfidenceMap:
|
|
256
280
|
return lap
|
257
281
|
|
258
282
|
def _solve_linear_system(self, lap, rhs):
|
259
|
-
|
283
|
+
|
284
|
+
if self.use_cg:
|
285
|
+
lap_sparse = lap.tocsr()
|
286
|
+
ml = ruge_stuben_solver(lap_sparse, coarse_solver="pinv")
|
287
|
+
m = ml.aspreconditioner(cycle="V")
|
288
|
+
x, _ = cg(lap, rhs, tol=self.cg_tol, maxiter=self.cg_maxiter, M=m)
|
289
|
+
else:
|
290
|
+
x = spsolve(lap, rhs)
|
260
291
|
|
261
292
|
return x
|
262
293
|
|
monai/losses/dice.py
CHANGED
@@ -811,7 +811,7 @@ class DiceFocalLoss(_Loss):
|
|
811
811
|
The details of Focal Loss is shown in ``monai.losses.FocalLoss``.
|
812
812
|
|
813
813
|
``gamma`` and ``lambda_focal`` are only used for the focal loss.
|
814
|
-
``include_background``, ``weight`` and ``
|
814
|
+
``include_background``, ``weight``, ``reduction``, and ``alpha`` are used for both losses,
|
815
815
|
and other parameters are only used for dice loss.
|
816
816
|
|
817
817
|
"""
|
@@ -837,6 +837,7 @@ class DiceFocalLoss(_Loss):
|
|
837
837
|
weight: Sequence[float] | float | int | torch.Tensor | None = None,
|
838
838
|
lambda_dice: float = 1.0,
|
839
839
|
lambda_focal: float = 1.0,
|
840
|
+
alpha: float | None = None,
|
840
841
|
) -> None:
|
841
842
|
"""
|
842
843
|
Args:
|
@@ -871,7 +872,8 @@ class DiceFocalLoss(_Loss):
|
|
871
872
|
Defaults to 1.0.
|
872
873
|
lambda_focal: the trade-off weight value for focal loss. The value should be no less than 0.0.
|
873
874
|
Defaults to 1.0.
|
874
|
-
|
875
|
+
alpha: value of the alpha in the definition of the alpha-balanced Focal loss. The value should be in
|
876
|
+
[0, 1]. Defaults to None.
|
875
877
|
"""
|
876
878
|
super().__init__()
|
877
879
|
weight = focal_weight if focal_weight is not None else weight
|
@@ -890,7 +892,12 @@ class DiceFocalLoss(_Loss):
|
|
890
892
|
weight=weight,
|
891
893
|
)
|
892
894
|
self.focal = FocalLoss(
|
893
|
-
include_background=include_background,
|
895
|
+
include_background=include_background,
|
896
|
+
to_onehot_y=False,
|
897
|
+
gamma=gamma,
|
898
|
+
weight=weight,
|
899
|
+
alpha=alpha,
|
900
|
+
reduction=reduction,
|
894
901
|
)
|
895
902
|
if lambda_dice < 0.0:
|
896
903
|
raise ValueError("lambda_dice should be no less than 0.0.")
|
monai/metrics/utils.py
CHANGED
@@ -35,9 +35,9 @@ from monai.utils import (
|
|
35
35
|
optional_import,
|
36
36
|
)
|
37
37
|
|
38
|
-
binary_erosion, _ = optional_import("scipy.ndimage
|
39
|
-
distance_transform_edt, _ = optional_import("scipy.ndimage
|
40
|
-
distance_transform_cdt, _ = optional_import("scipy.ndimage
|
38
|
+
binary_erosion, _ = optional_import("scipy.ndimage", name="binary_erosion")
|
39
|
+
distance_transform_edt, _ = optional_import("scipy.ndimage", name="distance_transform_edt")
|
40
|
+
distance_transform_cdt, _ = optional_import("scipy.ndimage", name="distance_transform_cdt")
|
41
41
|
|
42
42
|
__all__ = [
|
43
43
|
"ignore_background",
|
@@ -2789,6 +2789,9 @@ class UltrasoundConfidenceMapTransform(Transform):
|
|
2789
2789
|
It generates a confidence map by setting source and sink points in the image and computing the probability
|
2790
2790
|
for random walks to reach the source for each pixel.
|
2791
2791
|
|
2792
|
+
The official code is available at:
|
2793
|
+
https://campar.in.tum.de/Main/AthanasiosKaramalisCode
|
2794
|
+
|
2792
2795
|
Args:
|
2793
2796
|
alpha (float, optional): Alpha parameter. Defaults to 2.0.
|
2794
2797
|
beta (float, optional): Beta parameter. Defaults to 90.0.
|
@@ -2796,14 +2799,32 @@ class UltrasoundConfidenceMapTransform(Transform):
|
|
2796
2799
|
mode (str, optional): 'RF' or 'B' mode data. Defaults to 'B'.
|
2797
2800
|
sink_mode (str, optional): Sink mode. Defaults to 'all'. If 'mask' is selected, a mask must be when
|
2798
2801
|
calling the transform. Can be one of 'all', 'mid', 'min', 'mask'.
|
2802
|
+
use_cg (bool, optional): Use Conjugate Gradient method for solving the linear system. Defaults to False.
|
2803
|
+
cg_tol (float, optional): Tolerance for the Conjugate Gradient method. Defaults to 1e-6.
|
2804
|
+
Will be used only if `use_cg` is True.
|
2805
|
+
cg_maxiter (int, optional): Maximum number of iterations for the Conjugate Gradient method. Defaults to 200.
|
2806
|
+
Will be used only if `use_cg` is True.
|
2799
2807
|
"""
|
2800
2808
|
|
2801
|
-
def __init__(
|
2809
|
+
def __init__(
|
2810
|
+
self,
|
2811
|
+
alpha: float = 2.0,
|
2812
|
+
beta: float = 90.0,
|
2813
|
+
gamma: float = 0.05,
|
2814
|
+
mode="B",
|
2815
|
+
sink_mode="all",
|
2816
|
+
use_cg=False,
|
2817
|
+
cg_tol: float = 1.0e-6,
|
2818
|
+
cg_maxiter: int = 200,
|
2819
|
+
):
|
2802
2820
|
self.alpha = alpha
|
2803
2821
|
self.beta = beta
|
2804
2822
|
self.gamma = gamma
|
2805
2823
|
self.mode = mode
|
2806
2824
|
self.sink_mode = sink_mode
|
2825
|
+
self.use_cg = use_cg
|
2826
|
+
self.cg_tol = cg_tol
|
2827
|
+
self.cg_maxiter = cg_maxiter
|
2807
2828
|
|
2808
2829
|
if self.mode not in ["B", "RF"]:
|
2809
2830
|
raise ValueError(f"Unknown mode: {self.mode}. Supported modes are 'B' and 'RF'.")
|
@@ -2813,7 +2834,9 @@ class UltrasoundConfidenceMapTransform(Transform):
|
|
2813
2834
|
f"Unknown sink mode: {self.sink_mode}. Supported modes are 'all', 'mid', 'min' and 'mask'."
|
2814
2835
|
)
|
2815
2836
|
|
2816
|
-
self._compute_conf_map = UltrasoundConfidenceMap(
|
2837
|
+
self._compute_conf_map = UltrasoundConfidenceMap(
|
2838
|
+
self.alpha, self.beta, self.gamma, self.mode, self.sink_mode, self.use_cg, self.cg_tol, self.cg_maxiter
|
2839
|
+
)
|
2817
2840
|
|
2818
2841
|
def __call__(self, img: NdarrayOrTensor, mask: NdarrayOrTensor | None = None) -> NdarrayOrTensor:
|
2819
2842
|
"""Compute confidence map from an ultrasound image.
|
monai/transforms/signal/array.py
CHANGED
@@ -28,7 +28,7 @@ from monai.utils import optional_import
|
|
28
28
|
from monai.utils.enums import TransformBackends
|
29
29
|
from monai.utils.type_conversion import convert_data_type, convert_to_tensor
|
30
30
|
|
31
|
-
shift, has_shift = optional_import("scipy.ndimage
|
31
|
+
shift, has_shift = optional_import("scipy.ndimage", name="shift")
|
32
32
|
iirnotch, has_iirnotch = optional_import("scipy.signal", name="iirnotch")
|
33
33
|
with warnings.catch_warnings():
|
34
34
|
warnings.simplefilter("ignore", UserWarning) # project-monai/monai#5204
|
monai/utils/module.py
CHANGED
@@ -13,6 +13,7 @@ from __future__ import annotations
|
|
13
13
|
|
14
14
|
import enum
|
15
15
|
import functools
|
16
|
+
import importlib.util
|
16
17
|
import os
|
17
18
|
import pdb
|
18
19
|
import re
|
@@ -208,9 +209,11 @@ def load_submodules(
|
|
208
209
|
):
|
209
210
|
if (is_pkg or load_all) and name not in sys.modules and match(exclude_pattern, name) is None:
|
210
211
|
try:
|
211
|
-
|
212
|
-
|
213
|
-
|
212
|
+
mod_spec = importer.find_spec(name) # type: ignore
|
213
|
+
if mod_spec and mod_spec.loader:
|
214
|
+
mod = importlib.util.module_from_spec(mod_spec)
|
215
|
+
mod_spec.loader.exec_module(mod)
|
216
|
+
submodules.append(mod)
|
214
217
|
except OptionalImportError:
|
215
218
|
pass # could not import the optional deps., they are ignored
|
216
219
|
except ImportError as e:
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: monai-weekly
|
3
|
-
Version: 1.4.
|
3
|
+
Version: 1.4.dev2426
|
4
4
|
Summary: AI Toolkit for Healthcare Imaging
|
5
5
|
Home-page: https://monai.io/
|
6
6
|
Author: MONAI Consortium
|
@@ -67,6 +67,7 @@ Requires-Dist: zarr ; extra == 'all'
|
|
67
67
|
Requires-Dist: lpips ==0.1.4 ; extra == 'all'
|
68
68
|
Requires-Dist: nvidia-ml-py ; extra == 'all'
|
69
69
|
Requires-Dist: huggingface-hub ; extra == 'all'
|
70
|
+
Requires-Dist: pyamg >=5.0.0 ; extra == 'all'
|
70
71
|
Requires-Dist: transformers <4.41.0,>=4.36.0 ; (python_version <= "3.10") and extra == 'all'
|
71
72
|
Requires-Dist: onnxruntime ; (python_version <= "3.10") and extra == 'all'
|
72
73
|
Requires-Dist: cucim-cu12 ; (python_version >= "3.9" and python_version <= "3.10") and extra == 'all'
|
@@ -119,6 +120,8 @@ Provides-Extra: pillow
|
|
119
120
|
Requires-Dist: pillow !=8.3.0 ; extra == 'pillow'
|
120
121
|
Provides-Extra: psutil
|
121
122
|
Requires-Dist: psutil ; extra == 'psutil'
|
123
|
+
Provides-Extra: pyamg
|
124
|
+
Requires-Dist: pyamg >=5.0.0 ; extra == 'pyamg'
|
122
125
|
Provides-Extra: pydicom
|
123
126
|
Requires-Dist: pydicom ; extra == 'pydicom'
|
124
127
|
Provides-Extra: pynrrd
|
@@ -1,5 +1,5 @@
|
|
1
|
-
monai/__init__.py,sha256=
|
2
|
-
monai/_version.py,sha256=
|
1
|
+
monai/__init__.py,sha256=ImQNW_ROu1w5VUIP1j9o-vv9jfMvOCSuTsyZm6eHluE,2722
|
2
|
+
monai/_version.py,sha256=fknoI1rCBz7kKd3KcjzyJ-QgcWxoZW6hO4Vxvn5iVxE,503
|
3
3
|
monai/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
4
4
|
monai/_extensions/__init__.py,sha256=NEBPreRhQ8H9gVvgrLr_y52_TmqB96u_u4VQmeNT93I,642
|
5
5
|
monai/_extensions/loader.py,sha256=7SiKw36q-nOzH8CRbBurFrz7GM40GCu7rc93Tm8XpnI,3643
|
@@ -22,11 +22,11 @@ monai/apps/auto3dseg/transforms.py,sha256=iO4v9-dwQzvupJglX-H2HYuwUhmFdVgLbyh4Bu
|
|
22
22
|
monai/apps/auto3dseg/utils.py,sha256=7DPJbsL9YbhRdMZ6dEvCA_t_uLSSz7-WZSU2pMY4_qo,3138
|
23
23
|
monai/apps/deepedit/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
24
24
|
monai/apps/deepedit/interaction.py,sha256=h9zTmhHAmwndR315RknqXtLWYqyYGvdcmjP6EpRrzHg,4501
|
25
|
-
monai/apps/deepedit/transforms.py,sha256=
|
25
|
+
monai/apps/deepedit/transforms.py,sha256=Udj35m10Irek5Gtqo6Hgv6Lt7S6jSo-z0NuyVbs800o,38108
|
26
26
|
monai/apps/deepgrow/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
27
27
|
monai/apps/deepgrow/dataset.py,sha256=W0wv1QujA4sZgrAcBS64dl3OBbDBM2cF4RK0fDCQnRU,10054
|
28
28
|
monai/apps/deepgrow/interaction.py,sha256=-smtOl93i_SDEo_Yo8DE5U3FnDrUcdJWeP14nCq5GS4,3748
|
29
|
-
monai/apps/deepgrow/transforms.py,sha256=
|
29
|
+
monai/apps/deepgrow/transforms.py,sha256=MQ3WPGfqagXoN6ySccpPFWOQAcxKOX4VUeQ0Zybx45I,41873
|
30
30
|
monai/apps/detection/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
31
31
|
monai/apps/detection/metrics/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
32
32
|
monai/apps/detection/metrics/coco.py,sha256=bpF6hAAMKsBNLfat-Fzh0CR-0swDsAAVcwTaZ-lo1_g,26618
|
@@ -54,9 +54,9 @@ monai/apps/nnunet/__main__.py,sha256=qrloBLymK98OPcaBKocrlF8io2h4mUuXJPFVLZT-XDo
|
|
54
54
|
monai/apps/nnunet/nnunetv2_runner.py,sha256=0VZTpzmjkOhamdqYGd9bhTdZcRDeOsMOBIjaW1Upi8w,48001
|
55
55
|
monai/apps/nnunet/utils.py,sha256=OwLBcc0LZ_n7-ofE8EgkgmIHT23wq1xySCD6lphSjz0,6761
|
56
56
|
monai/apps/nuclick/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
57
|
-
monai/apps/nuclick/transforms.py,sha256=
|
57
|
+
monai/apps/nuclick/transforms.py,sha256=kf2xOb1iBx-OWc7wngsRWvdNV8KpX6xeTMFuYZqZ80E,24937
|
58
58
|
monai/apps/pathology/__init__.py,sha256=SRBbxgPzZdtC22TpY1m0-Z3SSBfMig6xYVSdgOClgXg,1030
|
59
|
-
monai/apps/pathology/utils.py,sha256=
|
59
|
+
monai/apps/pathology/utils.py,sha256=ulgDy43tSSmJwwBf-51NC0D0_Kf0BeymxEK7p136VFI,2838
|
60
60
|
monai/apps/pathology/engines/__init__.py,sha256=sqR2PUjmFf46jRRQA8ZZ9umbQzuLGDpBaRWQNVA2r7Q,650
|
61
61
|
monai/apps/pathology/engines/utils.py,sha256=Zr_DuWZ3qcIiNM7QjFSzgojeRPJV_UP5yGWIxrU5gI0,2397
|
62
62
|
monai/apps/pathology/handlers/__init__.py,sha256=YRvZ5C6I56qvu1DTGROJV5Sq0ZF3t6f34vV3Vdeg9Hk,609
|
@@ -69,7 +69,7 @@ monai/apps/pathology/metrics/__init__.py,sha256=c7xRUzhQesEWRIUFF6vM-Qs9v0Lv8QzC
|
|
69
69
|
monai/apps/pathology/metrics/lesion_froc.py,sha256=LNwcuatNEppyWMehnpBOn1474jH0hOJCq3gdq5mNw8k,7331
|
70
70
|
monai/apps/pathology/transforms/__init__.py,sha256=c3YkornqjX-fHRnwkpn_PxmnMje6pif1qxPdFNyQUWU,2243
|
71
71
|
monai/apps/pathology/transforms/post/__init__.py,sha256=WUZbaM2bg13mpbnNhol0D0A328XgUspTWtPvli1Uqpk,1995
|
72
|
-
monai/apps/pathology/transforms/post/array.py,sha256=
|
72
|
+
monai/apps/pathology/transforms/post/array.py,sha256=pjoTpdOzIHlT9L3GomVUcnVGHcPINrro5wtedIgyx-E,37245
|
73
73
|
monai/apps/pathology/transforms/post/dictionary.py,sha256=ZReeFqcZRkltwhRaKsedeptprB1B89lKWFimAzkk0Vg,25928
|
74
74
|
monai/apps/pathology/transforms/stain/__init__.py,sha256=i9HfrXiQHG5XHfqMtz2g7yBX7p1uN0xcGAPCYyXSmV8,836
|
75
75
|
monai/apps/pathology/transforms/stain/array.py,sha256=Dr1fCmkQzc8n40XbLAHpq1EG5wkMqTjWgYN2FGJfMGk,8366
|
@@ -132,7 +132,7 @@ monai/data/synthetic.py,sha256=H0MaQq2nnYxXEMlvOW1-XoWJWY_VKsgZ75tWLO1aCXg,7375
|
|
132
132
|
monai/data/test_time_augmentation.py,sha256=H1yUph4SkJ-bmKRXS-SRZfNKtWkihR7o4PTUWKuHxOw,9780
|
133
133
|
monai/data/thread_buffer.py,sha256=FtJlRwLHQzU9sf3XJk4G7b_-uKXaRQHAOMauc-zWN2Q,8840
|
134
134
|
monai/data/torchscript_utils.py,sha256=auz2GtrklxY6PMzvd-i9Kk73uIv0qydpOtzdSfZxrhE,5500
|
135
|
-
monai/data/ultrasound_confidence_map.py,sha256=
|
135
|
+
monai/data/ultrasound_confidence_map.py,sha256=rO63odFjgEju0EkwQWWpb2Oau3Txy7gwWGQuTus32uM,14459
|
136
136
|
monai/data/utils.py,sha256=WeIcBk7SUy-IOZiPuAp6dFZl9tktJvViDG3wMHaa9dU,66686
|
137
137
|
monai/data/video_dataset.py,sha256=mMTZCkgAx_BBoF4HHWcmEuT9zoNoUVPFtPeYYt76t-A,9075
|
138
138
|
monai/data/wsi_datasets.py,sha256=Ga5VnOdOXU_tlhdub0ueD4VtWhkQG4IrueXX-abE3bA,18619
|
@@ -193,7 +193,7 @@ monai/losses/barlow_twins.py,sha256=prDdaY0vXAXMuVDmc9Tv6svRZzNwKA0LdsmRaUmusiI,
|
|
193
193
|
monai/losses/cldice.py,sha256=NeUVJuFjowlH90MSLtq8HJzhzLVwal_G7gaOyc1_5OY,6328
|
194
194
|
monai/losses/contrastive.py,sha256=-SCvgQOA1JADQaFl7S4wEoIFtNd4uFkfTPlkMkky_LQ,3261
|
195
195
|
monai/losses/deform.py,sha256=mBOvFgKyW1qw9267AZCd0h_xi10xvy_ybYfhzQzl5rI,9701
|
196
|
-
monai/losses/dice.py,sha256=
|
196
|
+
monai/losses/dice.py,sha256=xS1tKk0hXA4C2iG55bJ0vX4bIECLww4WsBUqXMYxjms,51904
|
197
197
|
monai/losses/ds_loss.py,sha256=ts92Rc_YAkfb5WUUWxRTecpY32lVwC20pu7u-dJCgyY,3854
|
198
198
|
monai/losses/focal_loss.py,sha256=OhAtxzAwZ1CoNGH1S2dQbG7iDyowYUqv64KXi0GgMhk,11772
|
199
199
|
monai/losses/giou_loss.py,sha256=Mogq6fR0tO__Xj0Ul388QMEx03XrSS-Ue96i9ahY-uo,2795
|
@@ -226,7 +226,7 @@ monai/metrics/regression.py,sha256=JV7x8ibD04hZeWz83Ac26jjyufsCanvAmohD-eWKtbY,2
|
|
226
226
|
monai/metrics/rocauc.py,sha256=CJOAzDamB8TcFP1bEg-I1m5V1-Pq5RMaLFdM6MtNa_E,8038
|
227
227
|
monai/metrics/surface_dice.py,sha256=aNERsTuJkPMfxatPaAzoW1KtvZvUAv4qe_7Kl_dOROI,15149
|
228
228
|
monai/metrics/surface_distance.py,sha256=bKDTm7ulhjfiphHLrDJoA3OKI3npwQy2Z5wY-JkXtXg,9727
|
229
|
-
monai/metrics/utils.py,sha256=
|
229
|
+
monai/metrics/utils.py,sha256=jJiIFGGa-iwvz1otHAKqPKTNmfZqd2dI7_Hsfblgxqk,46914
|
230
230
|
monai/metrics/wrapper.py,sha256=c1zg-xcypQyZ840TEuhhLgr4sClYMWTxlv1OieJTtvE,11781
|
231
231
|
monai/networks/__init__.py,sha256=X-z-kmVt9kwoNPgfYITGycnvG_9HC3_RSRKD2YC35Ag,1020
|
232
232
|
monai/networks/utils.py,sha256=GRtep2gGG1xxiviaQx1BNXP0tT-Tu4tyMgfKp4kLdMc,49645
|
@@ -327,7 +327,7 @@ monai/transforms/croppad/batch.py,sha256=5ukcYk3VCDpk62AL5Q_jTqpXmSNTlw0UCUhDeAB
|
|
327
327
|
monai/transforms/croppad/dictionary.py,sha256=2pf_k3gvDi7ruzj6bx2gVNIae7SatiLEWLg7EKJZDbg,60722
|
328
328
|
monai/transforms/croppad/functional.py,sha256=_agF3ustEVXVuKSF8qGNhXCrb3E6mc5Qypy37_MQU-8,12628
|
329
329
|
monai/transforms/intensity/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
330
|
-
monai/transforms/intensity/array.py,sha256
|
330
|
+
monai/transforms/intensity/array.py,sha256=bhKIAMgJu-QMQA8df9QdyancMJMShOIOGHjE__4XdXo,121574
|
331
331
|
monai/transforms/intensity/dictionary.py,sha256=RXZeQG9dPvdvjoiWWlNkYec4NDWBxYXjfct4fywv1Ic,85059
|
332
332
|
monai/transforms/io/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
333
333
|
monai/transforms/io/array.py,sha256=sb-ph9vbPPFimlxqwP2za83C_oOoOX67LmRH9nkASMY,25636
|
@@ -346,7 +346,7 @@ monai/transforms/regularization/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY
|
|
346
346
|
monai/transforms/regularization/array.py,sha256=tQPJy1QZEy-0N_-LQTeSGK-arUOaNsLOfQG_6tNnDOQ,7918
|
347
347
|
monai/transforms/regularization/dictionary.py,sha256=b2hw8nElkQeyu3LZSnWvz7pQMcK9tCuNHpLueAGTQr8,4800
|
348
348
|
monai/transforms/signal/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
349
|
-
monai/transforms/signal/array.py,sha256=
|
349
|
+
monai/transforms/signal/array.py,sha256=eTlvqOIUQixh-voTNJcl532RvG4ZlQBNeHhg3TT3Cto,16325
|
350
350
|
monai/transforms/signal/dictionary.py,sha256=JrUeHdstSvQqx7u32h74YBiSAWFeOzt8wAS0EA3VEWk,2085
|
351
351
|
monai/transforms/smooth_field/__init__.py,sha256=s9djSd6kvViPnFvMR11Dgd30Lv4oY6FaPJr4ZZJZLq0,573
|
352
352
|
monai/transforms/smooth_field/array.py,sha256=Pz4ErmcfVTRZpBe4_IAXTWHlGSmRfExegNKYyrSVwsE,17856
|
@@ -367,7 +367,7 @@ monai/utils/dist.py,sha256=mVaKlBTQJdWAG910sh5pGLEbb_KhRAXV5cPz7amH88Y,8639
|
|
367
367
|
monai/utils/enums.py,sha256=Gdo9WBrFODIYz5zt6c00hGz0bqjUQbhCWsfGSgKlnAU,19674
|
368
368
|
monai/utils/jupyter_utils.py,sha256=QqcKhJxzEf6YwM8Ik_HvfVDr7gNfrfzCXdzd2urEH8M,15651
|
369
369
|
monai/utils/misc.py,sha256=Mn_sIkTG49yW9wi2MQrnmoxWnvcbonHCxQLG4yWWYDY,30908
|
370
|
-
monai/utils/module.py,sha256=
|
370
|
+
monai/utils/module.py,sha256=Uu45ec-NHtccrA1Kv_QL-uxESLcgHLavCg9XelIa6lE,25148
|
371
371
|
monai/utils/nvtx.py,sha256=i9JBxR1uhW1ZCgLPLlTx8b907QlXkFzJyTBLMlFjhtU,6876
|
372
372
|
monai/utils/profiling.py,sha256=V2_cSHgrcmVF48_G3nUi2-O6fnXsS89nSlb8jj58YLo,15937
|
373
373
|
monai/utils/state_cacher.py,sha256=ERBE-mnnf47MwKSq-pNbfu1D2C4ZqKH-mORyLaBa3EE,5955
|
@@ -380,8 +380,8 @@ monai/visualize/img2tensorboard.py,sha256=_p5olAefUs6t-y17z0TK32fKxNnUNXVkb0Op1S
|
|
380
380
|
monai/visualize/occlusion_sensitivity.py,sha256=OQHEJLyIhB8zWqQsfKaX-1kvCjWFVYtLfS4dFC0nKFI,18160
|
381
381
|
monai/visualize/utils.py,sha256=B-MhTVs7sQbIqYS3yPnpBwPw2K82rE2PBtGIfpwZtWM,9894
|
382
382
|
monai/visualize/visualizer.py,sha256=qckyaMZCbezYUwE20k5yc-Pb7UozVavMDbrmyQwfYHY,1377
|
383
|
-
monai_weekly-1.4.
|
384
|
-
monai_weekly-1.4.
|
385
|
-
monai_weekly-1.4.
|
386
|
-
monai_weekly-1.4.
|
387
|
-
monai_weekly-1.4.
|
383
|
+
monai_weekly-1.4.dev2426.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
384
|
+
monai_weekly-1.4.dev2426.dist-info/METADATA,sha256=gaJQgO7GfMPD8kqn4uW3INqCCBSG6KqvWrStKMDcTOw,10890
|
385
|
+
monai_weekly-1.4.dev2426.dist-info/WHEEL,sha256=mguMlWGMX-VHnMpKOjjQidIo1ssRlCFu4a4mBpz1s2M,91
|
386
|
+
monai_weekly-1.4.dev2426.dist-info/top_level.txt,sha256=UaNwRzLGORdus41Ip446s3bBfViLkdkDsXDo34J2P44,6
|
387
|
+
monai_weekly-1.4.dev2426.dist-info/RECORD,,
|
File without changes
|
File without changes
|